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Abstract

If given the choice, what strategy should agents
use to switch partners in strategic social interac-
tions? While many analyses have been performed
on specific switching heuristics, showing how and
when these lead to more cooperation, no insights
have been provided into which rule will actually
be learnt by agents when given the freedom to do
so. Starting from a baseline model that has demon-
strated the potential of rewiring for cooperation, we
provide answers to this question over the full spec-
trum of social dilemmas. Multi-agent Q-learning
with Boltzmann exploration is used to learn when
to sever or maintain an association. In both the
Prisoner’s Dilemma and the Stag Hunt games we
observe that the Out-for-Tat rewiring rule, breaking
ties with other agents choosing socially undesirable
actions, becomes dominant, confirming at the same
time that cooperation flourishes when rewiring is
fast enough relative to imitation. Nonetheless, in
the transitory region before full cooperation, a Stay
strategy, keeping a connection at all costs, remains
present, which shows that loyalty needs to be over-
come for full cooperation to emerge. In conclusion,
individuals learn cooperation-promoting rewiring
rules but need to overcome a kind of loyalty to
achieve full cooperation in the full spectrum of so-
cial dilemmas.

1 Introduction
In social dilemmas, individuals are faced with the choice of
paying a cost to contribute to a common good or simply
abstaining from doing so and reaping the benefits from the
other contributors. The exact payoff structure of such dilem-
mas translates into well-known strategic games, such as the
Prisoner’s Dilemma, where the selfish action of defection is
strictly dominant, but mass defection makes everyone worse
off than they would have been by cooperating.

It is well known that in well-mixed populations mass de-
fection is bound to take over under random matching without
any added mechanism [Nowak, 2006], so the problem arises
of how to modify the interaction so that individuals are driven

towards socially desirable outcomes. The desire to form so-
cial relationships has long been recognised as a key enabler
to promote cooperative behaviour [Eshel and Cavalli-Sforza,
1982] and “network reciprocity” was singled out as one of
the five mechanisms for doing so [Nowak, 2006]. The pos-
sibility for partner selection, allowing agents the choice of
who and how often to interact with, was shown to promote
cooperation in numerous experimental studies [Rand et al.,
2011; Wang et al., 2012; Zhang et al., 2016] and computa-
tional models [Segbroeck et al., 2009; Zheng et al., 2017;
Bara et al., 2022; Pacheco et al., 2006; Santos et al., 2006a].
But while the emergence of cooperation-sustaining in-game
strategies, such as the well-known Tit-for-Tat in the Prisoner’s
Dilemma game, is relatively well-understood, we do not have
the same understanding of which partner selection rules will
co-evolve with them and whether the learnt rules provide an
advantage or not for cooperation.

In a seminal contribution [Santos et al., 2006a] have shown
that cooperation prevails when individuals adjust their social
ties, proposing a partner selection rule that causes full coop-
eration to emerge. If individuals are tied with cooperators,
they choose to stay connected, but if they are tied with de-
fectors they switch to a random partner proportionally to a
(Fermi) function of the fitness difference with the partners.
This is a more general version of the Out-for-Tat (OFT) rule,
which always breaks ties with defectors and keeps them with
cooperators, shown to lead to (partial) cooperation in the Pris-
oner’s Dilemma with the option of opting out when imposed
on the agents [Zhang et al., 2016]. But while such hand-
crafted rules have been shown to promote cooperation, it is
not clear whether cooperation can be achieved when agents
learn partner selection rules by themselves, and whether pat-
terns emerge in learnt rules across different social dilemmas.

Contribution. In this paper, we study the emergence of
partner selection rules and examine how they influence the
strategic dynamics in social dilemmas played on networks,
without imposing agents to follow pre-defined heuristics or
even specifying that cooperation should be achieved. As
such, our work reveals which assortment rules are found by
evolution and whether they are bound to lead to cooperation
(or not) [Eshel and Cavalli-Sforza, 1982]. We show that in
both the Prisoner’s Dilemma and the Stag Hunt games an
OFT rewiring rule, which keeps ties cooperators and beaks
them with defectors becomes dominant, allowing for coop-
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eration to flourish provided rewiring is faster than imitation.
The main bottleneck to achieving cooperation is a Stay strat-
egy that tries to maintain the connection no matter what. Suf-
ficiently fast rewiring removes this strategy, thus opening the
door to full cooperation.

Related Research. Understanding why phenomena such
as cooperation, reciprocity and altruism emerge from self-
interested behaviour is one of the greatest challenges across
many fields of science, such as biology, psychology and eco-
nomics [Nowak, 2006]. The capacity of individuals to de-
velop and maintain meaningful social ties is considered a
key enabler in moving away from selfish behaviour, together
with kin selection, direct reciprocity, indirect reciprocity and
group selection [Nowak, 2006].

Partner selection introduces an extra dimension to the in-
teraction. Not only do individuals think about how to be-
have in a social dilemma, but also who to play this social
dilemma with. This naturally suggests the study of two-
dimensional timescales, where the relative speed of structural
and strategic update was shown to make a difference in the
emergence of cooperation in models with interaction propen-
sity [Pacheco et al., 2006; Santos et al., 2006b], the deci-
sion to leave from the current partner [Zhang et al., 2016;
Zheng et al., 2017] or group [Santos et al., 2006a], and uni-
lateral attachment [Bara et al., 2022].

The spatio-temporal aspects typical of games with partner
selection add further complexity to the study of the evolution-
ary dynamics, as these are ignored in the replicator equation
[Roca et al., 2009], which makes standard Ordinary Differen-
tial Equation based analysis infeasible. Social simulation has
often been employed to provide insights into the behaviour of
complex societies assorted in networks [Roca et al., 2009].
Using computer-aided analysis, partner selection was shown
to be key to the emergence of cooperation in social dilem-
mas [Gilbert, 1995; Salazar et al., 2011] and coordination
games[Segbroeck et al., 2010], and studied in combination
with reputation [Sabater and Sierra, 2002; Pujol et al., 2002;
Sabater-Mir et al., 2006] as a tool to ostracise unreliable part-
ners [Perreau de Pinninck et al., 2010; Wang et al., 2012;
Santos et al., 2018]. In this paper, we are concerned with
minimal enablers for cooperation, without assuming the abil-
ity of agents to communicate with one another or form eval-
uative meta-beliefs as in the reputation approaches.

Recently, Reinforcement Learning has emerged as a funda-
mental tool to investigate strategic interactions [Bloembergen
et al., 2015], building on the deep connection with replica-
tor dynamics [Börgers and Sarin, 1997]. Rather than finding
evolutionary stable strategies by “solving” a game, we can
approximate population dynamics by having agents learn the
distribution of types. The emergence of pro-social behaviour
has received increased attention thanks to the development
of deep reinforcement learning algorithms, for example in
the context of common pool resource appropriation [Pérolat
et al., 2017]. Partner selection was also recently studied as
an explicit strategy profile, modelling Q-learning agents en-
gaged in a two-person Prisoner’s Dilemma with direct and
fully informed partner selection [Anastassacos et al., 2020]
where agents can unilaterally select who to play with, and

C D
C R,R S, T
D T, S P, P

C D
C 1, 1 S, T
D T, S 0, 0

Figure 1: Payoff bi-matrix for social dilemmas of cooperation. The
relation between R,S, T, P will determine the exact nature of the
game. Our analysis fixes R = 1 and P = 0.

have access to the past behaviour of every other agent in the
game. In games on networks, [Fulker et al., 2021] models
the co-evolution of network weights, representing individu-
als’ openness to interact, and in-game strategies while [Foley
et al., 2018] a co-evolutionary model is presented where strat-
egy and structure evolve by reinforcement learning, but only
able to account for the emergence of conventions, while so-
cial dilemmas require more complex learning approaches.

Paper Structure. Section 2 presents the background on so-
cial dilemmas and Q-learning, Section 3 introduces our learn-
ing algorithm for partner selection and analyses the emer-
gence of cooperation-sustaining partner selection, while Sec-
tion 4 zooms in the specific social dilemmas.

2 Preliminaries

2.1 Social Dilemmas

Social dilemmas of cooperation are modelled as 2-player
symmetric games ⟨A,M⟩, where players’ action space A =
{C,D} denotes their action of cooperate or defect and M the
payoff matrix for the row player (see Figure 1). If both play-
ers cooperate, they will receive a payoff of R (the reward).
If both defect, they will receive P (the punishment). If one
player cooperates and another one defects, the cooperator will
receive a payoff of S (the disadvantage of being cheated on)
and the defector will receive a payoff of T (the temptation to
cheat). Depending on the values of the payoff, we can classify
the game into three different social dilemmas, the Snow-Drift
(SD) game, with T > R > S > P , the Stag-Hunt (SH)
game, with R > T > P > S, and the Prisoner’s Dilemma
(PD), with T > R > P > S. They represent various degrees
of conflict between players. For SD, unilateral defection is
preferred to mutual cooperation while unilateral cooperation
is better than mutual defection (T > R,S > P ), therefore
the pure Nash equilibria of the game are (C,D) and (D,C).
On the other hand, for SH, mutual cooperation and mutual
defection are preferred to unilateral defection and unilateral
cooperation (R > T,P > S), and the pure Nash equilibria of
the game are (C,C) and (D,D). The PD is the harder case
for cooperation, as defection is the strictly dominant strategy
(T > R,P > S), with the unique Nash equilibrium of the
game being (D,D). We adopt the convention in [Santos et
al., 2006a] and normalize the payoff for mutual cooperation
and mutual defection to R = 1 and P = 0, as shown in Figure
1. We are studying games played on networks, where agents
play a social dilemma with their neighbours uniformly. For
N (i) being the set of agents connected to i, the fitness (total
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payoff) of agent i is given by

f(i) =

N (i)∑
j=1

M(mi,mj) (1)

where mi and mj are strategies by agent i and j, respectively.

2.2 Q-Learning
Our agents use Q-learning, a widely established Reinforce-
ment Learning algorithm [Watkins and Dayan, 1992]. They
act on a Markov decision process (MDP), represented as a
tuple ⟨S,A, T ,R⟩, where S is a set of states, A is a set of
available actions, T : S ×A×S → [0, 1] is a state transition
probability function andR : S ×A → R is an immediate re-
ward function. A learning agent aims to find a policy π(a|s)
that maximises the expected discounted cumulative reward or
profit J = E[

∑∞
h=0 γ

hρh+1] by repeated game plays, where
γ ∈ [0, 1] is the discount factor, and ρh+1 = R(sh, ah) is the
immediate reward obtained by the agent when it enters state
sh+1 from sh after choosing action ah, starting from state s0.

A Q-learning agent maintains a Q-value for each state-
action pair (s, a) to estimate the profit of using each action
a ∈ A under each state s ∈ S . Suppose that at a given
time step t, the agent is in state s and selects an action ai, we
denote the corresponding Q-value as Qi(t, s) := Q(t, s, ai).
Consider the case where the game ends once the action is per-
formed. Let rt be the immediate reward, The agent updates
its Q-value for the state-action pair (s, ai) as follows:

Qi(t+ 1, s) = (1− α)Qi(t, s) + αrt (2)

where α ∈ (0, 1) is the learning rate. An exploration mecha-
nism aims to strike a balance between exploitation and explo-
ration such that the performance of the agent is maximised
during learning while ensuring the converging condition is
met. Boltzmann exploration is a commonly used mecha-
nism, where the action selection probability π := π(t, s) =
(π1, ..., πd) ∈ ∆ is given by

πi =
eτQi∑d
j=1 e

τQj

(3)

where τ is a parameter known as the inverse temperature. The
agent is in pure exploration (randomly taking each action)
when τ is 0, and in pure exploitation (taking the action with
the highest Q-value) when τ →∞.

3 Co-Evolution of Strategy and Structure
The Co-Evolutionary Model. Here we present our model
for the co-evolution of strategy and structure in the spectrum
of social dilemmas. Consider a network of agents where each
agent is randomly connected with z neighbours and assigned
an action for the underlying game, i.e., Cooperate or Defect,
uniformly at random. During the simulation, agents are able
to learn to update their social ties by maintaining the link with
their neighbours or cutting the link and rewiring to a random
neighbour in the population. They are furthermore able to up-
date their strategy by imitating their neighbours according to
their relative fitness. Algorithm 1 describes our model, which

Algorithm 1 The Co-evolutionary Model

Input: N, z,W, S, T,H, α, τ, β

1: Initialize Agents with N,α, τ
2: Initialize Strategies with N
3: Initialize Network as a random z-regular graph
4: for iteration = 1 to H do
5: draw x ∈ [0, 1) randomly
6: if x ≥ 1/(1 +W ) then
7: draw i from Network, and j from N (i)
8: si ← Strategies[j], sj ← Strategies[i]
9: ai ← Agents[i].getAction(si)

10: aj ← Agents[j].getAction(sj)
11: if ai or aj == “Y ” then
12: Network.removeEdge(i, j)
13: draw n1 from {i, j}, n2 from Network
14: Network.addEdge(n1, n2)
15: if n1 == i then
16: ri ←M(Strategies[i], Strategies[n2])
17: rj ← 0
18: else
19: ri ← 0
20: rj ←M(Strategies[j], Strategies[n2])
21: end if
22: else
23: ri ←M(Strategies[i], Strategies[j])
24: rj ←M(Strategies[j], Strategies[i])
25: end if
26: Agents[i].train(si, ai, ri)
27: Agents[j].train(sj , aj , rj)
28: else
29: draw i from Network, and j from N (i)
30: evaluate f(i), f(j) with (1)
31: draw y ∈ [0, 1) randomly
32: if y < 1/[1 + e−β(f(j)−f(i))] then
33: Strategies[i]← Strategies[j]
34: end if
35: end if
36: end for

is equivalent to [Santos et al., 2006a], our baseline, when fix-
ing the partner selection rule to follow a Fermi distribution.

Let us define the timescale ratio W between the strategy
update and link update, to be such that for each iteration, the
strategy update is performed with probability p = 1/(1+W ),
and the link update with probability 1 − p. W → 0 cor-
responds to the situation where strategy evolution happens
on a fixed network. As W increases, agents are given the
chance to react more promptly to their neighbours’ behaviour
expecting, intuitively, a more prominent selection of cooper-
ative partners at the expense of defectors.

In the case of a link update (line 7− 27), a link is selected
between agent i and j, and the agents involved need to decide
whether to keep or sever their connection. Both agents are
informed of their opponent’s game strategy (si, sj), where
s ∈ {C,D} 1 and asked to come up with an action profile

1We considered agents with profile-dependent policies, rather
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Figure 2: Illustration on a link update. A pair of linked agents are
drawn (a Cooperator and a Defector in this example) and they can
decide to keep or break the link with their partner according to their
policy determined by their Q-values. Agent i chooses to break the
tie and thus the link is removed, and one of them (agent i in this
example) will form a new link with another agent chosen at random.

(ai, aj), where a ∈ {N,Y }, Y stands for yes, thus breaking
ties, and N for no, thus staying. If both agents decide to
stay, their link will be maintained. If either decides to cut
the tie, their link will be removed and one of them will form
a new link with another agent chosen at random, in such a
way that the average neighbourhood size (the degree of the
graph) is retained (see figure 2 for illustration). After the link
is updated, both agents i and j will receive a payoff from their
new connection based on their strategies, with their Q-values
updated accordingly. If the link is severed, the agent that does
not get re-wired will receive a payoff of 0 at that time point.
To simplify the analysis, the minimum degree for an agent is
set to be 1, so no agent can be fully disconnected at any point.

In the case of strategy update (line 29 − 34), an agent is
selected to update their strategy by imitation according to the
pairwise comparison rule [Traulsen et al., 2006] based on a
Fermi function. Specifically, an agent i and one of its neigh-
bours j are selected and their respective fitness f(i) and f(j)
are evaluated. With probability p = 1/[1 + e−β(f(j)−f(i))]
, agent i will copy the strategy of agent j. In line with our
baseline model, we conducted experiments over a popula-
tion size of N = 1000 and a total number of iterations of
H = 1, 000, 000. Unless otherwise specified, the average
neighbourhood size is z = 30, the learning rate α = 0.05,
the inverse temperature for Q-learning τ = 5, and the inverse
temperature for imitation β = 0.005.

Emergent Partner Selection Rules Sustain Cooperation,
when Fast Enough. We present our results, showing that
(full) cooperation can emerge when agents adjust their so-
cial ties even when they still have to learn how to select their
partners. The contour plots in Figure 3 demonstrate the per-
centage of cooperation in the population for different values
of W on different dilemma games. Specifically, the upper
right region of the plot corresponds to the Snow-Drift (SD)
game, the lower left region to the Stag-Hunt (SH) game, and
the lower right region to the Prisoner’s Dilemma (PD) game.

than opponent-dependent only, but results are largely unaffected.

Figure 3: Cooperation levels for different timescales (W) on the
full spectrum of social dilemma games, with the x-axis represent-
ing the value of T and the y-axis the value of S, encoding the
Prisoner’s Dilemma (PD), Snow-Drift (SD), and Stag-Hunt (SH)
games, with the remaining quadrant being a fully cooperative game,
N = 1000, z = 30, α = 0.05, τ = 5, β = 0.005. As W increases,
so does cooperation. Note the SD corner case when cooperation is
around 80%, which we explore in Section 4.2.

The upper left region completes the plot and corresponds to
the degenerate case where cooperation is strictly dominant,
i.e. the harmony game (HG). The levels of cooperation in-
crease with the darkness of the blue colour, while dark red
denotes a high level of defection. We can see from Figure
3 that, with suitable values of W , cooperation is sustained
without the need to impose any partner selection rule. For
W = 0 (fixed network), the result confirms the previous find-
ings on well-mixed populations [Santos et al., 2006b]. As W
increases, the wave of cooperation pushes towards the lower
right corner (T = 2, S = −1) of the plot, which presents
the hardest challenge for cooperation to emerge, as defection
is always strictly preferred. Leaving the upper right corner
momentarily aside, we can see that with a sufficiently large
value of W , full cooperation among the population is attain-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

114



able. Intuitively, the conditions of the interaction provide suf-
ficient opportunity for cooperators to learn to cut ties with
defectors and cluster themselves in cooperator communities.
While these results are equivalent to those obtained in [San-
tos et al., 2006a], it needs to be understood that here, no spe-
cific partner selection heuristics were enforced. What makes
these results thus innovative is that evolution appears to se-
lect rewiring rules that lead to more cooperation in all social
dilemmas. Note nonetheless that in the upper right corner, the
level of cooperation seems to stop increasing with W . In fact,
for the extreme case of the SD game (T = 2, S = 1), cooper-
ation rates settle around the 80% mark. As we shall see in the
next section, the learnt partner selection rules are affected by
the game structure and in particular their Nash equilibria. Al-
though important similarities are shown between the different
social dilemma games, their payoff structure determines the
distribution and the speed at which rules are learnt.

4 Learnt Partner Selection Rules
We now analyse the emergence of partner selection rules in
the spectrum of social dilemmas. After classifying the pol-
icy types based on Q-value comparison, we zoom in on the
PD game, where cooperation is the harder to attain, and then
discuss the SD/SH dimension.
Policy Types. By comparing the magnitude of Q-values
for partner selection at different states, we can classify the
agent’s policy into different types. For example, if the Q-
value of action N is larger than that of action Y regard-
less of the opponent’s strategy in the social dilemma, i.e.,
(Q(N |C) > Q(Y |C), Q(N |D) > Q(Y |D)), we classify the
agent as adopting the Always-Stay strategy; If the Q-value
of action N is larger than that of action Y when the oppo-
nent cooperates, but reverse otherwise (Q(N |C) > Q(Y |C),
Q(N |D) < Q(Y |D)), we classify the agent as adopting the
Out-for-Tat strategy; and so on. We are therefore able to
classify agents’ partner selection policies into four different
types. They are (1) Always-Stay (Stay), where the ”loyal”
agent always maintains the tie regardless of the opponent’s
strategy, (2) Out-for-Tat (OFT), where the agent maintains the
tie if the opponent cooperates and cuts the tie if the opponent
defects, (3) reverse Out-for-Tat (R-OFT), which reverses the
behaviour of OFT, and (4) Always-Switch (Switch), where
the agent cuts ties regardless.

4.1 Zooming in the Prisoner’s Dilemma
Higher Mean Degree Slows Down Cooperation. In Fig-
ure 4, we show the cooperation levels as well as the learnt
partner selection policy of agents for the PD game at T =
2, S = −1, under the different values of mean neighbour-
hood size z ∈ {10, 20, 30, 40}. Looking at the solid lines in
the upper plot, we can see the cooperation rate increases as
a function of W . Full cooperation becomes more difficult to
obtain when z increases. This is because, intuitively, cooper-
ators require much more time to cut ties with the defectors.
Learning Slows Down Cooperation. We further con-
ducted our experiment when the OFT policy is enforced, to
classify the “cost” of learning this policy rather than having
it imposed on the agents straight away. The dashed lines in

Figure 4: Interplay between cooperation rates and learnt policy types
at different timescales (W) and average neighbourhood size z on the
PD (T = 2, S = −1), N = 1000, α = 0.05, τ = 5, β = 0.005.
(Top) Cooperation rates as a function of W and z show that higher
z make cooperation slower to emerge. Solid lines represent the out-
come of Q-learning partner selection, while the dashed shows what
happens when OFT is imposed. As z increases cooperation emerges
more slowly. (Bottom) Rate of learnt policy types for different W
and z. As W increases, OFT agents dominate the other policy types.

the upper plot present the cooperation rate across W for dif-
ferent z. The gaps between dashed and solid lines illustrate
the cost of having agents learn to adjust ties by themselves.
As z increases, so does this cost. Notice that, with OFT en-
forced, cooperation drops as W becomes too large. This is
because everyone has had enough time to cut ties with defec-
tors, resulting in a disconnected graph with islands of defect-
ing pairs. These agents are not able to cut ties with their only
partner and imitate others’ strategies, and are being forced
into an unhealthy partnership with no alternatives, as a con-
sequence of which we observe a drop in cooperation levels.

Loyalty is not Enough to Outcast Defectors. The lower
plot in Figure 4 presents the percentage of agents adopting
different policy types across different timescales W and the
average neighbourhood size z in the PD. We can see that
the Always-Stay and OFT policies are the only ones that are
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Figure 5: Learnt policy types over iteration for different timescales (W) for the PD game (T = 2, S = −1), N = 1000, z = 30, α =
0.05, τ = 5, β = 0.005. Over 90% of agents learn OFT before 200, 000 iterations. Cooperation and partner selection co-evolve based on W.

learnt by the agents. When comparing with the upper plot,
we can also see that the proportion of policy types is directly
related to the final cooperation rate in the PD. If defection
emerges, the policy type of the population is a mixture of Stay
and OFT agents. If cooperation emerges, almost all agents in
the population are adopting OFT. The dominance of the OFT
policy among agents makes intuitive sense. In the PD, an
agent always receives a higher payoff when maintaining the
link with a cooperator regardless of its strategy, and it always
receives a higher payoff by cutting the link with a defector.
The adoption of OFT helps the agents maintain links with co-
operators and cut ties with defectors, contributing to the rise
in the cooperation rate throughout the simulation. However,
consider the case where the percentage of defectors is domi-
nant in the population. Then the advantage of cutting the link
with a defector is not immediately obvious, since the agent
will likely be rewiring to another defector in the population.
This is also the reason why a certain portion of the agents
have adopted the “loyal” Stay policy if defection emerges,
as the choice of random rewiring in response to a single de-
fection may make the agent worse off. As the saying goes,
“better the devil you know than the devil you don’t know”.
OFT Co-Evolves with Cooperation. Figure 5 shows the
co-evolution of cooperation rate and learnt partner selection
policy across iterations for different W . In all cases, the adop-
tion rate of OFT has risen to over 90% at the beginning of the
simulations, confirming our earlier observation on the role of
the OFT policy. Depending on the value of W and the over-
all cooperation levels, the adoption of OFT may or may not
be able to reverse the decreasing trend in cooperation rate,
which will in turn affect the adoption rate of the OFT policy
at the later stages of the simulation. If the cooperation rate in-
creases, the percentage of OFT agents continues to rise; oth-
erwise, some agents will move to adopt the Stay policy. All
in all, it is evident that the partner selection policy alone does
not “cause” the increased cooperation level, nor does the in-
creased cooperation level alone “cause” the emergence of the
partner selection policy, but the two co-evolve towards a fully
cooperative society, if the right conditions are met.
On the Role of Inverse Temperatures. As a final point, we
look at the role of the softmax function τ used in Q-learning
and the Fermi function β used in the imitation with pairwise
comparison rule, which are both inverse temperatures of the
kind found in statistical physics. The intensity of these tem-

peratures affects the greediness of action selection. When
τ, β → 0, decisions are purely random. When τ → ∞, the
decision to break the tie follows the agent’s highest Q-value.
When β → ∞, the decision to copy the opponent’s strategy
is determined by whether the opponent’s fitness is higher.

We now look at the effect of changing the intensity of in-
verse temperatures on the evolution of cooperation. Imposing
T = 1−S, we move along the diagonal of the PD region (see
Figure 3) from (T, S) = (1, 0) to (T, S) = (2,−1), which
corresponds to a PD with ∞ > b/c ≥ 2 [Ohtsuki et al.,
2006], while keeping the time scale value W = 4. In Figure
6, we plot the cooperation rate across 1 ≤ T ≤ 2 for different
intensities of the inverse temperatures. The results are shown
for three different values of β for each plot, and within each
panel, three different values of τ are examined. We can see
a clear transition from full cooperation to full defection when
T increases, as the “difficulty” of the game increases. For
the effects of either inverse temperature, we can observe how
τ has a positive effect on cooperation, while β has a nega-
tive one. Therefore, to improve the level of cooperation, it is
preferable to adopt the learnt partner selection rule quickly,
while copying the other’s strategy slowly, which is in line
with the timescales analysis of our baseline model [Santos et
al., 2006a]. In the previous section, we have shown how the
adoption of the OFT policy is an effective rule for promoting
cooperation and that it can quickly emerge in the right condi-
tions. It is intuitive to see why increasing τ promotes cooper-
ation, independently of the adopted game strategies. On the
other hand, we know that defectors are more successful (in
terms of fitness) at the earlier stage of the game, while coop-
erators could catch up after cutting the links with defectors.
Thus, to promote cooperation, agents need to avoid copying
early success. It is finally worth noting that the magnitudes
of τ and β are not directly comparable. This is because Q-
learning estimates the payoffs between the actions of a single
agent, without requiring interpersonal comparison, whereas
imitation compares the fitness (total payoff) between agents.
As a rule of thumb, for an average neighbourhood size of
z = 30, we expect a 30 times difference in parameter value.

4.2 The Snow-Drift/Stag-Hunt Dimension
In the previous section, we have shown that the level of coop-
eration in certain SD games is capped at around 80% for the
extreme payoff distributions, even though we consider the SD
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Figure 6: The effect of inverse temperatures τ (positive) and β (negative) on the cooperation levels in the PD game. The x-axis represents the
diagonal region of the PD in Figure 3 from (T, S) = (1, 0) to (T, S) = (2,−1), N = 1000, z = 30,W = 4, α = 0.05.

Figure 7: The effect of learnt policy types and cooperation levels
on the SH and SD games, corresponding to the induced diagonal in
Figure 3 from (T, S) = (0,−1) to (T, S) = (2, 1), N = 1000, z =
30,W = 8, α = 0.05, τ = 5, β = 0.005. In SH, full cooperation
co-evolves with the OFT policy. In SD, Stay becomes prevalent with
more extreme payoffs and cooperation settles around 80%.

game to be a less difficult scenario compared to the PD for the
emergence of cooperation. This is due to the SD payoff struc-
ture, requiring matching opposing behaviours, which affects
the emergent policy types, which in turn affects the overall
cooperation rate in the population. We thus now look at the
effect that the payoffs in the SH and SD games have on the
learnt policy types and cooperation rate. Imposing T = S−1,
we move along the diagonal in the SH and SD game region
(see Figure 3) from (S, T ) = (−1, 0) to (S, T ) = (1, 2),
while keeping the time scale value W = 8. Figure 7 plots the
cooperation rate and distribution of agents’ policy type across
0 ≤ T ≤ 2. We can see in the range of SH games that the
population achieves full cooperation and most agents adopt
the OFT policy. On the other hand, in the range of SD games,
Stay agents start to take over and the cooperation rate expe-
riences a (mild) drop. The SH game is a common interest
game with symmetric pure Nash equilibria. When agents are
given the option to switch their ties and update their strate-
gies, cooperation is not hard to emerge as it maximises the

payoff of the individuals. On the other hand, in the SD game,
the relative advantage of a cooperator leaving a defector is
less obvious as the difference between the payoff of being
cheated on and mutual operation is not significant. In the ex-
treme case of S = 1, T = 2, the difference is effectively zero,
therefore cooperators are indifferent between maintaining or
cutting ties with defectors. Regarding the strategy, as the SD
game contains asymmetric pure Nash equilibria, cooperators
have less motivation to copy the strategy from the defectors,
therefore the level of cooperation is kept at a higher rate.

5 Discussion
We studied the emergence of cooperation in social dilemmas
played on networks, with individuals learning partner selec-
tion rules by themselves. We showed that the learnt strate-
gies support the levels of cooperation observed in the litera-
ture using hard-wired heuristics, confirming that cooperation
flourishes when rewiring is fast enough relative to imitation
[Santos et al., 2006a]. We demonstrated the role of OFT, a
simple rule that keeps ties with cooperators and breaks them
with defectors, across the spectrum of social dilemmas. The
Stay strategy is also helpful in supporting cooperation, but its
loyal nature is not sufficient to outcast defectors.

Our results open several avenues for future research. While
our focus was on learning partner selection rules, game deci-
sions were still based on imitation-learning. A natural next
step would be the study of learnt in-game strategies as well,
in the spirit of [Leung and Turrini, 2024], although we believe
cooperation will be harder to maintain when defectors can ex-
ploit a large number of neighbours at the same time. Whether
an interpersonal comparison rule, as in [Santos et al., 2006a],
can emerge to sustain cooperation is far from clear and will
likely require more complex strategy spaces. Furthermore,
alternative exploration algorithms warrant investigation, e.g.,
epsilon-greedy or learning automata [Segbroeck et al., 2010].

Despite the challenges of a replicator dynamic analysis, we
can still explore extreme or simplified cases, in the spirit of
[Zheng et al., 2017], or, for example, generalising the two-
dimensional timescale dynamics for extreme cooperator pop-
ularity in [Bara et al., 2022], to account for non-deterministic
partner selection rules. A final important follow-up research
direction concerns the relation with human behaviour, look-
ing at which partner selection rules are selected in practice.
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