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Abstract
In multi-agent reinforcement learning (MARL),
the ϵ-greedy method plays an important role
in balancing exploration and exploitation during
the decision-making process in value-based algo-
rithms. However, the ϵ-greedy exploration process
will introduce conservativeness when calculating
the expected state value when the agents are more
in need of exploitation during the approximate pol-
icy convergence, which may result in a subopti-
mal policy convergence. Besides, eliminating the
ϵ-greedy algorithm leaves no exploration and may
lead to unacceptable local optimal policies. To
address this dilemma, we use the previously col-
lected trajectories to construct a Monte-Carlo Tra-
jectory Tree, so that an existing optimal template, a
sequence of state prototypes, can be planned out.
The agents start by following the planned tem-
plate and act according to the policy without ex-
ploration, Stable Prefix Policy. The agents will
adaptively dropout and begin to explore by fol-
lowing the ϵ-greedy method when the policy still
needs exploration. We scale our approach to var-
ious value-based MARL methods and empirically
verify our method in a cooperative MARL task,
SMAC benchmarks. Experimental results demon-
strate that our method achieves not only better per-
formance but also faster convergence speed than
baseline algorithms within early time steps.

1 Introduction
Recent research on multi-agent reinforcement learning
(MARL) has a very wide range of applications in the real
world such as autonomous vehicle teams [Cao et al., 2012]
and sensor networks [Zhang and Lesser, 2011]. A number of
MARL methods have been proposed to improve either value
decomposition [Sunehag et al., 2017; Rashid et al., 2018;
Rashid et al., 2020; Wang et al., 2020a] or cooperative explo-
ration [Yang et al., 2020; Mahajan et al., 2019; Wang et al.,
2020b], among which value-based MARL methods [Sunehag
et al., 2017; Son et al., 2019; Wang et al., 2019b] have shown
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outstanding performance on challenging tasks. e.g. StarCraft
II [Samvelyan et al., 2019].

Figure 1: A matrix game showing sub-optimal solutions with explo-
ration.

Moreover, most of the value-based MARL algorithms use
ϵ-greedy [Sutton and Barto, 1998] method to balance explo-
ration and exploitation by choosing the greedy action with a
probability 1 − ϵ or a random choice action otherwise. To
explain the sub-optimal policy selection, we show a typi-
cal matrix game as described in Figure 1 where (B, R) is
the global-optimal solution. However, if player 1 applies ϵ-
greedy method with ϵ = 0.2, choosing action L by 0.1 and
action R by 0.9, the expectation for player 2 to choose T and
B are 1.81 and 1.8. Therefore, player 2 will always choose T
when player 1 makes decisions with exploration, and player
2 always chooses L for the same reason. In this case, the so-
lution will fall into (T, L), a suboptimal solution. Therefore,
the calculation of Qtot, mixed by each agent’s Q, is inaccu-
rate and the errors are cumulated and propagated through the
transitions among a trajectory.

Figure 2 also shows the dilemma between the benefit of
exploration and the sub-optimal solutions ϵ-greedy method
brings. Agents are trapped in local optima when greedy selec-
tions are applied only. When using ϵ-greedy method, agents
explore through the whole trajectories which makes them dif-
ficult to reach the goal. In contrast, if agents start with a
stable policy for a few steps and apply ϵ-greedy method af-
terward, the agents achieve a higher number of successful
cases. Based on this, we propose Stable Prefix Policy (SPP)
to encourage agents to follow the existing optimal trajectory
planned from previously collected trajectory data. Specifi-
cally, we implement Monte-Carlo Trajectory Tree (MCT2) to
preserve the structure of previous trajectories. The existing
optimal trajectory template planned from MCT2 is used for
guiding the agents on whether to follow the template during
rollouts and assemble target values in the training process.
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Figure 2: Two agents in the opposite are asked to reach the center goal simultaneously. Four obstacles around the central goal stop agents
from reaching the goal. The default policy is strictly moving towards the center goal. The three figures above show the rollout traces that
(a) agents choose actions greedily, (b) agents choose actions following ϵ-greedy method through the rollout process, and (c) agents choose
actions that start by stable prefix policy and follow ϵ-greedy method in later time steps.

When the agents dropout from the template, ϵ-greedy method
is activated afterwards.

The main contributions of this work are as follows: 1) We
propose the SPP method to rebalance the exploration and
exploitation process when the policy of agents is close to
the optimal policy during the training process. 2) Our pro-
posed method can be adapted to other value-based MARL
algorithms with mixing networks with minor changes to ex-
isting MARL code-bases. 3) We validate our methods em-
pirically by extensive experiments on SMAC benchmarks.
Experimental Results indicate that existing MARL methods
equipped with our method can compete with or outperform
original MARL methods in terms of the winning rates or cu-
mulated rewards respectively within 2M time steps.

2 Related Work
Multi-agent reinforcement learning. In multi-agent
value-based algorithms, the centralized value function,
usually a joint Q-function, is decomposed into local utility
functions. Many methods have been proposed to meet the
Individual-Global-Maximum (IGM) [Bu et al., 2020] as-
sumption, which indicates the consistency between the local
optimal actions and the optimal global joint action. VDN
[Lowe et al., 2017] and QMIX [Rashid et al., 2018] introduce
additivity and monotonicity to Q-functions. QTRAN [Son
et al., 2019] transforms IGM into optimization constraints.
QPLEX [Wang et al., 2020a] uses duplex dueling network
architecture to guarantee IGM assumption. Instead of fo-
cusing on value decomposition, multi-agent policy gradient
algorithms provide a centralized value function to evaluate
current joint policy and guide the update of each local utility
network. Most policy-based MARL methods extend RL
ideas, including MADDPG [Lowe et al., 2017], MATRPO
[Foerster et al., 2017], MAPPO [Yu et al., 2022]. FOP
[Zhang et al., 2021] algorithm factorizes optimal joint policy
by maximum entropy and MACPF [Wang et al., 2023] is the
latest algorithm that mixes critic values of each agent.
Exploration in Multi-agent Reinforcement Learning.
Extended from single-agent reinforcement learning, the ϵ-

greedy method is widely applicable in value-based MARL al-
gorithms. In this paper, our approach is based on the ϵ-greedy
exploration method and QMIX algorithm for reward credit
allocation. In policy-based algorithms, such as MAPPO and
COMA [Foerster et al., 2018], for exploration, multi-agent
approaches rely on classical noise-based exploration in which
agents explore local regions that are close to their individ-
ual actor policy. Another line of coordinated exploration al-
gorithms has been proposed. Multi-agent variational explo-
ration (MAVEN) [Mahajan et al., 2019] introduces a latent
space for hierarchical control. Agents condition their behav-
ior on the latent variable to perform committed exploration.
Influence-based exploration [Wang et al., 2019a] captures the
influence of one agent’s behavior on others. Agents are en-
couraged to visit ‘interaction points’ that will change other
agents’ behavior.

3 Backgrounds
A fully cooperative multi-agent task is described as a Dec-
POMDP [Oliehoek et al., 2016] task which consists of a tuple
G = ⟨S,A, P, r, Z,O,N, γ⟩ in which s ∈ S is the true state
of the environment and N is the number of agents. At each
time step, each agent i ∈ N ≡ {1, . . . , n} chooses an action
ai ∈ A which forms the joint action a ∈ A ≡ AN . The tran-
sition on the environment is according to the state transition
function that P (·|s, a) : S × A × S → [0, 1]. The reward,
r(s, a) : S × A → R, is shared among all the agents, and
γ ∈ [0, 1) is the discount factor for future reward penalty.

Partially observable scenarios are considered in this pa-
per that each agent draws individual observations z ∈ Z
of the environment according to the observation functions
O(s, i) : S × N → Z. Meanwhile, the action-observation
history, τi ∈ T ≡ (Z × A)∗, is preserved for each agent and
conditions the stochastic policy πi(ai|τi) : T × A → [0, 1].
The policy π for each agent is determined by a joint action-
value function: Qπ(st,at) = Est+1:∞,at+1:∞ [Rt|st,at], in
which the accumulated reward is considered as a discounted
return and formulated as Rt =

∑∞
i=0 γ

irt+i. After the roll-
out process, the whole trajectory from the initial transition to
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Figure 3: The utility networks and the mixing networks are from original MARL algorithms. Our method plans an existing optimal trajectory
(EOT) by the trajectory tree (MCT2). During the training, the selective assemble function assembles Qtot of each sample in a batch by
comparing the template cluster ct with the input true state st. The Qassem is used for TD update.

terminated transition are stored in the replay buffer.
Deep q-learning algorithm aims to find the optimal

joint action-value function Q∗(s, a; θ) = r(s, a) +
γEs′ [maxa′ Q∗ (s′,a′; θ)]. Due to partial observability,
Q (τ,a; θ) is used in place of Q (s, a; θ) and parameters θ
are learnt by minimizing the expected TD error. Centralized
training and decentralized execution (CTDE) enables agents
to acquire global states during the training and only individ-
ual observations during the testing execution. In multi-agent
settings, VDN learns a joint action-value function Qtot(τ,a)
as the sum of individual value functions: QVDN

tot (τ,a) =∑n
i=1 Qi(τi, ai). QMIX introduces a monotonic restriction

∀i ∈ N ,
∂QQMIX

tot (τ,a)
∂Qi(τi,ai)

> 0 to the mixing network to meet the
IGM assumption. IGM asserts the consistency between joint
and local greedy action selections in the joint action-value
Qtot(τ,a) and individual action-values [Qi(τi, ai)]

n
i=1.

4 Method
In this section, we introduce the overall architecture of our
method and describe the generation of the stable prefix pol-
icy. Our method divides the decision-making of the existing
MARL methods into two phases: our Stable Prefix Policy and
vanilla policy. SPP balances the exploration and exploita-
tion during the trajectory planning process with UCT, with
Dirichlet noise during the planning phase. For planning, we
establish a trajectory tree from data in the replay buffer in
the Monte-Carlo Tree structure, which we call Monte-Carlo
Trajectory Tree (MCT2), to plan out the existing optimal tra-
jectory. Instead of selecting one action from MCT planning,
our work uses MCT to preserve trajectories across episodes
to provide trajectory templates for utility network training.
Additionally, we describe the rollout process, the target value
assembling method, and the training pipeline in this section.
The pseudo-code is provided in Appendix A.

4.1 Architecture
The training process of value-based MARL algorithms is the
Q value Temporal Difference (TD) updating of each agent’s

utility network. In QMIX and the algorithms derived from
QMIX, TD updates are applied to the mixed Qtot value. The
utility network is composed of multi-layer perceptron (MLP)
layers and Gate Recurrent Unit (GRU) cells in which ht

i is the
historical hidden state. Similar to QMIX algorithm, the util-
ity network at time step t of agent i takes the observation oti
and its chosen action ati as an input and outputs the Qi(τi, ai)
of each agent according to the encoded history state τi. Then,
these Q values are fed into the mixing network which guar-
antees the monotonic constraints by hyper-networks and the
Qtot(τ,a) is used for TD learning.

As shown in Figure 3, our stable prefix policy is depen-
dent on the time step t. To summarize the states into a few
categories, we train a KMeans classifier ϕ(c|s) periodically
by the data sampled from the replay buffer. To plan a po-
tential optimal trajectory from MCT2, the state s0 (the initial
state) is classified into a cluster c0. Then the existing optimal
trajectory is selected from the root node c0 according to the
probabilistic upper confidence bound (PUCB) value of each
node and the sequence of cluster IDs is generated. At time
step t, ct is used to be compared with the true state cluster
and control the Q assembling process.

Based on the trained classifier ϕ(c|s) and the sequence of
transitions from the replay buffer during the training process,
our classifier predicts the cluster ID of each state in each time
step t. Whether the agents are following the trajectory tem-
plate can be determined by the comparison between the pre-
dicted cluster IDs ĉt (from ϕ(st)) and the cluster from our sta-
ble prefix policy ct. Once confirming the agents are following
the template, the target value calculated by Qtot(τn,an) is as-
sembled with other target values with the same cluster ID to
calculate TD error. According to the CTDE settings, during
the testing execution phase, the actions are conditioned only
on the utility networks without SPP and without ϵ-greedy ex-
ploration.

4.2 Stable Prefix Policy
As shown in Figure 4, to plan out an existing optimal trajec-
tory as a template from previously collected interactive data,
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Figure 4: Left: Agents follow the template trajectory in the rollout process and encounter disagreement on cluster c3. Then the transitions
prior to c3 are updated and a new node with c3 is generated in our MCT2. In the cij of MCT2, i is the time step of a state as well as the depth
of a node and j is the cluster ID. Right: A batch of transition sequences are converted to cluster transitions. For each transition in each time
step, Qt

tot of nodes that have the same cluster IDs as the existing optimal trajectory are assembled. The transitions after the dropout process
will not share the target value and the Qtot will not be assembled. For example, Q3

tot of τ3 is not assembled because τ3 has already dropped
out in step 2.

our method generates trajectory trees by the data sampled
from the replay buffer in Monte-Carlo Tree structure. We ran-
domly select tinter trajectories and apply clustering methods
to assign states s into a cluster c such that similar states can be
assigned to the same cluster. A transition (st,at, st+1, rt+1)
can be regarded as a visit from a node with cluster ID ϕ(st) to
its child node with ϕ(st+1). Meanwhile, the expectation re-
wards from one cluster of states to its subsequent clusters are
stored in the tree. Apart from the IDs of clusters, the value of
a node v(n) is also stored in the node and is calculated by the
following formula:

v(n) =λv(n) + (1− λ)×∑
cn∈children(n)

π(cn|n)× (Rn→cn + γv(cn)). (1)

In the formula above, v(n) is the value of the node n and
cn are the children nodes of the node n. π(cn|n) is the prob-
ability of visiting a child node cn from it parent node n and
is usually calculated by counting numbers. Rn→cn is the ex-
pectation of the historical rewards from node n to node cn. γ
is the discount factor and v(cn) is the value of child node cn.
λ is dynamically changed with the visit number of cluster Γn

and empirically defined as 1/Γn.
During the establishment of the MCT2, we follow the pro-

cedure in Efficient Zero [Ye et al., 2021]. A newly selected
node will be expanded with the average reward and policy
as its prior. Additionally, when the root node is to expand,
we apply the Dirichlet noise to the policy prior to give more
explorations.

π(cn|n) := (1− ρ)π(cn|n) + ρND(ξ), (2)

where ND(ξ) is the Dirichlet noise distribution, ρ and ξ is set
to 0.25 and 0.3. However, we do not use any noise and set ρ
to 0 for the non-root node or during evaluations.

Based on the MCT2 implementation described above, we
greedily select routes, a sequence of cluster IDs, from the root
node to a leaf according to the PUCB values from each parent
node n to its child node cn. Inside the formula below, cucb is
the hyper-parameter for balancing exploration and exploita-
tion.

c = argmax
cn∈children(n)

( v(cn)

+ cucb · π(cn|n) ·
√
(
log Γcn

1 + Γn
)).

(3)

After the selection, an optimal path of clusters is selected
from the root node to a leaf node, (c0, c1, ...cT ) within time
steps T , which will be used for training and rollout process.

During the rollout process, agents start by following the
template trajectory generated by MCT2. When the agents are
following the template, the actions are selected greedily ac-
cording to their Q values for full exploitation. However, once
the agents dropout from the template trajectory in a time step
t (ct ̸= ϕ(st)), actions are generated by ϵ-greedy for explo-
ration in the latter rollout steps.

After the rollout processes, the trajectories from the envi-
ronment interactions will be used to update the MCT2. The
states s are classified into clusters c which instead form the
transition sequences (c0, a0, c1, a1...cT ). The values of the
node before the dropout time step will be updated or created
in the MCT2. It is worth noting that MCT2 only concentrates
on the cluster transitions without actions. In such a way, our
stable prefix policy only focuses on the optimal subsequent
states no matter what actions the agents take.
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4.3 Training Pipeline
The existing template trajectories are also used in the training
process. A mini-batch of trajectories is sampled from the re-
play buffer to train the utility network. Our MCT2 generates
a template for each sampled trajectory to find the time step
that the agents dropout from the template. As shown in Fig-
ure 3, the Qtot(τ, a) are calculated from the mixing network
and the cluster ID ct is the output of our stable prefix policy.
The target values y are calculated by:

yt =rt + γ[1(ct+1 = ϕ(st+1)) ·Qt+1
assem(st+1)

+ (1− 1(ct+1 = ϕ(st+1))) ·Qtot(τ, a
t+1)]

(4)

While calculating the target y, we also assemble the target
values of the same cluster node among the sampled batch of
sequences such that the target values are close to the expecta-
tion of true discounted returns from that state.

Qt
assem(st) =

(
∑bs

i=1 Qtot(τi, ai) · 1(ct = ϕ(st))∑bs
i=1 1(c

t = ϕ(st))
(5)

Inside the formula above, bs is the batch size of sampled
data, Qtot(τi, ai) is calculated by adding the rewards to the
value of the subsequent node in the template, and the ct is the
cluster node from the trajectory. Because our method takes
Qtot and trajectory tree into consideration, our method can be
adapted to other value-based MARL algorithms with mixing
networks.

4.4 Sample Complexity Analysis
In this section, We linked our SPP method to the frame-
work in [Koenig and Simmons, 1993], verifying that our SPP
method can achieve a polynomial sample complexity. As we
need to calculate the sample complexity of SPP method. Be-
fore that, since our SPP method uses the clustering method
for feature extraction, we also need to give a reasonable as-
sumption for the feature extraction module in our algorithm.
Assumption 1. Assume that the state is parametrized by
some feature mapping (clustering mapping) such that for any
policy π, Qassem and π(s) depend only on ϕ(s), the stable
prefix policy πspp cover the states visited by the optimal pol-
icy:

sup
s,t

dπ
∗

t (ϕ(s))

dπ
spp

t (ϕ(s))
≤ C

where π∗ is the optimal policy, dπt is the state visit distribu-
tion under a policy π in time step t, ϕ(·) is a feature extractor
of the policy, and the constant C denotes an upper bound on
the coverage ratio[Xie et al., 2022] between πspp and optimal
policy π∗.

Assumption 1 indicates that the distributions of states be-
ing visited by each of the feature extractors corresponding to
SPP πspp and utility policy π should not be too different from
each other. The ratio is sometimes called the distribution mis-
match coefficient in the literature of policy gradient methods
[Agarwal et al., 2021]. We can show that given Assumption 1
our method explores the current time step without dropout of
any state which gives good performance guarantees for MDP
with general function approximation.

Theorem 1 ([Uchendu et al., 2023] theorem 4.3). With an
appropriate choice of training and evaluation process, our
approach (pseudocode in Appendix A) guarantees a near-
optimal bound up to a factor of C × poly(H) for MDP with
general function approximation.

At this point, we have obtained all the results we need,
showing that our SPP method achieves a polynomial sample
complexity, providing a reasonable assumption 1 holds. Al-
though polynomial or near optimal-bound can be achieved by
many optimism-based methods [Jin et al., 2018; Ouyang et
al., 2017], our approach further constructs a bonus for uncer-
tainty, which improves the empirical performance of our SPP
method.

5 Experiments
We evaluate the performance of our method via the fully co-
operative StarCraftII micro-management challenges by the
mean winning rate in each scenario. In this environment, we
mainly present 6 scenarios with 2 levels of difficulty. Mean-
while, ablation studies are also presented to show the adapt-
ability of our approach to other algorithms and the influence
of effective horizons. The details of other SMAC tasks are
shown in Appendix B.

5.1 Experiment Settings
SMAC: We verify our proposed stable prefix policy meth-
ods on 6 subtasks of two difficulties, a) hard 1c3s5z,
3s_vs_5z, and 5m_vs_6m, and b) super-hard scenarios
3s5z_vs_3s6z, MMM2, and 6h_vs_8z. The difficulty is set
as 7 by default. The winning rates of battles are calculated by
the mean of 5 different seeds and smoothed by 0.6 for better
visualization within 2M time steps.
Baselines: We adapt our method to QMIX and W-QMIX
algorithms and compare our methods to the value-based
QPLEX algorithm, popular policy-based algorithm MAPPO,
and currently the latest actor-critic algorithm MACPF. In the
ablation study, we also adapt our method to QPLEX algo-
rithm. The QMIX, QPLEX, and W-QMIX in this paper are
from pymarl codebase [Hu et al., 2021]. MACPF is from the
codebase [Zhang et al., 2021; Wang et al., 2023] and MAPPO
is provided by [Yu et al., 2022]

5.2 Experiment Results
We mainly evaluate our proposed stable prefix policy method
on QMIX algorithm on 6 benchmarks of SMAC, which is
composed of three hard tasks and three super-hard tasks. To
demonstrate the overall performance of each algorithm, Fig-
ure 5 plots the average test winning rate across the 6 sce-
narios. In hard tasks, including 5m_vs_6m and 1c3s5z, our
proposed method can compete with or outperform baseline
algorithms. In the 3s_vs_5z scenario, our method has lower
variance within 2M training steps. In the MMM2 task, our
method can compete with policy-based methods, however,
our proposed stable prefix policy still augments QMIX al-
gorithm and outperforms other value-based methods. In the
6h_vs_8z and 3s5z_vs_3s6z tasks, not all the baselines show
the winning rate and our method can achieve acceptable re-
sults. It is worth noting that we adjust the parameter size of
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Figure 5: The winning rate curves evaluated on the 6 SMAC tasks with 2 difficulties. The x-axis represents the time steps (1e6) being
evaluated and the y-axis is the mean of the winning rate.

the mixing network of QMIX and also apply both the original
setting and the adjustment setting to other baselines. The bet-
ter results of the two settings are shown in the graph. Other
hyper-parameters are in Appendix C.

5.3 Ablation Studies
Compatibility: We implement a trajectory tree to provide
current existing optimal trajectories for training and rollout
and our stable prefix policy module is entirely based on mix-
ing networks, our method can be regarded as a plugin that can
be adapted to other value-based MARL methods with minor
changes. To test the compatibility of our work, we apply our
method on QPLEX, and OW_QMIX algorithms in 1c3s5z,
3s_vs_5z, and MMM2 scenarios correspondingly.

According to Figure 6, in the 1c3s5z scenario and
MMM2 task, both the QMIX with stable prefix and QPLEX
with stable prefix outperform their original algorithms and
OW_QMIX with stable prefix can compete with its origin.
In the 3s_vs_5z scenario, all of the algorithms with our pro-
posed stable prefix policy outperform the algorithms without
prefix policy. By adding a large replay buffer and assembling
the target critic value, we also apply the idea of our approach
to the MAPPO algorithm to restrict early exploration. Figure
7 shows that our method can also improve the policy-based
MARL algorithms with critic networks.

Effectiveness: During the rollout process, our proposed
MCT2 provides a potential optimal trajectory for agents to
follow. Agents select actions according to their utility net-
work and might encounter disagreements with the template
in some time steps. Therefore, we record the portion of time

steps that agents drop out from the template with the average
length of an episode and analyze the influence of the dropout
time step on the performance in three scenarios.

According to Figure 8 and the task specifications, 1c3s5z
is an easy task for agents to focus fire on correct enemies, so
agents have more probability to agree with the stable prefix
trajectories. In the 3s_vs_5z task, agents should walk and
attack, which is difficult for stable prefix policy to predict
when to walk and attack. The important way to win MMM2
task is the control of Medivac and the ally to sacrifice, so the
ratio of dropout length is high. According to the trend from
the graph, as the policy network converges and the value of
each node in our MCT2 becomes accurate, the dropout ratio
becomes higher in later training time steps.

6 Discussion
Performance Enhancement: According to the main ex-
periment result in Figure 5, our method can compete with
or outperform other baseline algorithms in most tasks. Our
method can also outperform other value-based algorithms in
environments where policy-based algorithms are dominant.
The existing optimal template trajectories provide agents cur-
rently the best route with the highest return. The Q value
assembling mechanism within a batch of trajectories reduces
the error between the assembled Qtot and its true value.

Adaptability: We adapt our method on value-based MARL
algorithms with mixing networks and assemble the Qtot for
training. The essence of our work is providing a potential tra-
jectory to agents and assembling a more accurate Q value.
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Figure 6: The winning rate curves evaluated on 1c3s5z (Easy), 3s_vs_5z (Hard), and MMM2 (Super-hard) scenarios. The x-axis is the time
steps (1e6) that algorithms are evaluated at and the y-axis is the average value of the winning rate among 5 different seeds.

Figure 7: The winning rate curves evaluated on the three SMAC tasks of MAPPO and our proposed MAPPO+SPP methods. The x-axis
represents the time steps (1e6) being evaluated and the y-axis is the mean of the winning rate.

Figure 8: The drop out time step ratio of our QMIX+SPP algorithm
on the 1c3s5z, 3s_vs_5z, and MMM2 scenarios in 100k, 500k, and
1500k time steps.

Therefore, value-based MARL algorithms without central-
ized training, such as IQL, should also be suitable for our
method. As for Actor-Critic MARL algorithms, the training
of the critic modules is a value-based process, so our pro-
posed method should be suitable for the critic training.

Effectiveness: We aim to find the optimal value without
trembling hands when a sub-optimal policy can be obtained
from historical interactions. Therefore, the stability of the
prefix policy influences the dropout time step, the time step

agents encounter disagreements with the provided template.
According to Figure 8, the dropout time step is lower in the
task where agents need to explore more during the early time
steps. When the task is easy enough or the policy is near
convergence, the dropout time step will rise during the roll-
out process. In summary, the dropout time step is empirically
positively correlated to training time steps and negatively cor-
related to the task difficulty.

7 Conclusion and Future Work
In this work, we consider the dilemma between the need
for exploration and sub-optimal decision-making exploita-
tion. To solve the problem, we propose a plugin that consists
of a stable prefix trajectory provider, the Monte-Carlo Trajec-
tory Tree, and a selective assemble function. We show that
the usage of our stable prefix policy can improve MARL al-
gorithms’ performance when their utility network is close to
optimal and offer exploration budget to later time steps by re-
stricting early exploration according to the templates. SMAC
experimental results indicate that our method can be adapted
to value-based MARL methods in terms of implementation
and offers significant improvements to value-based MARL
methods. In the future, we might focus on the prescription
that early exploration is vital and update a solution without
early dropout in this paper.
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