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Abstract
Centralized Training with Decentralized Execution
(CTDE) has emerged as a widely adopted paradigm
in multi-agent reinforcement learning, emphasiz-
ing the utilization of global information for learning
an enhanced joint Q-function or centralized critic.
In contrast, our investigation delves into harness-
ing global information to directly enhance individ-
ual Q-functions or individual actors. Notably, we
discover that applying identical global information
universally across all agents proves insufficient for
optimal performance. Consequently, we advocate
for the customization of global information tailored
to each agent, creating agent-personalized global
information to bolster overall performance. Fur-
thermore, we introduce a novel paradigm named
Personalized Training with Distilled Execution
(PTDE), wherein agent-personalized global infor-
mation is distilled into the agent’s local informa-
tion. This distilled information is then utilized dur-
ing decentralized execution, resulting in minimal
performance degradation. PTDE can be seamlessly
integrated with state-of-the-art algorithms, lead-
ing to notable performance enhancements across
diverse benchmarks, including the SMAC bench-
mark, Google Research Football (GRF) bench-
mark, and Learning to Rank (LTR) task.

1 Introduction
Many real-world tasks can be modeled as decision problems
for multi-agent systems, such as multi-robot navigation [Han
et al., 2020], multi-robot collision avoidance [Long et al.,
2018], multi-UAV path planning [Qie et al., 2019], informa-
tion retrieval [Chen et al., 2024] and games [Mao et al., 2021;
Guss et al., 2021]. In most of these scenarios, the prevalent
constraints include partial observability, and agents are con-
strained to decentralized decision-making processes.

∗Corresponding author

To address these challenges, Multi-Agent Reinforcement
Learning (MARL) has emerged as a focal point of research.
Within MARL, Centralized Training with Decentralized Ex-
ecution (CTDE) stands out as a prominent paradigm. CTDE
leverages global information during training and shifts to uti-
lizing only local information during execution, facilitating
decentralized decision-making. This paradigm encompasses
two primary algorithmic categories: value-decomposition
based and actor-critic based approaches. Concerning the uti-
lization of global information, the former category [Sunehag
et al., 2017; Rashid et al., 2018; Wang et al., 2020; Chai et al.,
2021] employs global information for enhancing the joint Q-
function. In contrast, the latter category [Lowe et al., 2017;
Foerster et al., 2018; Iqbal and Sha, 2019; Yu et al., 2021;
Zhang et al., 2023a] incorporates global information as input
to a centralized critic. Notably, these approaches refrain from
utilizing global information directly during execution, a fac-
tor that could potentially constrain collaboration performance
among agents, especially in complex scenarios, as demon-
strated in our experiments.

In contrast to the conventional CTDE approach, a distinct
line of research explores the direct utilization of global infor-
mation during execution. COPA [Liu et al., 2021] introduces
a Coach-Player framework, devising an adaptive communica-
tion method wherein the coach determines when to dispatch
a global instruction vector to the players. This vector, com-
bined with local information, is used to compute individual
Q-functions. Despite COPA’s use of a multi-head attention
mechanism for comprehensive global information processing
during execution, this information remains identical for all
agents. In a different vein, the CSRL framework [Chen et
al., 2022] introduces a Commander-Soldiers MARL frame-
work, incorporating the concept of specific information for
each agent. Both COPA and CSRL notably enhance multi-
agent collaboration performance by directly applying global
information during execution.

Nevertheless, practical challenges emerge in numerous
applications due to local observability constraints, posing
difficulties in utilizing global information directly during
execution. To reconcile the need for global information
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while ensuring decentralized execution, we propose a novel
paradigm named Personalized Training with Distilled Exe-
cution (PTDE), which comprises two training stages. In the
first stage, we introduce the concept of agent-personalized
global information by employing a Global Information Per-
sonalization (GIP) module. This module transforms raw
global information into personalized global information tai-
lored to each agent. This personalized global information is
then utilized to compute individual Q-functions or individ-
ual policies, enhancing the performance of each agent. In the
second stage, we implement knowledge distillation for the
agent-personalized global information. Within this distilla-
tion framework, a proficiently trained GIP module acts as the
teacher network, while a dedicated student network is em-
ployed for the distillation process. Crucially, the input for the
student network is exclusively composed of the agent’s local
information, presenting a departure from the teacher network,
which integrates both global and agent’s local information 1.

During execution, the teacher network is replaced by the
student network, enabling decentralized execution while re-
taining the benefits of personalized global information. This
innovative approach ensures a seamless transition from per-
sonalized training to distilled execution within the proposed
PTDE paradigm. Summary of our contributions:

• In contrast to the prevalent trend in CTDE-based meth-
ods, which emphasizes leveraging global information
during centralized training, our approach shifts the focus
to exploring the utilization of global information during
decentralized execution.

• We identify that consistently positive performance
among agents is challenging when applying the same
global information for decision-making. However,
our innovation lies in transforming global information
into agent-personalized global information, resulting in
agents consistently making improved decisions.

• We introduce a novel paradigm named PTDE, which
not only benefit from agent-personalized global infor-
mation but also executes in a decentralized manner
through knowledge distillation. Importantly, our ex-
periments demonstrate minimal performance degrada-
tion after distilling agent-personalized global informa-
tion into agent’s local information.

• Experimental results underscore the universality and ef-
ficacy of the PTDE paradigm across diverse multi-agent
environments and algorithms.

2 Background
2.1 Dec-POMDP
In this work, we model a fully cooperative multi-agent task as
the Dec-POMDP [Oliehoek and Amato, 2016], which is for-
mally defined as a tuple G = 〈S,U, P, r,Z,O, n, γ〉. s ∈ S
is the global state of the environment. Each agent i ∈ A ≡

1Our approach diverges from the conventional knowledge dis-
tillation employed in model compression [Gou et al., 2021], where
both the teacher and student networks operate on the same input.

{1, ..., n} chooses an action ui ∈ U which forms the joint ac-
tion u ∈ U ≡ Un. The state transition function is modeled as
P (s′|s, u) : S × U × S → [0, 1]. The reward function which
is modeled as r(s, u) : S × U is shared by all agents and the
discount factor is γ ∈ [0, 1). It follows partially observable
settings, where agents do not have access to the global state.
Instead, it samples observations z ∈ Z according to observa-
tion function O(s, i) : S×U → Z. Each agent has an action-
observation history trajectory τ i ∈ T ≡ (Z × U)∗, on which
it conditions a stochastic policy πi(ui|τ i) : T × U → [0, 1].
In our algorithm, the joint policy π is based on action-value
function Qπ(st, ut) = Est+1:∞,ut+1:∞[

∑∞
k=0 γ

krt+k|st, ut].
The final goal is to get the optimal action-value function Q∗.

2.2 Typical MARL Algorithms
Value decomposition [Sunehag et al., 2017; Rashid et al.,
2018; Wang et al., 2020] and Actor-Critic [Yu et al., 2021;
Zhang et al., 2022; Zhang et al., 2023b; Hu et al., 2024] are
two typical branches of multi-agent reinforcement learning.
Among these, VDN [Sunehag et al., 2017] is the represen-
tative algorithm to formulate value-decomposition paradigm.
QMIX [Rashid et al., 2018] learns a monotonic factorisation
ensuring that a global argmax operation on the joint action-
value function Qtot yield the same results as a series of in-
dividual argmax operations on each individual action-value
function Qi. QPLEX [Wang et al., 2020] takes a duplex du-
eling network architecture to factorize the joint value func-
tion. MAPPO [Yu et al., 2021] is an actor-critic based algo-
rithm. To specialize for multi-agent settings, MAPPO uses
the structure of PPO algorithm but the critic can take extra
global information to follow the CTDE framework.

2.3 Knowledge Distillation
Knowledge distillation [Hinton et al., 2015] is proposed to
compress big models. It distills the knowledge generated
from a larger network into a smaller network. Policy distilla-
tion [Rusu et al., 2015] presents a novel knowledge distilla-
tion method which can be used in reinforcement learning to
extract the policy of agent and train a new network with an ex-
pert level performance and better efficiency. CTDS [Zhao et
al., 2022] proposes a novel Centralized Teacher with Decen-
tralized Student framework which consists of a teacher model
and a student model to alleviate the inefficiency caused by the
limitation of local observability.

3 Method
In this section, we initially present an approach that provides
the same global information to all agents during execution
for decision-making. Despite its simplicity, this naive use
of global information does not consistently enhance multi-
agent collaboration performance. Subsequently, we propose
the Global Information Personalization (GIP) module to tai-
lor global information for each agent, resulting in the agent-
personalized global information. Based on this, we derive a
centralized execution method that makes better use of global
information for improved performance. Recognizing the
challenge of directly obtaining global information during ex-
ecution, we finally introduce the knowledge distillation ap-
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proach to achieve decentralized execution without too much
performance degradation.

3.1 Naive Use of Global Information

𝒔𝒕𝒐𝒊𝒕, 𝒖𝒊𝒕 𝟏, 𝒊𝒅𝒙

𝒉𝒐𝒊𝒕 𝒔𝒊𝒕
𝑸𝒊𝒕 𝝉𝒊𝒕, 𝒖𝒊𝒕
𝒄𝒐𝒏𝒄𝒂𝒕

𝑸𝒏𝒕 𝝉𝒏𝒕 , 𝒖𝒏𝒕⋯𝑸𝟏𝒕 𝝉𝟏𝒕 , 𝒖𝟏𝒕 ⋯⋮ ⋮

𝑸𝒕𝒐𝒕𝒕 𝝉𝒕, 𝒖𝒕

𝒔𝒕

𝝁𝒔𝒊𝒕 , 𝜮𝒔𝒊𝒕
𝒔𝒊𝒕

𝒉𝒔𝒕

Figure 1: The framework of QMIX GIU. (b) is the detail of the
Global Information Unification (GIU) module.

We present a method that directly employs unified global
information for all agents during execution. Using QMIX as
an example, the entire framework is depicted in Figure 1 (a).

(1) The RNN module encodes the trajectory of the agent’s
local information Ot

i = (oti, u
t−1
i , idx) to ht

oi .
(2) The Global Information Unification (GIU) module is

designed to generate the unified global information sti to be
used in execution, where the green multilayer perceptron
(MLP) encodes the raw global information st into hst and
the blue module transforms hst into a multivariate gaussian
distribution N ∼ (μst

i
,Σst

i
).

(3) Similar to QMIX, the individual action-value
Qt

i(τ
t
i , u

t
i) is computed by an MLP operating on the

concatenation of ht
oi and sti, while the joint action-value

Qt
tot(τ

t, ut) is computed by nonlinearly combining all
individual action-values through the mixing network.

Since the parameters of GIU module are unified and in-
variant to each agent during execution, the algorithm is called
QMIX GIU (Global Information Unification). It is one of the
baselines and ablations in our experiments.

3.2 Global Information Personalization
In many multi-agent cooperative tasks, an agent’s decision-
making is significantly improved by concentrating on a subset
of the global information, given that the raw global informa-
tion tends to be redundant [Mao et al., 2020]. Extracting and
utilizing this relevant portion of global information is crucial
for optimal decision-making. Inspired by this observation,
we introduce the Global Information Personalization (GIP)
module, crafted to autonomously tailor the global state (i.e.,
extracting the beneficial part) for each individual agent.

As shown in Figure 2, the GIP module comprises three
components: Agent-Hyper Network, Agent-Personalization
Network, and Distribution Generator. The Agent-Hyper Net-
work takes the agent’s local information as input and pro-
duces a set of weights W and biases B. The structures of

𝒔𝒕

𝝁𝒛𝒊𝒕 , 𝜮𝒛𝒊𝒕
𝒛𝒊𝒕

𝒐𝒊𝒕, 𝒖𝒊𝒕 𝟏, 𝒊𝒅𝒙
𝑾

𝑩

Figure 2: The structure of the Global Information Personalization
(GIP) module.

the Agent-Personalization Network and Distribution Genera-
tor are identical to those in Figure 1 (b). The output of the
GIP module, denoted as zti , is defined by Equation (1).

zti ∼ N (μzt
i
,Σzt

i
) (1)

μzt
i
= fμ(O

t
i , s; θμ) (2)

Σzt
i
= fΣ(O

t
i , s; θΣ) (3)

Compared to the GIU module (i.e., Figure 1 (b)), a dis-
tinguishing feature of GIP module is that the parameters
of Agent-Personalization Network are dynamically gener-
ated by Agent-Hyper Network. Since the local informa-
tion is different for each agent, the parameters of Agent-
Personalization Network are guaranteed to be personalized
to each agent, which is the key to global information person-
alization. Therefore, we call zti the agent-personalized global
information in this paper.

The GIP module is versatile across existing CTDE algo-
rithms. In Figure 3 (a), the integration of the GIP module in
value-decomposition methods is illustrated. Here, the indi-
vidual Q-function is computed by concatenating ht

oi and zti .
Figure 3 (b) showcases the application of the GIP module in
actor-critic methods, where the concatenation [ht

oi , z
t
i ] is uti-

lized by the individual actor for action sampling.

𝒛𝒊𝒕
𝑸𝒊𝒕 𝝉𝒊𝒕, 𝒖𝒊𝒕

𝒉𝒐𝒊𝒕 𝒄𝒐𝒏𝒄𝒂𝒕
(a) GIP Q

𝒛𝒊𝒕𝒉𝒐𝒊𝒕 𝒄𝒐𝒏𝒄𝒂𝒕

𝝅𝒊𝒕 𝝉𝒊𝒕, 𝒖𝒊𝒕

(b) GIP AC

Figure 3: How GIP module is used in value-decomposition based
methods (i.e., GIP Q) and actor-critic based methods (i.e., GIP AC).
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3.3 Knowledge Distillation
The methods shown in Figure 3 involve the utilization of the
global state st when computing individual Q-functions or in-
dividual policies (as zti depends on st). However, obtaining
global information directly is challenging due to partial ob-
servability in real-world multi-agent systems. To leverage
global information during execution while adhering to the
need for decentralized execution, we introduce a knowledge
distillation method. This approach distills agent-personalized
global information using only the agent’s local information,
i.e., transforming the dependence of zti on st into the practical

reliance on (oti, u
t−1
i , idx).

Student Network
(MLP)

’MSE Loss

( , − , )

Teacher Network
(GIP)

Data Flow Gradient Flow

Figure 4: The knowledge distillation framework.

The knowledge distillation framework is illustrated in Fig-
ure 4. In this setup, the GIP module serves as the teacher net-
work, while the student network is represented by an MLP.
As indicated in Equation (4), the calculation of zti involves st
and Ot

i = (oti, u
t−1
i , idx) through the teacher network. On

the other hand, the student network’s input consists solely of
the agent’s local information Ot

i , and its output is denoted

as zti
′

in Equation (5). In the context of knowledge distilla-

tion, zti is referred to as teacher knowledge, and zti
′

is student
knowledge. Equation (6) illustrates the use of Mean Squared
Error (MSE) Loss to minimize the disparity between student
and teacher knowledge, ensuring effective training of the stu-
dent network.

zti = ftea(O
t
i , st) ∼ N

(
μzt

i
(Ot

i , st),Σzt
i
(Ot

i , st)
)

(4)

zti
′
= fstu(O

t
i ) = MLP(Ot

i ) (5)

Lmse = ||zti ′ − zti ||22 = ||ftea(Ot
i , st)− fstu(O

t
i )||22 (6)

Knowledge distillation is a common technique employed
for model compression, typically involving identical input
data for both teacher and student networks. In our knowl-
edge distillation, a notable distinction arises as the student
network’s input lacks global information st compared to the
teacher network. This divergence from traditional model
compression is pivotal, serving as the key factor in transition-
ing from centralized execution to decentralized execution.

Upon completion of the knowledge distillation training, the
student network can seamlessly replace the teacher network
(i.e., the GIP module) during the execution process. In other

words, zti
′

is utilized in lieu of zti in Figure 3, enabling decen-
tralized execution.

3.4 The Overall PTDE Paradigm
Figure 5 shows the overall framework of PTDE based on the
QMIX algorithm, encompassing two-stage training and de-
centralized execution.

The First Training Stage. We provide personalized global
information for each agent to compute a better individual Q-
function or individual policy. Specifically, the RNN mod-
ule records the trajectory of agent’s local information and
outputs an encoding vector ht

oi . The teacher network gives

agent-personalized global information zti . Then, the individ-
ual action-value Qt

i(τ
t
i , u

t
i) can be computed by concatena-

tion [ht
oi , z

t
i ]. Finally, the joint action-value Qt

tot(τ
t,ut) can

be obtained by the mixing network. The whole network is
trained end-to-end by minimizing the loss shown in Equation
(7) and (8):

L(θ, ϕ) =
b∑

i=1

(
ytoti −Qtot(τ , u, s; θ, ϕ)

)2
(7)

ytot = r + γmax
u′

Qtot(τ
′, u′, s′; θ−, ϕ−) (8)

where b is the batch size of sampled experiences from re-
play buffer; ϕ is the parameters of the teacher network and θ
is parameters of the other networks in the first training stage;
θ− and ϕ− are parameters of target networks. We also show
the pseudo-code in Algorithm 1.

Algorithm 1: The first training stage of PTDE

Initialize: The parameters θ and ϕ of network, θ− and ϕ−

of target network, replay buffer D.
Initialize: Observation o = (o1, · · · , oN ) and state s.
while not over do

Collect a tuple (o, s,a, r,o′, s′) by generating 8
parallel episodes, and store it in D;

Sample a random minibatch b from D;
The RNN calculate ht

oi , the teacher network calculate

zti ;
Calculate ytot and loss L for all sampled data from b

based on Equation (8) and (7);
Update the parameters of networks θ, ϕ;
Update the parameters of target networks θ−, ϕ− every
N episodes;

Output: Get a well-trained teacher network and an
algorithm that works well to execute centrally.

The Second Training Stage. After the first training stage,
the teacher network can provide agent-personalized global
knowledge zti for agents’ decision-making. In the second
stage, we use offline knowledge distillation where the stu-
dent network distills teacher knowledge zti to obtain student

knowledge zti
′
. Subsequently, the student network can re-

place the teacher network during the execution process. The
pseudo-code can be seen in Algorithm 2.

Decentralized Execution. As shown in Figure 5 (b),
agents utilize solely local information (oti, u

t−1
i , idx) to com-

pute individual action-values Qt
i(τ

t
i , u

t
i) and sample actions

using ut
i = argmaxu Q

t
i(τ

t
i , u

t
i). We name this method as

QMIX KD.
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𝒔𝒕𝒐𝒊𝒕, 𝒖𝒊𝒕 𝟏, 𝒊𝒅𝒙

𝒉𝒐𝒊𝒕 𝒛𝒊𝒕
𝑸𝒊𝒕 𝝉𝒊𝒕, 𝒖𝒊𝒕
𝒄𝒐𝒏𝒄𝒂𝒕

𝑸𝒏𝒕 𝝉𝒏𝒕 , 𝒖𝒏𝒕⋯𝑸𝟏𝒕 𝝉𝟏𝒕 , 𝒖𝟏𝒕 ⋯⋮ ⋮

𝑸𝒕𝒐𝒕𝒕 𝝉𝒕, 𝒖𝒕

𝒛𝒊𝒕 𝒛𝒊𝒕’

(a) Two-stage training

𝒐𝒊𝒕, 𝒖𝒊𝒕 𝟏, 𝒊𝒅𝒙

𝒉𝒐𝒊𝒕 𝒛𝒊𝒕’

𝑸𝒊𝒕 𝝉𝒊𝒕, 𝒖𝒊𝒕

𝒄𝒐𝒏𝒄𝒂𝒕

(b) Decentralized Execution

Figure 5: The framework of PTDE: Two-Stage Training and Decentralized Execution.

Algorithm 2: The second training stage of PTDE

Initialize: The student network parameters ψ.
Load Model: Load the models and parameters θ and ϕ in

Algorithm 1.
Generate Data: Generate 100 episodes data, including st

and (oti, u
t−1
i , idx), and save offline.

Offline Train: Use MSE Loss in Equation (6) to train the
student network offline for multiple epochs.

Output: Get a well-trained student network.

4 Experiments
Our experiments mainly focus on six research questions:

(RQ.1) Does the utilization of unified global information
during execution lead to an enhancement in the performance
of multi-agent collaboration?

(RQ.2) Is agent-personalized global information more ef-
fective in improving performance compared to unified global
information?

(RQ.3) After knowledge distillation, can the algorithm
maintain a substantial portion of its performance when tran-
sitioning from centralized to decentralized execution?

(RQ.4) Does the PTDE-based algorithm exhibit universal-
ity across diverse environments?

(RQ.5) Does the PTDE paradigm demonstrate universality
across various algorithms?

(RQ.6) What is the rationale behind the PTDE paradigm’s
approach of partitioning the training process into two stages?

We investigate the research questions using popular MARL
testbeds, namely StarCraft II [Samvelyan et al., 2019] and
Google Research Football [Kurach et al., 2020]. Addition-
ally, we validate RQ.4 through experiments in the Learning
to Rank (LTR) scenario [Liu and others, 2009]. To our best
knowledge, this is the first time that the MARL algorithm has
been applied to LTR tasks.

For baselines, we categorize them into two classes: central-
ized execution algorithms and decentralized execution algo-
rithms, outlined in Table 1. To showcase the impact of agent-

Algorithm Description

Centralized
Execution

CSRL [Chen et al., 2022]

COPA [Liu et al., 2021]

QMIX GIU
Unified global information
is used during execution.
(Proposed in Section 3.1)

QMIX GIP (stage1)
Agent-Personalized global
information is used during

execution.

Decentralized
Execution

QMIX KD (stage2)
Student knowledge (rather than

teacher knowledge) is used
during execution.

QMIX [Rashid et al., 2018]

QPLEX [Wang et al., 2020]

Table 1: Algorithms and baselines in experiments.

personalized global information, we contrast our approach
with two centralized execution algorithms, CSRL and COPA,
and perform an ablation experiment using QMIX GIU. Fur-
thermore, to assess algorithm performance after knowledge
distillation, we utilize QMIX and QPLEX as decentralized
execution baselines. All experiments are conducted using the
PyMARL2 framework [Hu et al., 2021] with 8 parallel run-
ners and 3 random seeds. Details regarding hyperparameters
are available in Table 7 in the Appendix.

4.1 StarCraft II
To address RQ.1, RQ.2, and RQ.3, we select hard scenarios
such as 5m vs 6m and 3s vs 5z, as well as super hard scenar-
ios like 3s5z vs 3s6z and 6h vs 8z. Additionally, to further
highlight the advantages of agent-personalized global infor-
mation in multi-agent collaboration, we conduct experiments
in two new scenarios, namely 3s vs 8z (featuring 8 zealots
in the enemy team) and 3s5z vs 3s7z (with 3 stalkers and 7
zealots in the enemy team), where existing decentralized ex-
ecution algorithms exhibit poor performance.

As shown in Table 2, QMIX GIU has better performance
than QMIX in 3s vs 5z, 5m vs 6m and 6h vs 8z, but per-
forms worse in 3s vs 8z and 3s5z vs 3s6z. This addresses
RQ.1, indicating that unified global information can have a
positive impact on decision-making in certain scenarios but
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Algorithms 3s vs 5z (2M) 5m vs 6m (2M) 3s5z vs 3s6z (5M) 6h vs 8z (5M) 3s vs 8z (10M) 3s5z vs 3s7z (10M)

Centralized
Execution

CSRL 0.917±0.031 0.733±0.063 0.396±0.267 0.502±0.373 0.934±0.019 0.109±0.092

COPA 0.748±0.087 0.688±0.117 0.064±0.098 0.709±0.129 0.490±0.230 0.000±0.000

QMIX GIU 0.868±0.095 0.696±0.079 0.026±0.040 0.405±0.310 0.332±0.264 0.000±0.000

QMIX GIP (stage1) 0.992±0.006 0.806±0.008 0.776±0.062 0.712±0.053 0.990±0.002 0.710±0.152

Decentralized
Execution

QMIX KD (stage2) 0.887±0.027 0.690±0.088 0.674±0.069 0.524±0.085 0.576±0.055 0.631±0.201
QMIX 0.128±0.165 0.586±0.068 0.140±0.081 0.012±0.019 0.355±0.197 0.000±0.000

QPLEX 0.000±0.000 0.616±0.070 0.390±0.145 0.021±0.034 0.074±0.066 0.000±0.000

Performance Retention Ratio (PRR) 89.4% 85.6% 86.9% 73.6% 58.2% 88.9%

Table 2: Winning rates on StarCraft II.

may not consistently improve agent decisions. In contrast,
QMIX GIP consistently outperforms QMIX GIU in all test-
ing scenarios, supporting RQ.2 by highlighting the consistent
benefits of agent-personalized global information. Further-
more, QMIX GIP attains the highest winning rates among all
centralized execution algorithms, further affirming the advan-
tages of agent-personalized global information (RQ.2).

The Performance Retention Ratio (PRR) in Table 2 sig-
nifies the ratio of the winning rates of QMIX KD to those
of QMIX GIP, reflecting the performance before and after
knowledge distillation. The PRRs range between 85% and
90% in four out of six simulation maps, indicating that the
PTDE paradigm can maintain performance reasonably well
after knowledge distillation (RQ.3). Notably, even in chal-
lenging scenarios like 3s5z vs 3s7z, where all baselines have
low winning rates, QMIX KD achieves a winning rate of
63.1%, showcasing the substantial advantages of PTDE in
such extreme conditions. Overall, the PTDE paradigm’s abil-
ity to train a viable strategy with the assistance of agent-
personalized global information and subsequently achieve de-
centralized execution through knowledge distillation is high-
lighted. The training curves (Figure 9 in Appendix C) and
strategy visualizations (Appendix A) also illustrate the per-
formance improvement of QMIX KD over QMIX.

4.2 Google Research Football
To further validate RQ.1, RQ.2, and RQ.3, we select five
widely recognized academy scenarios: 3 vs 1 with keeper,
3 vs 2 with keeper, counterattack easy, counterattack hard
and run pass and shoot with keeper. The agents are trained
for 10 million steps using 8 threads in all scenarios.

Table 3 displays winning rates on GRF. QMIX GIP
achieves the best performance across all scenarios, rein-
forcing the notion that agent-personalized global informa-
tion is more beneficial for multi-agent collaboration than
unified global information (RQ.2). The high PRRs fur-
ther demonstrate that the performance does not degrade sig-
nificantly after knowledge distillation (RQ.3). Specifically,
in 3 vs 1 with keeper and run pass and shoot with keeper,
PRRs range from 95% to 100%, while in counterattack easy
and counterattack hard, PRRs range from 80% to 90%.
These conclusions align with the training curves available in
Figure 10 in Appendix C.

4.3 Scenario Universality of PTDE Paradigm
To further validate the effectiveness of the PTDE paradigm,
we extend its application to the Learning to Rank (LTR) [Liu
and others, 2009] task. Ranking plays a crucial role in infor-

Figure 6: Experiments on Learning to Rank task.

mation retrieval, where the goal is to arrange a list of candi-
date documents in descending order of relevance to a given
query. Achieving an optimal search ranking list enhances the
effectiveness of information retrieval.

In the multi-agent cooperation setting for the Learning
to Rank (LTR) task, each document is treated as an agent.
The fundamental components of Multi-Agent Reinforcement
Learning (MARL) are defined as follows:

• Observation: Features of the query and document i.

• State: Features of the query and all documents.

• Reward: Given that NDCG@k [Järvelin and
Kekäläinen, 2002] is a standard evaluation metric
for ranking, we define the reward as NDCG@k.

• Action Space: Discrete scores, such as integers from 0
to 9, where the document is ultimately sorted based on
the scores assigned to each document (agent).

We conducted training and testing on 10,000 queries (7:3
partition) from the MSLR-WEB30K [Qin and Liu, 2013]

dataset, a large-scale dataset for Learning to Rank research.
We modified this dataset to comprise 10 documents per query,
resulting in a total of 10,000 queries and 100,000 documents.
The experimental results are depicted in Figure 6. Our ap-
proaches, QMIX GIP and QMIX KD, achieve higher NDCG
scores compared to QMIX and QMIX GIU, addressing RQ.2
and RQ.3. Interestingly, QMIX GIU performs worse than
QMIX, providing additional insights into RQ.1.

Crucially, the experiments in LTR, along with those on the
StarCraft II and GRF benchmarks, collectively demonstrate
that the PTDE paradigm exhibits good universality across di-
verse scenarios, providing a response to RQ.4.

4.4 Algorithm Universality of PTDE Paradigm
In this section, we integrate the PTDE paradigm with VDN
and MAPPO, and test them on the 3s vs 5z and 3s5z vs 3s6z
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Algorithms 3 vs 1 w keeper 3 vs 2 w keeper counterattack easy counterattack hard run pass and shoot w keeper
Centralized
Execution

QMIX GIU 0.662±0.256 0.415±0.201 0.839±0.075 0.462±0.240 0.687±0.072

QMIX GIP (stage1) 0.858±0.032 0.664±0.209 0.839±0.035 0.636±0.074 0.779±0.082
Decentralized

Execution
QMIX KD (stage2) 0.818±0.056 0.732±0.138 0.734±0.176 0.517±0.053 0.775±0.055

QMIX 0.609±0.250 0.491±0.200 0.365±0.165 0.184±0.174 0.533±0.201

Performance Retention Ratios (PRR) 95.3% 110.2% 87.5% 81.3% 99.5%

Table 3: Winning rates on Google Research Football.

Algorithm 3s vs 5z (5M) 3s5z vs 3s6z (10M)

VDN 0.653 0.397
VDN GIU 0.971 0.155

VDN GIP (stage1) 0.990 0.704
VDN KD (stage2) 0.889 0.609

Table 4: Apply PTDE paradigm to VDN.

Algorithm 3s vs 5z (5M) 3s5z vs 3s6z (10M)

MAPPO 0.767 0.000
MAPPO GIU 0.602 0.486

MAPPO GIP (stage1) 0.965 0.694
MAPPO KD (stage2) 0.891 0.589

Table 5: Apply PTDE paradigm to MAPPO.

scenarios. We adopt hyperparameters as specified in [Hu et
al., 2021] and [Yu et al., 2021], respectively. As shown in
Table 4 and 5, VDN GIU’s performance on 3s5z vs 3s6z is
inferior to that of VDN, and MAPPO GIU’s performance
on 3s vs 5z is worse than MAPPO. This highlights that
unified global information does not always contribute to
the efficacy of multi-agent collaboration (RQ.1). Further-
more, VDN GIP outperforms VDN GIU, and MAPPO GIP
outperforms MAPPO GIU in both scenarios, demonstrat-
ing the effectiveness of the PTDE paradigm for both value-
decomposition-based algorithm VDN and actor-critic-based
algorithm MAPPO. In essence, the PTDE paradigm exhibits
good universality across different algorithm types (RQ.5).
The training curves for Table 4 and Table 5 can be found in
Figure 11 in Appendix C.

4.5 Empirical Analysis of the Two-Stage Training
Why is it necessary to divide the training process into
two stages? In Table 6, we compare the PTDE and
CTDS paradigms based on two metrics: winning rate and
PRR. CTDS synchronizes the distillation of global poli-
cies with centralized training, while our PTDE approach
first conducts centralized training and then performs agent-
personalized global knowledge distillation. Across the
5m vs 6m, 6h vs 8z, and 3s5z vs 3s7z maps, the PRR met-
ric consistently favors the PTDE paradigm over the CTDS
paradigm. This underscores that the two-stage training ap-
proach of PTDE maintains superior performance during de-
centralized execution (addressing RQ.3 and RQ.6).

Figure 7 displays the loss function (6) and test win-
ning rates during the knowledge distillation process on the
3s vs 5z scenario. The loss plot displays training and testing
loss curves spanning 0 to 40k steps. The winning rate plot
showcases a blue line representing test winning rates for de-
centralized execution after knowledge distillation, and a red
dashed line signifying the test winning rate for centralized
execution before knowledge distillation. In this experiment,

Algorithm 5m vs 6m 6h vs 8z 3s5z vs 3s7z

QMIX GIP (stage1) 0.806 0.712 0.710
QMIX KD (stage2) 0.690 0.524 0.631

PRR 85.6% 73.6% 88.9%

CTDS (QMIX Teacher) 0.698 0.367 0.000
CTDS (QMIX Student) 0.490 0.204 0.000

PRR 70.2% 55.6% -

Table 6: Comparisons between PTDE and CTDS.

Figure 7: The loss and winning rates in training stage 2.

the batch size is set to 1000, and each step corresponds to
the training of one batch. As can be observed, a notable re-
duction in loss occurs before 30k steps, accompanied by a
swift increase in the test winning rate. This suggests that dis-
tilling global policies using local information requires a spe-
cific training duration. Conversely, simultaneous knowledge
distillation during centralized training might fail to preserve
optimal performance in decentralized execution due to inade-
quate training and uncertainties in the distribution of training
samples. This analysis addresses and responds to RQ.6.

5 Conclusions
We introduced a two-stage training paradigm, named Person-
alized Training with Distilled Execution (PTDE), designed
for multi-agent reinforcement learning. In the first training
stage, the Global Information Personalization (GIP) module
tailors global information for each agent. Subsequently, dur-
ing the second training stage, the student network distills
agent-personalized global information using solely the local
information of each agent. In the execution stage, the stu-
dent network takes over from the teacher network, enabling
decentralized execution.

Our empirical evaluations on the StarCraft II benchmark,
Google Research Football benchmark, and Learning to Rank
task collectively offer conclusive answers to the posed re-
search questions (RQ.1 to RQ.6). These results provide ro-
bust evidence supporting the efficacy and broad applicability
of the PTDE paradigm.
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