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Abstract

In recent years, numerous machine learning mod-
els which attempt to solve polypharmacy side effect
identification, drug-drug interaction prediction, and
combination therapy design tasks have been proposed.
Here, we present a unified view of relational machine
learning models which can address these tasks. We pro-
vide fundamental definitions, compare existing model
architectures and discuss performance metrics, datasets,
and evaluation protocols. In addition, we emphasize
possible high-impact applications and important future
research directions in this domain.

1 Introduction

Relational deep learning has an unprecedented potential for
revolutionizing the drug discovery process and pharmaceutical
industry [Gaudelet et al., 2021]. A number of high value use
cases for relational deep learning in the pharmaceutical domain
involve answering questions about what happens when two drugs
are administered at the same time. These potential applications
might want to answer questions such as: Will a combination
of two drugs be more effective at destroying a specific type of
lung cancer cells [Preuer ef al., 2018]? Is there an unexpected
(polypharmacy) side effect [Zitnik er al., 2018a] of using these
two drugs together? Is there an unwanted chemical interaction
[Sunyoung er al., 2017] that these drug molecules can have?

All of these previously mentioned questions can be answered
by what we see as drug pair scoring, a machine learning task that
involves a set of drugs and the task of predicting the behaviour
of pairs in a specific context of interest. Given an incomplete
database of drug pairs, drug administration contexts and outcomes,
the goal is to train a model to accurately make probabilistic
predictions for unseen entries. The reasons for answering these
questions via algorithmic methods are multi-fold. Firstly, testing
all drug pairs in all of the contexts is not feasible due to time
and financial constraints such as drug prices and labour costs
[Preuer et al., 2018]. Secondly, certain pair scoring tasks such
as polypharmacy side effect prediction can only be validated in
human-based trials. Finally, laboratory testing of drug pairs is
prone to human errors [Liu e al., 2020].

Traditional supervised machine learning methods which solve
the drug pair scoring task use handcrafted molecular features
to predict the outcome of administering the drugs together in

a specific context [Sidorov et al., 2019; Chiang et al., 2020].
Another group of techniques uses an unsupervised approach
which diffuses the profile of the drug pair on a heteroge-
neous biological graph [Zhang et al., 2017; Li et al., 2018;
Huang et al., 2019] in order to find potential polypharmacy,
synergy or interaction indications. Deep learning techniques
which solve the drug pair scoring task can be seen as a fusion
and extension of these traditional methods. Such models first
generate drug representations based either on molecular structure
or the heterogeneous graph based neighbourhood context. In the
second optional step, these representations are propagated in the
biological graph and aggregated. Finally, drug pair representations
are formed and probability scores are outputted in the specific
drug administration contexts. We present a high level summary of
the drug pair scoring task idea in Figure 1.
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Figure 1: Drug-drug interaction, polypharmacy side effect, and pair
combination therapy design prediction tasks follow the same template.
Given a pair of drugs with optional biological context, the task is to
predict an outcome in a specific application domain. Relational machine
learning models which solve these task can exploit molecular features,
knowledge graph based neighbourhoods or both.

Our main contributions can be summarized as:

1. We provide a unification of drug-drug interaction, polyphar-
macy side effect and synergistic combination prediction
tasks.

2. We present an overview on the design of relational machine
learning models which can address these predictive tasks.
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3. We highlight the publicly available datasets used to train
and test the models on these tasks and survey the literature
for the most commonly used evaluation metrics.

4. We review the most important applications of these tech-
niques and discuss directions for future research in the
domain.

The remainder of this survey is structured as follows. In Section 2
we establish the foundations of a unified view of discriminative
machine learning tasks defined on pairs of drugs. Section 3
discusses the architectural details of models that can solves these
tasks. The evaluation metrics, protocols and datasets used in
the literature are detailed in Section 4. Several important key
application areas are highlighted in Section 5. We discuss the
limitations of current approaches and future research directions
in Section 6. The paper concludes with Section 7. The survey
is supported by a collection of related work under the https:
/lgithub.com/AstraZeneca/awesome-drug-pair-scoring repository.

2 Background

Our discussion of drug pair scoring models requires the introduc-
tion of a drug set D = {d,...,d, } that describes compounds
of interest and a context set C = {cy,...,c} that contains
contexts where two drugs are used in a pair combination.

Definition 1. Labeled drug pair. A labeled drug pair defined
on drug set D and context set C is the tuple (d,d', ¢, yq.a ),
where the binary indicator yq,q . € {0, 1} is the outcome for
drug pair d,d’ € D in context c € C.

A labeled drug pair is a known fact about the drug pair having
an effect in a context such as a specific polypharmacy side effect,
interaction or synergistic relationship at treating a disease. The
purpose of pair scoring models is to learn from these tuples to
predict the labels for unlabeled drug pairs and contexts.

Definition 2. Database of labeled drug pairs. A database of
labeled drug pairs defined on drug and context sets D and C is
the set S containing labeled drug pairs (d,d’, ¢, ya,a ) where
d,d € Dandc € C.

Pair scoring models are trained on databases of labeled drug
pairs and the trained models are used to predict the label of pairs
for which we do not know the outcome in certain contexts.

Definition 3. Heterogeneous interaction graph with drug
entities. We denote with G(V, R, E) the heterogeneous interac-
tion graph with drug entities, where V and R are the entity and
relation sets, it holds that the drug set D C V and & is formed by
typed edges of the form (v,r,u) €V X R X V.

We consider a heterogeneous graph where the drug set is
a subset of the vertex set. This definition of heterogeneous
(biological) knowledge graph helps to create knowledge graph
based representation for the compounds of interest.

Definition 4. Neighbourhood encoder. A neighbourhood en-
coder is the function:

h; = AGGREGATE(O,,, Vu € N(d)). (1)

In Equation (1) ©,, is a parametric vector representation of
u €V and N(*) is a neighbourhood set.

The neighbourhood encoder function [Hamilton et al., 2017]
creates a vector representation of drug vertices of the graph
based on the aggregation of trainable parameter vectors in the
neighbourhood of the source node. Neighbourhoods of a drug
can be defined based on arbitrary notions of proximity and the
aggregation itself could be a parametric transformation.

Definition 5. Molecular encoder. A molecular encoder is the
Sunction hy = ho(My), parametrized by © where hg is the
learned vector representation and M is a generic notation of
molecular features describing the drug d.

A molecular encoder is a neural network which generates a
vector representation from the features of the molecule - these
molecular features can be derived from generic features (e.g. hy-
drophilicity), a string representation, molecular graph or geometry.

Definition 6. Neighbourhood informed molecular encoder.
This encoder is the function :

h4 = AGGREGATE(ho(M,),Vu € N(d));

where hg(M,,) and AGGREGATE(-, Vu € N (d)) are molecu-
lar and neighbourhood encoders respectively.

This encoder combines the layers described in Definitions 4
and 5. It is essentially a neighbourhood encoder parametrized by
representations outputted by a molecular encoder — molecular
representations learned by the molecular encoder are aggregated
in the neighbourhood of source drug nodes in the knowledge
graph which has drug entities.

Definition 7. Molecular representation combiner. Given the
drugs d,d’ € D with vector representations h hg: the molecular
representation combiner is the function hg g0 = go(ha; har) that
outputs hq q' a vector representation of the drug pair.

The representation output by this combiner function can be
drug orchestration order dependent. This way the temporal order
of drug orchestration can be expressed by the pair scoring model.
For example the concatenation of drug vectors results in order
dependent representations of pairs, while a bilinear transformation
of drug representations with a diagonal matrix does not.

Definition 8. Scoring head layer. The scoring head layer is
the function §q.q4'.c = ko (hq.a, c), where the predicted label
proability satisfies that {Jg.ar.c € R0 < gga . <1}

Given a drug pair representation and a context, the scoring
head layer outputs a probability score for the outcome.

Definition 9. Drug pair scoring loss and cost functions.
Given the drug pair d,d’ € D, context ¢ € C, ground-truth
label yq.q' . and predicted score {q,q' . the loss is defined as
the function £(Yq.ar ¢; Yd,a'.c)- The cost on the whole drug pair
database S is defined by Equation (2).

> lYaar i aare)- 2

(d,d’ c)€S

£:

In practical settings, drug pair scoring models are trained by
the minimization of the binary cross-entropy summed over the
labeled drug pair, context triples.
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Entity Types Drug Features
Task Method Reference Model view Induction Drug Protein Disease SMILES Graph Geometry Generic
DECAGON [Zitnik et al., 2018al] Higher . .
KBLRN [Malone et al., 2018] Higher ° .
Polypharmacy SDHINE [Hu et al., 2018] Higher . . .
ESP [Burkhardt et al., 2019] Higher ° .
MHCADDI [Deac et al., 2019] Lower ° °
TIP [Xu et al., 2020] Higher . .
DeepCCI [Sunyoung ef al., 2017] Lower . . °
MVGAE [Ma et al., 2018] Hierarchical . . . . .
DeepDDI [Ryu et al., 2018] Lower . )
D31 [Peng et al., 2019] Hierarchical . .
MR-GNN [Xu et al., 2019] Lower ° °
SkipGNN [Huang et al., 2020b] Higher . . .
CASTER [Huang et al., 2020al Lower ° °
DeepDrug [Cao et al., 2020] Lower . . . .
GoGNN [Wang et al., 2020] Hierarchical . °
DPDDI [Feng et al., 2020] Lower ° .
Interaction K_GNN [Lir? et al., 2020] _Highe‘r . . o
BiGNN [Bai et al., 2020] Hierarchical . . . .
MIRACLE [Wang et al., 2021b] Hierarchical . . .
EPGCN-DS [Sun et al., 2020a] Lower °
SumGNN [Yu et al., 2021] Higher o . °
DANN-DDI [Liu et al., 2022] Higher . .
SSI-DDI [Nyamabo et al., 2021] Lower °
MTDDI [Feng et al., 20211 Hierarchical . ° . .
MUFFIN [Chen et al., 2021] Hierarchical . . . )
DDIAAE [Dai et al., 20211 Higher . . .
RWGCN [Feeney et al., 20211 Higher . . .
SmileGNN [Han et al., 2022] Hierarchical . . °
GCN-BMP [Chen et al., 2020] Lower ° . °
DeepSynergy [Preuer et al., 2018] Lower 0 .
MCDC [Chen et al., 2019] Hierarchical . . )
DTF [Sun et al., 2020b] Higher .
DeepSignalFlow [Zhang et al., 2021a] Hierarchical . . .
DeepDDS [Wang et al., 2021al Lower . .
Synergy GraphSynergy [Yang er al., 20211 Higher . °
TranSynergy [Liu er al., 20211 Hierarchical . . . .
MatchMaker [Brahim et al., 2021] Lower ° ° .
DNNSynergy [Zhang et al., 2021b] Lower . .
AID [Kim et al., 2021] Hierarchical . . . .
MOOMIN [Rozemberczki et al., 2021al Hierarchical ° . . °

Table 1: A machine learning task, model view level, induction, interaction graph node type (entity) and drug feature based comparison of drug pair
scoring machine learning models. Machine learning models that solve a specific pair scoring task are ordered chronologically in the table.

3 Drug Pair Scoring Models

Our discussion of the drug pair scoring models introduces our
unified view about the general architecture of these models and
compares state-of-the-art architecture designs.

3.1 Unified View: The Drug Pair Scoring Model

Based on the definitions outlined in Section 2 we propose a
unified view of drug pair scoring models. We postulate that the
abstract design of drug pair scoring models irrespective of the
specific subtask solved always has the following architecture:

1. An encoder to generate drug representations - this can be
one of the functions described by Definitions 4, 5 and 6.
2. A molecular representation combiner function to generate a
drug pair representation — see Definition 7.
3. The scoring head layer to predict the probability of a context
dependent outcome proposed by Definition 8.
4. The loss function of Definition 9 which depends on ground-
truth labels and the probabilities output by the head layer.
This architecture and design allows for the joint end-to-end

training of the individual model components — gradient descent
based update of the layer weights.

3.2 Specific Architecture Designs

We compare state-of-the-art model architectures in Table 1 that
can solve pair scoring tasks. Our comparison considers the model
level, induction capabilities, specific subtask, node types of the
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heterogeneous graph and the molecular features exploited by the
model. Model attributes used for comparison were the following:

* Model level: A model operates at the following levels based
on the encoder architecture used for generating the drug
representations: (a) higher-view — neighbourhood encoder,
(b) lower-view — molecular encoder, (c) hierarchical-view —
neighbourhood informed molecular encoder.

* Machine learning task: The drug pair scoring task of interest
solved by the dedicated model architecture proposed in the
research paper. It has to be one of interaction, polypharmacy
or synergy prediction.

* Induction: A model is inductive if it can predict the label of
drug pairs where at least one of the drugs was not in the
training set drug pairs.

* Entities: The types of hetereogeneous graph entities (drugs,
proteins, diseases) used by the model to solve the task.

* Drug features: Molecular features and information about the
compound encoded by the molecular encoder function.

Our comparison highlights that there is a hard trade-off between
induction and exclusion of compound features. It is also evident
that there is a connection between the subtask and architecture
design: for example, polypharmacy side effect prediction models
are mostly high level transductive neighbourhood encoders with a
scoring layer on top. Synergy scoring models are mostly inductive
techniques which exploit the molecular information about the
drugs. Currently, there is no single pair scoring model which
includes all of the considered biological modalities.
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4 Evaluation

The evaluation of machine learning models requires performance
metrics, train-test split strategies and publicly accessible datasets.
4.1 Performance Metrics

The predictive performance of drug pair scoring models is eval-
vated by metrics tailored to binary classification tasks. We
summarise how these metrics are used for the evaluation of
state-of-the-art drug pair scoring architectures in Table 2.

Evaluation metric

Model Reference AUPRC AUROC Precision Recall Accuracy F;
DECAGON [Zitnik et al., 2018a] . . .

KBLRN [Malone et al., 2018] . . .

SDHINE [Hu et al., 2018] . .

ESP [Burkhardt et al., 2019] . . .

MHCADDI [Deac et al., 2019] °

TIP [Xu et al., 2020] . ° °

DeepCCI [Sunyoung et al., 2017] . . .
MVGAE [Ma et al., 2018] . .

DeepDDI [Ryu et al., 2018] . . . .
D31 [Peng et al., 2019] . . . .
MR-GNN [Xu et al., 2019] . ° °
SkipGNN [Huang et al., 2020b] . .
CASTER [Huang et al., 2020a] . . °
DeepDrug [Cao et al., 2020] . °

GoGNN [Wang et al., 2020] . .

DPDDI [Feng et al., 2020] . . . ° . °
KGNN [Lin et al., 2020] . . . °
BiGNN [Bai et al., 2020] . . °
MIRACLE [Wang ef al., 2021b] . . °
EPGCN-DS [Sun et al., 2020a] . .
SumGNN [Yu et al., 2021] . . . .
DANN-DDI [Liu et al., 2022] . . . . . .
SSI-DDI [Nyamabo et al., 2021] . . .
MTDDI [Feng et al., 20211 . . . . . )
MUFFIN [Chen et al., 2021] . . ° . °
DDIAAE [Dai et al., 20211 . ° .

RWGCN [Feeney et al., 20211 . .

SmileGNN [Han et al., 2022] . . °
GCN-BMP [Chen et al., 2020] ° . o
DeepSynergy [Preuer et al., 2018] . . . .
MCDC [Chen et al., 2019] . .

DTF [Sun et al., 2020b] . . . .
DeepSignalFlow [Zhang et al., 2021al .
DeepDDS [Wang et al., 2021al . . . .
GraphSynergy [Yang er al., 2021] . . . . .
TranSynergy [Liu ef al., 20211 . .

MatchMaker [Brahim et al., 2021] . .

DNNSynergy [Zhang et al., 2021b] . . . .

AID [Kim et al., 2021] .

MOOMIN [Rozemberczki et al., 2021a] . . °

Table 2: Predictive performance evaluation metrics used by the research
papers which proposed novel drug pair scoring techniques. Models are
grouped by the pair scoring task and ordered chronologically.

Looking at Table 2 it is evident that the evaluation metrics used
in the literature can be grouped into two categories:

* Score based metrics: These quantify predictive performance
based over the whole domain of discrimination thresholds.
The precision-recall area under the curve (AUPRC) consid-
ers the precision-recall trade off under the whole domain
of discrimination thresholds while the receiver operating
characteristic area under the curve (AUROC) considers false
and true positive rates.

* Hard cut off evaluation metrics: These performance metrics
(accuracy, F; score, precision, recall) apply a hard discrimi-
nation threshold to assign a label to the data points based
on the scores output by the pair scoring model. In order to
calculate these, one needs to set a discrimination threshold.

Our findings demonstrate that pair scoring models are predomi-
nantly evaluated by score based metrics (AUPRC and AUROC)

which do not require manual setting of a discrimination threshold.
It is also evident that seminal research works which defined
the key pair scoring tasks influenced the later evaluation metric
choices — polypharmacy prediction models adapted the evaluation
metrics from [Zitnik ef al., 2018a] for example.

4.2 Train-Test Split Strategies

The evaluation of drug pair scoring tasks allows for the use of
various train-test split strategies [Preuer et al., 2018] to test the
performance of the model under cold-start and inductive scenarios
[Dewulf er al., 2021]. Given a labeled drug pair-context database
S, defined on the drug and context sets D and C, we assume
that one can create the randomized splits S7-qin, and Stese. We
summarized these splitting strategies in Figure 2.
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Figure 2: The train and test split of drug pair scoring datasets allows for
various stratified splits. Stratification of the pairs can happen across
the evaluated drugs or the outcomes being tested. Drug pairs used for
training the pair scoring model are denoted with white, pairs used for
testing are denoted with gray.

Using the formalism established to describe the pair scoring
models, the splitting strategies are defined as:

* Random split: labeled drug pair - context entries of S are
randomly split between St1y.q4, and Spes.

* Drug pair stratified split: A drug pair d,d’ € D that

appears in entries of St,.4;, does not appear in entries of

Stest. This split requires a pair scoring model which is

inductive with respect to drugs.

Drug stratified split: A drug d € D that appears in entries

of Strqin does not appear in entries of Sy, . Like the drug

pair stratified split this requires the model to be inductive
with respect to new drugs.

» Context stratified split: A context ¢ € C that appears in
entries of S7,.4i,, does not appear in entries of Sp¢g¢. This
requires that the pair scoring model is inductive with respect
to the set of contexts.

4.3 Datasets

We detail public sources for drug pair data which have been used
by the approaches in this review in Table 3. Datasets are listed
chronologically according to subtask and the licence and any
restrictions for commercial use are detailed where available. It
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can be seen that the majority of datasets contain a small number
of drugs, indicating most focus on approved drugs rather than all
possible compounds, with the interactions captured in drug pairs
being much more numerous.

It should be noted that established resources such as TWO-
SIDES and DrugBank are frequently filtered, cleaned and split
into new datasets. For example the Therapeutics Data Commons
(TDC) resource contains filtered versions of both of these datasets
designed for benchmark use [Huang et al., 2021]. It is also
common for datasets to be named differently in publications, for
example the split of TWOSIDES contained in TDC is also called
ChChSe-Decagon in some works [Zitnik et al., 2018b].

S Applications

In this section we introduce three key, yet currently largely,
unexplored applications for the methods detailed in this review.

5.1 Combination Therapy for COVID-19

One topical application of these methods is in relation to COVID-
19 pandemic. Patients affected by polypharmacy of certain drug
types (anti-psychotics and opiates being prominent examples)
had a significantly higher chance of a negative clinical outcome
from COVID-19 [Tloanusi et al., 2021; Jin et al., 2021]. Using
methods covered in this review to predict which combinations
may have a negative effect for COVID-19 patients, could enable
high risk groups to seek alternative treatments, reducing the risk
of a negative outcome.

5.2 Antibiotic Evolutionary Pressure

The prevalent use of antibiotics has resulted in microbes evolving
resistance to the drugs, reducing efficacy and potentially elimi-
nating cost effective ways of treating severe bacterial-related
diseases such as Tuberculosis. Interestingly, it has been shown
that the combination of different antibiotics can slow, and even
reverse, this evolutionary resistance [Singh et al., 2017]. However
discovering these suppressive interactions using traditional meth-
ods is a complex and slow process, yet one currently unexplored
using the methods covered in this review.

5.3 Reducing Toxicity

Although drug combinations can result in an increase of unwanted
side effects, one promising application is that the combination of
two or more drugs can actually lead to a reduced level of toxicity
for patients. This is due to the fact that synergistic drugs, which
together posses a higher level of efficacy at targeting a certain
condition, means that the levels of each individual compound
can actually be lowered, reducing toxicity issues associated with
higher doses [lanevski et al., 2020]. Thus, accurate prediction of
synergistic drug combinations can reduce the impact of toxicity
resulting from the individual compounds.

6 Discussion and Future Directions

The body of work regarding relational machine learning for drug
pair scoring primarily focuses on the design of novel architectures
and applications. Our unification survey identified a number of
potential shortcomings of existing approaches and venues for
novel research in the domain.
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6.1 Encoding Molecular Geometry

Our summary on the design of relational machine learning
architectures for drug pair scoring tasks in Table 1 highlighted
that molecular geometry and spatial structure of the molecules is
rarely encoded by existing models. Recent advances in geometric
deep learning applied to chemistry [Qi et al., 2017; Xie et al.,
2018; Fey et al., 2018] would allow the inclusion of geometric
information which could lead to better predictive performance on
the pair scoring tasks. The modularity of existing architectures
makes replacing the molecular encoders with state-of-the-art
geometric encoder layers a possibility.

6.2 Higher Order Drug Combinations

Existing research about the interactions, unwanted side effects and
synergy of drugs is primarily focused on the evaluation of binary
pair combinations. This is driven by the lack of datasets focused
on the outcomes of using higher order drug combinations and the
lack of architectures designed specifically for these higher order
combinations. By using set based representation aggregation
layers [Vinyals et al., 2016; Baek et al., 2020], the existing
pair scoring models could be adapted to generate drug subset
representations.

6.3 Transfer Learning

Self-supervised and unsupervised learning for pretraining molecu-
lar encoders is already widely used for single molecule machine
learning tasks [Dewulf et al., 2021]. This provides an opportunity
for pretraining the molecular encoders on single molecule tasks
and fine-tuning them on the data scarce, pair scoring tasks. An-
other opportunity for transfer learning comes from the fact that
certain pair scoring tasks have a greater quantity of labeled data
available. The summary of drug pair scoring datasets in Table 2
demonstrated that the drug-drug interaction prediction task has
datasets such as STITCH-CCI-5 which covers a large number of
pair combinations, while the polypharmacy side effect and synergy
prediction tasks have smaller databases. Pretraining models by
performing drug-drug interaction prediction and fine-tuning these
models for other tasks seems to be an important future research
direction for training accurate, and therefore useful, models.

6.4 Multimodal Learning

A heterogeneous graph based representation of drugs allows for
the fusion of multiple data modalities. Our survey of existing
models in Table 1 has demonstrated that only a handful of
existing architectures integrates multimodal data effectively
[Rozemberczki et al., 2021a; Liu et al., 2021] without losing
induction. Integrating multi-omics data such as proteomics,
molecular structure and biological pathway information could be
an important venue for designing novel pair scoring architectures.

6.5 Software for Drug Pair Scoring

Currently there is no dedicated open-source machine learning
library which was specifically designed for solving the drug pair
scoring task. Developing a dedicated relational machine learning
framework on top of existing geometric deep learning [Fey et al.,
2019; Wang et al., 2019; Rozemberczki et al., 2021b] and deep
chemistry frameworks [Ramsundar et al., 2019; Korshunova ef
al., 2021] could be an important contribution to the domain. This
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Dataset Reference Subtask Compounds Pairs Contexts Licence Restricted
TWOSIDES [Tatonetti et al., 2012] Polypharmacy 1,918 211,990 12,726 Not Specified
DrugBank 5 [Wishart et al., 2018] Polypharmacy 14,575 365,000+ 86+ CCBY-NC 4.0 °
DeepDDI [Ryu et al., 2018] Polypharmacy 1,710 191,995 86 Not Specified
TDC (TWOSIDES) [Huang et al., 2021] Polypharmacy 645 63,473 1,317 CCBY 4.0
TDC (DrugBank) [Huang et al., 2021] Polypharmacy 1,706 191,519 86 CCBY-NC4.0 .
STITCH-CCI 5 [Szklarczyk et al., 2016] Interaction 389,393 17,705,799 4 CC BY-NC-SA 4.0 0
ZhangDDI [Zhang et al., 2017] Interaction 548 48,548 - Not Specified
ChCh-Miner [Zitnik et al., 2018b] Interaction 1,514 48,514 Not Specified
DCDB [Liu ez al., 2010] Synergy 485 499 - Not Specified
DCDB 2.0 [Liu er al., 2014] Synergy 904 1,363 - Not Specified
ASDCD [Chen et al., 2014] Synergy 105 215 Not Specified
O’Neil [O’Neil et al., 2016] Synergy 38 583 39 Not Specified
NCI-ALMANAC [Holbeck et al., 2017] Synergy 104 5,000+ 60 CCBY 4.0
DrugComb [Zagidullin et al., 2019] Synergy 2,276 437,932 93 CCBY-NC-SA 4.0
SynergyXDB [Seo et al., 2020] Synergy 1,977 22,507 151 Not Specified
DrugCombDB [Liu ez al., 2020] Synergy 2,887 448,555 124 Not Specified .
TDC (OncoPolyPharm) [Huang et al., 2021] Synergy 38 583 39 CCBY 4.0
DrugComb 2.0 [Zheng et al., 2021] Synergy 8,397 751,498 2,320 CC BY-NC-SA 4.0
TDC (DrugComb) [Huang et al., 20211 Synergy 129 5,628 29 CC BY-NC-SA 4.0

Table 3: Public drug pair scoring datasets ordered chronologically with the subtask, number of compounds, count of tested compound pairs, cardinality

of the context set, licence and if commercial use is explicitly restricted.

would require curated datasets and the architectural design of
encoder, combiner, scoring layers and drug pair iterators.

7 Conclusion

We have provided an exhaustive overview of relational machine
learning models designed to solve drug pair scoring tasks. We
outlined a general theoretical framework which unifies the drug-
drug interaction, polypharmacy side effect and drug synergy
prediction tasks and created a taxonomy of models which address
these. By surveying the literature, considering the architecture
and evaluation of existing models, we identified key real world
application areas and important directions for future research.
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