
AutoAgents: A Framework for Automatic Agent Generation
Guangyao Chen1 , Siwei Dong1 , Yu Shu1 , Ge Zhang4 , Jaward Sesay3 , Börje Karlsson3 ,

Jie Fu2 and Yemin Shi1
1Peking University

2Hong Kong University of Science and Technology
3Beijing Academy of Artificial Intelligence

4University of Waterloo
{gy.chen, shiyemin}@pku.edu.cn, jiefu@ust.hk

Abstract

Large language models (LLMs) have enabled re-
markable advances in automated task-solving with
multi-agent systems. However, most existing LLM-
based multi-agent approaches rely on predefined
agents to handle simple tasks, limiting the adapt-
ability of multi-agent collaboration to different sce-
narios. Therefore, we introduce AutoAgents, an
innovative framework that adaptively generates and
coordinates multiple specialized agents to build an
AI team according to different tasks. Specifically,
AutoAgents couples the relationship between tasks
and roles by dynamically generating multiple re-
quired agents based on task content and planning
solutions for the current task based on the generated
expert agents. Multiple specialized agents collabo-
rate with each other to efficiently accomplish tasks.
Concurrently, an observer role is incorporated into
the framework to reflect on the designated plans
and agents’ responses and improve upon them. Our
experiments on various benchmarks demonstrate
that AutoAgents generates more coherent and accu-
rate solutions than the existing multi-agent methods.
This underscores the significance of assigning dif-
ferent roles to different tasks and of team coopera-
tion, offering new perspectives for tackling complex
tasks. The repository of this project is available at
https://github.com/Link-AGI/AutoAgents.

1 Introduction
Large language models (LLMs) have exhibited astounding
capabilities as versatile task-solving agents, endowed with
a rich blend of knowledge and skills. Nevertheless, they
still face difficulties [Qin et al., 2023; Achiam et al., 2023;
Bubeck et al., 2023] in tackling various tasks that require
intensive knowledge and reasoning, such as avoiding halluci-
nation [Maynez et al., 2020], employing slow-thinking strate-
gies [Sloman, 1996], ensuring trustworthiness [Wang et al.,
2023a], and in combining diverse domain knowledge and long-
horizon planning. In contrast, humans often exploit the bene-
fits of collaborative problem solving, which enables them to
work together effectively to solve non-routine problems in di-

Figure 1: A schematic diagram of AutoAgents. The system takes
the user input as a starting point and generates a set of specialized
agents for novel writing, along with a corresponding execution plan.
The agents collaboratively carry out the tasks according to the plan
and produce the final novel. Meanwhile, an observer monitors the
generation and execution of the Agents and the plan, ensuring the
quality and coherence of the process.

verse domains and enhance the quality and reliability of the so-
lutions by distributing the workload among specialties and ap-
plying a diversity of perspectives and expertise [Nelson, 2013;
Roschelle and Teasley, 1995; Barron, 2000].

Inspired by collaborative problem solving, several recent
works [Wang et al., 2023c; Du et al., 2023; Liang et al., 2023;
Hao et al., 2023] have improved the task-solving capabili-
ties of LLMs by integrating multi-agent discussion. However,
most of these multi-agent systems depend on handcrafted or
user-specified agents, with specific roles and necessitating
human supervision, which often restricts the scope of col-
laborative applications. Moreover, manually creating a large
number of experts often consumes a lot of resources. In order
to adaptively solve more complex problems, this paper aims
to explore a method of adaptively generating task experts and
completing different tasks through multi-level collaborative
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Framework Dynamic Agent
Generation Method

Number of
Agent

Multi-agent
Conversation

Self-Refinement
Action

Collaborative
Refinement Action

AutoGPT [Gravitas, 2023] % 1 % ! %

BabyAGI [Nakajima, 2023] % 3 ! % %

Generative Agents [Park et al., 2023] % 25 ! ! %

Camel [Li et al., 2023] % 2 ! % %

GPT-bargaining [Fu et al., 2023] % 3 ! ! %

MetaGPT [Hong et al., 2023] % Unlimited ! % %

AutoGen [Wu et al., 2023] % Unlimited ! % %

Social Simulacra [Park et al., 2022] Single Agent Unlimited ! % %

Epidemic Modeling [Williams et al., 2023] Single Agent Unlimited ! % %

ExpertPrompting [Xu et al., 2023] Single Agent 1 % % %

SSP [Wang et al., 2023c] Single Agent Unlimited ! % %

AgentVerse [Chen et al., 2023a] Single Agent Unlimited ! % %

AutoAgents Multi-agent Discussion Unlimited ! ! !

Table 1: Comparison of existing and proposed frameworks for LLM-based Agent framework.

cooperation among multiple experts.
In this paper, we propose AutoAgents, an innovative frame-

work that adaptively generates and coordinates multiple spe-
cialized agents to construct an AI team according to different
tasks. Figure 1 provides a high-level overview of AutoAgents.
By generating multiple agents with distinct expert roles, we
aim to form a collaborative entity that can accomplish complex
tasks by leveraging the complementary strengths of each agent.
As shown in Figure 2, the process of AutoAgents is divided
into two critical stages: Drafting Stage and Execution Stage.
The drafting stage involves a collaborative discussion among
three predefined agents (Planner, Agent Observer, and Plan
Observer) to synthesize a customized agent team and an exe-
cution plan that suit the input problem or task. The execution
stage refines the plan through inter-agent collaboration and
feedback, and produces the final outcome. We propose self-
refinement by individual agents and collaborative refinement
by multiple agents to enhance agent proficiency and promote
knowledge-sharing among agents. To facilitate the specific
division of labor among the agents in the synthesized team,
we introduce a predefined agent (Action Observer) to assist
the agent team in sharing information, coordinating actions,
reaching consensus, and adapting to the environment.

To synthesize heterogeneous information from diverse do-
mains is often a crucial requirement in creative industries and
other real-world scenarios. We illustrate a concrete example
of how AutoAgents tackles the challenging task of writing
a novel about the awakening of artificial intelligence in Fig-
ure 1. The Story Planner and Researcher collaborate to devise
the plot of the story with their respective expertise, while
the Character Developer and Writer enrich the novel content
through imagination based on the story. Moreover, we con-
duct quantitative experiments and case studies in complex
tasks to demonstrate the effectiveness of AutoAgents. We
also conduct a comprehensive analysis and demonstrate the
importance of dynamic agents for handling complex tasks, the
indispensability of self-refinement for proficient agents, and
the effectiveness of collaborative conversation.

To summarize, this paper makes the following novel con-
tributions: First, we propose AutoAgents, a novel framework
that dynamically synthesizes and coordinates multiple expert
agents to form customized AI teams for diverse tasks. Second,

we conduct rigorous quantitative experiments on two chal-
lenging tasks and demonstrate that AutoAgents significantly
improves both knowledge acquisition and reasoning ability
in LLMs and outperforms other generated-agent frameworks.
Third, we showcase AutoAgents’ ability to adapt to complex
tasks by applying it in various scenarios such as software de-
velopment. Finally, we conduct a thorough investigation and
reveal the importance of dynamic agents for accommodating
complex tasks and the necessity of self-refinement for profi-
cient agents, and the efficacy of collaborative conversation.

2 Related Work
LLM-based Autonomous Agents. LLMs have been widely
used as core controllers for autonomous agents that can ac-
complish specific objectives. Auto-GPT [Gravitas, 2023] is
an early work that leverages an LLM as an AI agent that can
autonomously achieve a given goal with the help of several
tools. However, Auto-GPT does not support multi-agent col-
laboration and can only work in isolation. One way to enhance
the task-solving capabilities of LLMs is to assign different
roles and responsibilities to multiple LLMs and let them coor-
dinate their actions to achieve a common goal. For example,
BabyAGI [Nakajima, 2023] is an AI-powered task manage-
ment system with multiple LLM-based agents. One agent cre-
ates new tasks based on the previous task’s objective and result,
another agent prioritizes the task list, and another agent com-
pletes tasks. BabyAGI is a multi-agent system with a fixed or-
der of agent communication. MetaGPT [Hong et al., 2023] is
a multi-agent framework for assigning different roles to GPTs
to form a collaborative software entity for complex tasks. It is
a specialized LLM-based multi-agent framework for collabora-
tive software development. Camel [Li et al., 2023] is an LLM-
based communicative agent framework that demonstrates how
role-playing can be used to enable chat agents to communicate
with each other for task completion. However, Camel does not
support tool-using. Several recent works [Wang et al., 2023c;
Du et al., 2023; Liang et al., 2023; Hao et al., 2023;
Talebirad and Nadiri, 2023] have enhanced the task-solving
capabilities of LLMs by integrating multi-agent discussion.
For instance, [Wang et al., 2023c] proposes a multi-agent
debate system that allows LLMs to argue for or against a
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given claim and generate a debate summary. [Du et al., 2023]
introduce a multi-agent dialogue system that enables LLMs
to exchange information and opinions on a given topic and
generate a dialogue report. AutoGen [Wu et al., 2023] is a
framework that enables the development of LLM applications
using multiple agents that can converse with each other to
solve tasks. However, most of these multi-agent systems rely
on handcrafted or user-specified agents with specific roles and
do not support the automatic generation of agents, which often
limits the scope of collaborative applications.

Agent Generalization. Several studies [Park et al., 2022;
Williams et al., 2023] employ LLMs to generate agents for
social simulacra and epidemic modeling, demonstrating how
this technique can facilitate designers in assessing and im-
proving their modeling designs prior to deploying them to
real users. Likewise, ExpertPrompting [Xu et al., 2023] de-
vised a method to generate diverse profiles of agents that can
cooperate with human users to accomplish tasks with min-
imal supervision. However, this method still depends on a
restricted set of predefined agents, and the generated agents
vary only in their profiles. Recently, SSP [Wang et al., 2023c]
and AgentVerse [Chen et al., 2023a] have proposed frame-
works for automatically generating unlimited agents. SSP
enables LLMs to generate agents for problem input by pro-
viding some agent samples, and has these agents solve the
problem. AgentVerse generates the execution plan through the
generated agents’ discussions and adds evaluation strategies
for cyclic execution. Unlike the previous two methods, Au-
toAgents places a heightened emphasis on the reliability of its
generated agents and strategic plans, thereby enhancing task
execution effect through the utilization of collaborative refine-
ment actions and the integration of self-refinement actions , as
illustrated in Table 1.

3 AutoAgents
To enhance the effectiveness of autonomous multi-agent
groups in accomplishing their goals, the process of AutoA-
gents consists of two critical stages: Drafting Stage and Ex-
ecution Stage, as illustrated in Figure 2. The drafting stage
synthesizes an agent team and an execution plan that are cus-
tomized to the task by analyzing the input problem or task.
The execution stage refines the plan by enabling inter-agent
collaboration and feedback, and delivers the final result. The
inter-agent collaboration is based on some principles of multi-
agent cooperation, such as communication, coordination, and
consensus. These principles help the agents to share informa-
tion, align their actions, reach agreements, and adapt to the
environment.

3.1 Drafting Stage
Empirical evidence [Woolley et al., 2015] suggests that diver-
sity within human groups fosters diverse perspectives, which
enhances the group’s performance across various tasks. The
drafting stage, which determines the composition of a multi-
agent group, plays a crucial role in setting the upper limits of
the group’s capabilities. Therefore, it is imperative to generate
the optimal agent team and execution plan that can maximize
the group’s potential.

Figure 2: The execution process of AutoAgents. During the Drafting
Stage, three predefined agents collaboratively determine the list of
agents and the execution plan. During the Execution Stage, a prede-
fined agent facilitates coordination and communication among the
generated agent teams, and the individual generated agents enhance
their execution efficiency through self-refinement.

Predominant methodologies [Gravitas, 2023; Hong et al.,
2023; Wu et al., 2023] for assigning role descriptions to au-
tonomous agents rely heavily on human intuition and prior
knowledge, requiring manual assignment based on task under-
standing. Consistent with several parallel findings [Xu et al.,
2023; Wang et al., 2023c; Chen et al., 2023a], dynamically
designing agents with different roles can significantly enhance
their efficacy. However, the scalability and rationality of agent
and plan generation are still unclear, especially in the face of
various complex problem environments.

On the one hand, the generated agents should exhibit di-
versity to accommodate various tasks. On the other hand,
the agent and the plan generation should adhere to certain
principles, rendering their role allocation more rational. There-
fore, we devise three artificially predefined agents to produce
agent teams and execution plans, integrating artificial prior
knowledge and the dynamic adaptation capability of LLMs to
generate more sensible agent teams and execution plans. The
three artificially predefined agents comprise Planner, Agent
Observer, and Plan Observer:

• Planner P generates and refines an agent team and an
execution plan based on the content of the task.

• Agent Observer Oagent provides suggestions on the
rationality of the agent team members and their matching
degree with the task.

• Plan Observer Oplan provides suggestions on the ratio-
nality of the execution plan and its matching degree with
the task and the agent team.

The Planner generates initial agent team members and a spe-
cific plan, and improves the agent team and execution plan
based on continuous communication with the Agent Observer
and Plan Observer.

Agent Generation. The Planner generates the agent team
and facilitates its continuous improvement through reciprocal
communication with the Agent Observer. To enable Planner
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to produce rational agents, we have devised a standard format
for the essential elements of a single agent. For each agent
A = {P,D,T, S}, the Planner needs to specify its prompt P,
description D, toolset T, and suggestions S.

• Prompt P provides a detailed and customized depiction
of the expert identity for each specific agent, which com-
prises profile, goal, and constraints. Profile reflects the
domain expertise of the role or job title. Goal indicates
the primary responsibility or objective that the role aims
to achieve. Constraints specify limitations or principles
the role must adhere to when performing actions.

• Description D gives additional concrete identity to help
establish a more comprehensive role, develop an execu-
tion plan, and inspect problems.

• Toolset T equips the Agent with tools that it can use,
selected from a predefined set of tools. The rationale for
not using all the tools for each agent here is to prevent
decision-making confusion caused by excessive tools.

• Suggestions S supplies some suggestions for each agent
to execute the current task, including but not limited to
a clear output, extraction of historical information, and
suggestions for execution steps.

Based on the agent list {A1,A2, · · · ,An} generated by
Planner, the Agent Observer evaluates the quality and suitabil-
ity of each agent. The Agent Observer first verifies whether
every agent conforms to the aforementioned specifications
and identifies any missing elements {P, description D, toolset
T}. Secondly, the Agent Observer assesses the compatibility
of each agent with the task, according to their description
information and task content. Finally, the Agent Observer
examines the agent list for any redundant or missing roles and
eliminates or adds them accordingly.

After n rounds of bidirectional communication between the
Planner and the Agent Observer, the optimal agent list for ac-
complishing the task is established. Given the vital role of the
agent list in the task execution, this framework employs a pre-
defined agent and multiple rounds of iterative dialogue among
multiple agents to finalize the agent list, thereby enhancing
the stability and reliability of the execution phase.

Plan Generation. In parallel to agent generation, the Plan-
ner formulates the execution plan and promotes its progressive
improvement through reciprocal communication with the Plan
Observer. For a given task, the Planner delineates the specific
steps {S1,S2, · · · Sn} to accomplish it in the execution plan P .
Each step Si entails a clear identification of the agent Aj re-
sponsible for it, as well as the input information and expected
output required for it.

The Plan Observer subsequently validates the execution
plan P = {S1,S2, · · · Sn} according to the agent list
{A1,A2, · · · ,An} and the task content. It firstly ensures
that each step has a corresponding agent and that the step con-
tent is coherent and concise. It secondly assesses whether all
the steps are sufficient, whether the task can be accomplished,
and whether there are any gaps that need to be filled. It finally
provides feedback to the Planner, who further refines the exe-
cution plan accordingly. After n rounds of dialogue between

Figure 3: Two types of actions for executing tasks: Self-refinement
enables an individual agent to enhance its competence in performing
some specialized tasks. Collaborative refinement facilitates knowl-
edge exchange among multiple agents and accomplishes tasks that
demand interdisciplinary expertise.

the Planner and the Plan Observer, the ultimate execution plan
for achieving the task is established.

Task Execution Actions. The Planner devises an execu-
tion plan that automatically assigns the requisite agents for
diverse tasks. The execution plan comprises two actions of
task execution: self-refinement by a single agent and collab-
orative refinement by multiple agents, as shown in Figure 3.
Self-refinement empowers an individual agent to augment its
proficiency in accomplishing some specialized tasks. Collabo-
rative refinement fosters knowledge sharing among multiple
agents and achieves tasks requiring interdisciplinary expertise.

3.2 Execution Stage
In the drafting phase, the framework generates an agent list
and an execution plan based on the task requirements. Then,
the framework creates corresponding roles and executes the
plans in the execution environment1. The communication
and cooperation among multi-agent systems are essential for
accomplishing the tasks effectively. This section elaborates on
the communication among multiple agents, the task execution
strategies, and the knowledge-sharing mechanisms.

Communication of Multiple Agent. The communication
structures among agents have been investigated by many stud-
ies [Chen et al., 2023a; Wang et al., 2023c; Qian et al., 2023;
Chan et al., 2023] to examine their impact on task perfor-
mance. In this framework, we adopt the vertical commu-
nication paradigm, which assigns different tasks to agents
according to their roles. To facilitate the specific division of
labor among the agents in the generated team, we introduce a
predefined Action Observer as the team leader to coordinate
the execution plan. Specifically,

• Action Observer Oaction acts as the task manager for
the different agents, allocating different tasks to them,
verifying the execution outcomes of each agent, and dy-
namically adapting the execution plan based on the exe-
cution status.

This mechanism of refinement and communication recurs until
the Action Observer attains a unanimous agreement on the exe-
cution responses, or the process reaches its maximum iteration

1Execution environment of AutoAgents is built based on
MetaGPT’s environment and workspace [Hong et al., 2023].
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Figure 4: Legend of Three Knowledge Sharing Mechanisms. (a)
Long-term memory focuses on chronicling the historical trajectory of
multiple actions. (b) Short-term memory records the history of the
self-refinement or collaborative refinement phases of an individual
action. (c) Dynamic memory serves actions necessitating specialized
attention extracted from the long-term memory.

limit. For scenarios that demand iterative decision-making
towards specific objectives, such as software development,
vertical communication would be a preferable option.

Self-refinement Agent. Besides the inter-agent communica-
tion, the performance of a single agent also exerts a significant
impact on the overall quality of feedback results. Hence, draw-
ing on mechanisms such as AutoGPT [Gravitas, 2023] and
ReAct [Yao et al., 2022], we have devised a self-refinement
mechanism for an individual agent.

For a single agent A, the action at step t is at at = lt∪pt∪ot,
where lt denotes the thought or the reasoning trace in the lan-
guage space, which does not alter the external environment,
and thus yields no observational feedback, pt represents the ex-
ecution plan for task completion, ot comprises the completion
steps and execution output for this time.

As illustrated in Figure 2, various types of useful thoughts
can assist in devising a refinement plan. The execution plan
enables the agent to anticipate the steps they need to undertake
in the future, and the observational content of the execution
result construction allows the agent to reevaluate and enhance
the plan arrangement, thereby constructing more refined and
complete actions. Through a cycle of self-continuous think-
ing, planning, execution, and feedback, a single agent can
effectively execute and accomplish task content.

Collaborative Refinement Action. In the collaborative re-
finement action, the agents collaboratively refine and execute
the tasks in a sequential manner. Each round of the collabo-
ration involves a fixed order of turn-taking among the agents,
who generate their responses based on the current observation.
The chat history slot of each agent is updated by concatenating
the previous utterances of the other agents. The collaboration
terminates automatically when the agents reach a consensus
or the maximum number of discussions is reached.

Knowledge Sharing Mechanism. AutoAgents also facil-
itates the sharing of execution results among various agents
for improved communication and feedback. However, when
the number of agents is large and a single agent has more
self-iterations, it will generate more historical information.
Due to the token limitation of LLM models, they often cannot

Algorithm 1 AutoAgents Execution Process.

Input: User task/Question
Output: Task solution/Answer

1: Drafting Stage
2: Initialize Planner P , Agent Observer Oagent, and Plan

Observer Oplan.
3: P generates initial agent team {A1,A2, · · · ,An} and

execution plan P = {S1,S2, · · · Sn}.
4: repeat
5: Oagent provides feedback on agent team.
6: P refines agent team based on feedback.
7: Oplan provides feedback on execution plan.
8: P refines execution plan based on feedback.
9: until No feedback or reached the maximum iteration limit.

10: Execution Stage:
11: Initialize Action Observer Oaction and long-term memory

ML.
12: for {S1,S2, · · · Sn} do
13: Oaction generate dynamic memory MD.
14: Oaction assign task Sk and MD to corresponding agents

{Ai, · · · ,Aj}.
15: Initialize short-term memory MS .
16: repeat
17: for {Ai, · · · ,Aj} do
18: Agent Am analyzes Sk, MS and MD.
19: Agent Am plans the current step and executes this

step.
20: The execution result is stored in MS .
21: end for
22: until No step or reached the maximum iteration limit.
23: The execution results of task Sk are stored in ML.
24: Oaction coordinates {S1,S2, · · · Sn} and monitors exe-

cution.
25: end for
26: return Execution results of final step.

encompass all information. Hence, this framework provides
short-term memory, long-term memory, and dynamic memory.

Short-term memory is chiefly concentrated on a singular ac-
tion, encompassing the gamut of intermediary notions, strate-
gies, and outcomes that emerge during the self-refinement or
collaborative refinement phases of an individual action. It
is salient to note that these actions frequently culminate in a
distilled summary of critical information, epitomizing the final
phase of the refinement trajectory.

Long-term memory principally focuses on chronicling the
historical trajectory of multifarious actions, predominantly
documenting the executed results of each task along with
the synthesis of vital feedback information. This aspect is
imperative for evaluating the comprehensive extent of task
completion.

Dynamic memory predominantly serves actions necessitat-
ing specialized attention. The Action Observer, having access
to long-term memory archives, adeptly extracts ancillary infor-
mation, dynamically tailoring it to the specific requirements
of the action for task execution. This process significantly
augments the efficiency of a single action in task fulfillment.
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Evaluator v.s. GPT-4 v.s. AgentVerse

FairEval [Wang et al., 2023b] 76.3% 91.3%
HumanEval 62.5% 77.5%

Table 2: Win Rate of AutoAgents over other models on Open-ended
Question Answer, with FairEval and HumanEval serving as evalua-
tors.

4 Experiments
To showcase the performance of AutoAgents in managing
groups of autonomous agents for collaborative task comple-
tion, we conducted quantitative analysis primarily focusing
on results from the Open-ended Question Answer task (see
Section 4.1) and the Trivia Creative Writing task (see Sec-
tion 4.2), assessing the framework’s effectiveness in various
settings.

Implementation Details. All experiments are conducted
using the GPT-4 API2, with the temperature set to 0 to en-
sure reproducibility. This model is chosen for its superior
performance, providing accurate and consistent results. Its
accessibility via APIs greatly facilitates our interaction with
the model, streamlining our research process. During the draft-
ing phase, a maximum of three discussions are allowed, while
in the execution phase, a single agent can perform up to five
self-refinements and multiple agents can collaboratively refine
up to five times.

4.1 Open-ended Question Answer
Task Description. Open-ended Question Answering is a
crucial and challenging task in the domain of NLP and gener-
ative AI. It requires an AI system to produce coherent, elab-
orate, and human-like responses to questions that have no
predetermined or fixed set of possible answers. [Zheng et
al., 2023] proposed MT-bench, a benchmark consisting of
80 high-quality collected open-ended questions from various
categories such as common sense, counterfactual, coding, etc.
We then utilize AutoAgents to produce collaborative answers
based on multiple generated agents and compare them with
the responses given by GPT-4 and AgentVerse 3 [Chen et al.,
2023a].

Evaluation Metrics. To measure the quality of open-
ended responses with minimal evaluation bias, we adopt
FairEval [Wang et al., 2023b] and HumanEval as the eval-
uation metrics for both the single agent and AutoAgents.
FairEval incorporates several methods to mitigate the impact
of various sources of bias, resulting in a better alignment with
human judgment. For HumanEval, we enlisted three indepen-
dent volunteers to evaluate two sets of responses—one gener-
ated by AutoAgents and the other by a different model—based
on criteria such as helpfulness, reliability, accuracy, and com-
prehensiveness. Notably, the volunteers were blinded to the
identity of the model that produced each response, ensuring

2The model version used is “GPT-4-0613”.
3The prompt configuration within AgentVerse is tailored to its

brainstorming task, incorporating modifications to upgrade the model
to GPT-4.

an unbiased assessment. The appendix contains the detailed
scoring criteria for the ratings.
Results. Table 2 demonstrates that AutoAgents outperforms
individual LLM models in both FairEval based on LLM and
Human evaluations. AutoAgents can produce more compre-
hensive and nuanced answers to open questions by synthesiz-
ing multiple expert models. It can also provide more elaborate
explanations and justifications for its answers. Additionally,
AutoAgents demonstrates superior performance over Agent-
Verse. This enhanced efficacy is attributed in part to the re-
liability of agent generation, self-refinement, and collabora-
tive refinement capabilities within AutoAgents. Conversely,
AgentVerse necessitates additional task-specific adaptations
and exhibits limited effectiveness in adapting to open-ended
questions. More examples are given in the appendix.

4.2 Trivia Creative Writing
Task Description. The Trivia Creative Writing task [Wang
et al., 2023c] challenges the capabilities of large language
models to retrieve and integrate diverse information from their
internal self-compressed knowledge. This task requires a
model to craft a coherent story around a given topic while
incorporating the answers to N trivia questions. We evaluate
the models under two settings, N = 5 and N = 10, where
a higher N entails more trivia questions and thus demands
the model to exhibit more extensive domain knowledge. We
constructed a benchmark consisting of 100 instances for each
N , encompassing a total of 1000 trivia questions.
Evaluation Metrics. Drawing on the approach of [Wang et
al., 2023c], we adopt an automatic metric to identify factual
errors and measure a model’s capacity to integrate diverse
domain knowledge. We conduct string matching with the
veridical target answers for each question on the generated
output. The target answers are supplied from the TriviaQA
dataset [Joshi et al., 2017], and each question can have a list
of answer variants. A match to any of the answer variants
of a question is regarded as a correct mention. The metric
score is calculated as Trivia Creative Writing Metric Score =
# correct answer mentions/# trivia questions.
Results. Table 3 demonstrates the superior performance of
AutoAgents in knowledge acquisition over the existing meth-
ods. Compared to the Standard method, which does not em-
ploy Agent Generation, AutoAgents achieves a remarkable
10% improvement across all experiments. Moreover, AutoA-
gents also surpasses SSP [Wang et al., 2023c], which utilizes
agent generation but with a different approach. The enhanced
performance of AutoAgents can be attributed to its elaborate
methods of agent generation discussions and task execution
including collaborative refinement and self-refinement.

4.3 Further Analysis
This section delves into the significance of key components
within AutoAgents by separately analyzing the self-refinement
action, collaborative refinement action, dynamic memory, and
observers in the draft stage across 20 instances 4 of the Trivia
Creative Writing task and additional case studies.

4The last 20 samples from a dataset of 100 samples are used as
test instances.
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Methods N (# trivia questions) = 5 N (# trivia questions ) = 10

Score (%) ∆ (v.s Standard %) Score (%) ∆ (v.s Standard %)

Standard 74.6 0.0% 77.0 0.0%
CoT [Yao et al., 2023] 67.1 -10.0% 68.5 -11.1%
SPP-Profile [Wang et al., 2023c] 79.1 +5.9% 83.0 +7.8%
SPP [Wang et al., 2023c] 79.9 +7.1% 84.7 +10.0%
AutoAgents 82.0 +9.9% 85.9 +11.6%

Table 3: The results of Trivia Creative Writing task. ∆ indicates the differences compared with Standard Prompting (first row).

Methods N (# trivia questions) = 5

Score (%) ∆ (v.s Standard %)

Standard 74.6 0.0%
CoT [Yao et al., 2023] 66.0 -11.5%
SPP-Profile [Wang et al., 2023c] 74.0 -0.01%
SPP [Wang et al., 2023c] 84.4 +13.1%

AutoAgents w/o observers 87.0 +16.6%
AutoAgents w/o self-refinement 87.0 +16.6%
AutoAgents w/o dynamic memory 89.0 +19.3%
AutoAgents 90.0 +20.6%

Table 4: The ablation studies of AutoAgents on 20 instances of Trivia
Creative Writing task. ∆ indicates the differences compared with
Standard Prompting (first row).

Figure 5: Comparison of whether there is a collaborative discussion in
the Drafting Stage in the task that developing Python-based software
for the Tetris game.

Collaborative discussion is crucial for rational agent gen-
eration and plan allocation. During the Drafting Stage, the
Planner in AutoAgents engages in collaborative discussions
with two Observers to determine the optimal list of agents and
the execution plan. Figure 5 illustrates the contrast between
agent generation with and without collaborative discussion.
In the absence of Observer feedback, the Planner tends to
generate programmers exclusively to accomplish game devel-
opment, neglecting the holistic process of game creation. With
the input and coordination of the Observers, the Planner incor-
porates game design experts, UI design experts, and testing
experts into the agent list. It is evident that the agent genera-
tion under collaborative discussions is more comprehensive
and more aligned with the realistic scenarios of game develop-
ment. This also corroborates the significance of collaborative
discussions for agent generation and plan allocation, which
will subsequently influence the execution outcomes. Concur-
rently, Table 4 elucidates that in the absence of observers,
there is a marked 3% reduction in the overall performance of
AutoAgents. This substantiates the imperative role of collabo-
rative discussions in agent generation. AutoAgent markedly
enhances the caliber of agent generation via collaborative
discussions, a facet notably overlooked by other generative
frameworks in their consideration of agent generation quality.

The empirical data presented in Table 2 and 3 further accen-
tuate the superiority of AutoAgents when juxtaposed against
counterparts like AgentVerse and SPP.
Enhancing single-agent through self-refinement. Self-
Refinement [Madaan et al., 2023; Shinn et al., 2023;
Gou et al., 2023; Chen et al., 2023b; Huang et al., 2022;
Yao et al., 2022] is a technique that enables LLMs to “con-
verse” with themselves, evaluate their own generation, and
iteratively improve their answers. Self-refinement has been
shown to enhance the accuracy of LLMs’ outputs in var-
ious domains [Madaan et al., 2023; Shinn et al., 2023;
Gou et al., 2023; Chen et al., 2023b; Huang et al., 2022;
Yao et al., 2022]. Although AutoAgents is a framework
for multi-agent collaboration, it also requires self-refinement
agents to perform specialized roles for individual tasks. As
shown in the results in Table 4, the performance of AutoA-
gents decreases by 3% in the absence of the self-refinement
action. This observation corroborates the assertion that self-
refinement is instrumental in augmenting proficiency in trivia
creative writing tasks. Furthermore, the enhancement of single
agents via self-refinement plays a pivotal role in fortifying the
integrity of the overarching multi-agent framework.
Improve the effectiveness of actions by dynamic memory.
Dynamic memory predominantly addresses the requisites of
specialized agents. As shown in Figure 4, the Action Observer
amalgamates pivotal data for forthcoming tasks, utilizing the
historical action records archived in long-term memory. Ta-
ble 4 elucidates a 1% diminution in the efficacy of AutoAgents
bereft of dynamic memory. Quintessential insights derived
from dynamic memory are assimilated into the prompt, thereby
augmenting the comprehension of critical information and bol-
stering the operational proficiency of actions.

5 Conclusion
This paper presents AutoAgents, an innovative framework
designed to synthesize collaborative specialized agents auto-
matically. AutoAgents replicates the collaborative dynamics
of human teams by splitting tasks into drafting and execu-
tion phases and assigning subtasks to different agents. Our
experimental evaluations demonstrate that AutoAgents outper-
forms single agents and other group configurations in various
skill-intensive tasks. Additionally, a case study in software
development highlights the framework’s versatility and poten-
tial advantages. AutoAgents enhances agent interaction and
cooperation, revolutionizing complex problem-solving. We
anticipate that its principles can be expanded and refined for a
wider range of tasks, advancing assistive AI.
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