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Abstract
Representation learning enables us to automati-
cally extract generic feature representations from a
dataset to solve another machine learning task. Re-
cently, extracted feature representations by a repre-
sentation learning algorithm and a simple predictor
have exhibited state-of-the-art performance on sev-
eral machine learning tasks. Despite its remarkable
progress, there exist various ways to evaluate repre-
sentation learning algorithms depending on the ap-
plication because of the flexibility of representation
learning. To understand the current applications
of representation learning, we review evaluation
methods of representation learning algorithms. On
the basis of our evaluation survey, we also discuss
the future direction of representation learning. The
extended version, https://arxiv.org/abs/2204.08226,
gives more detailed discussions and a survey on
theoretical analyses.

1 Introduction
In deep neural networks [Goodfellow et al., 2016], multiple
nonlinear transformations from input space to output space
are distinguished characteristics compared with other ma-
chine learning algorithms such as a kernel method. Nonlin-
ear transformations enable deep neural networks to internally
learn a feature vector, namely, feature “representation”, that
effectively captures informative features to optimize the ob-
jective function. For example, when we solve the MNIST
classification task, the input image is transformed to a more
abstract representation than the original input to predict its
class label, which is a digit, after applying multiple nonlin-
ear transformations by using convolutional neural networks.
Thanks to this nonlinearity, deep learning algorithms often
lower the priority of feature engineering. In other words, we
require much less domain knowledge to carefully construct
hand-crafted features when we solve the machine learning
problem.

Motivated by the importance of learning feature represen-
tations, representation learning [Bengio et al., 2013] is de-
fined as a set of methods that automatically learn discrimi-
native feature representations from a dataset to solve a ma-
chine learning task [LeCun et al., 2015]. Empirically, the

learned model is used as a feature extractor for other ma-
chine learning tasks, such as classification, regression, and
visualization. In this sense, representation learning is also re-
ferred to as method to learn generic feature representations
for unseen downstream tasks rather than end-to-end methods
to solve a machine learning task directly. Unfortunately, we
do not yet have a well-defined evaluation metric of represen-
tation learning for the latter case due to various applications
of representation learning. Nevertheless, we believe that eval-
uation methods are critical in designing novel or analyzing
existing algorithms.

We review the existing evaluation methods of representa-
tion learning algorithms to understand their applications and
the current common practice. Specifically, we propose four
evaluation perspectives of representation learning algorithms.
In addition, we discuss the future direction on the basis of our
review. Note that we do not aim to provide a comprehensive
survey on the state-of-the-art algorithms compared with ex-
isting representation learning surveys such as [Jing and Tian,
2019].

2 Background: Representation Learning
We give a high-level overview and formulation of represen-
tation learning. We give two formulations in terms of the ex-
istence of supervised signals during representation learning:
supervised representation learning (Section 2.1) and unsuper-
vised representation learning (Section 2.2).

2.1 Supervised Representation Learning
Suppose supervised dataset Dsup = {(xi, yi)}Ni=1, where x
is an input sample, and y is a supervised signal such as a
class label in classification or a real-valued target vector in
regression. As a running example, we suppose classification,
where x is an input sample, and y ∈ {1, . . . , Y } is a categor-
ical value in a pre-defined class set. A supervised represen-
tation learning algorithm trains parameterized feature extrac-
tor h by solving a supervised task on Dsup. Feature extrac-
tor h : RI → Rd maps an input representation x to a fea-
ture representation h(x) ∈ Rd, where d tends to be smaller
than I , the dimensionality of x. Depending on the supervised
task, an additional function, g : Rd → RO, yields the out-
put representation to evaluate a supervised objective function
given feature representation h(x). For multi-class classifica-
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tion case, O = Y . Formally, we minimize training loss func-
tion L̂(h,g) such as a cross-entropy loss to obtain pre-trained
ĥ and ĝ as follows:

ĥ, ĝ = argmin
h,g

L̂(h,g),

where L̂(h,g) = − 1

N

N∑
i=1

ln
exp(gyi

(h(xi)))∑
y∈Y

exp(gy(h(xi)))
. (1)

After minimizing supervised loss L̂ (1), we use ĥ as a feature
extractor for other machine learning tasks. The rest part, ĝ,
tends to be removed after the optimization of L̂ because rep-
resentation ĝ(ĥ(x)) leads to poor downstream performance
in practice [Donahue et al., 2014]. [Yosinski et al., 2014]
explained that feature representations extracted by using near
the final layer in neural networks are too specialized to solve
the upstream supervised task without fine-tuning. Similar re-
sults have been reported in unsupervised representation learn-
ing [Bachman et al., 2019]. By following the notations above,
we define supervised representation learning as follows:

Definition 1. Supervised representation learning aims to
learn generic feature extractor h : RI → Rd by optimiz-
ing L̂ on labeled dataset Dsup automatically without feature
engineering by domain experts.

Some supervised learning algorithm can be viewed as su-
pervised representation learning. Concretely, DeCAF [Don-
ahue et al., 2014] formulated ImageNet classification as a rep-
resentation learning task and demonstrated the effectiveness
of the learned feature extractor for downstream tasks.

One of the advantages of supervised representation learn-
ing is that we obtain feature extractor ĥ as a by-product of
supervised learning. For example, VGG [Simonyan and Zis-
serman, 2015] trained for ImageNet classification has been
widely used for other vision tasks [Girshick et al., 2014].

Empirically large sample size in supervised representa-
tion learning improves downstream performance [Sun et al.,
2017]. Unfortunately, enlarging the sample size is costly re-
garding time and money by hiring annotators and teaching
them how to annotate data. In addition, we expect that the
supervised task is not too easy to capture generic represen-
tations for downstream tasks. Intuitively, if we pre-train a
model on a difficult task such as ImageNet classification, the
model can generalize well to a simpler task, such as MNIST
classification. However, the reverse probably does not hold;
the pre-trained model on MNIST does not generalize well to
ImageNet because the model trained on MNIST could not see
complicated patterns during the training to solve ImageNet
classification. Creating a dataset for a difficult task, which
is ImageNet in the example above, does not only require
skilled annotators but also easily contaminates the dataset
that could hurt upstream performance [Beyer et al., 2020].
As a result, the pre-trained model performs poorly as a fea-
ture extractor for downstream tasks. To overcome this dis-
advantage, unsupervised representation learning or weakly
supervised representation learning [Mahajan et al., 2018;

Radford et al., 2021] have been attracting much attention
from the machine learning community.1

It has been reported that we can often predict the per-
formance of downstream tasks by using the generaliza-
tion performance in ImageNet when using ImageNet pre-
training [Kornblith et al., 2019; Abnar et al., 2022]. How-
ever for even supervised representation learning, the best-
performed model does not give the best performance on mul-
tiple downstream tasks [Abnar et al., 2022]. Similar ten-
dency has been reported in unsupervised representation learn-
ing [Ericsson et al., 2021].

2.2 Unsupervised Representation Learning
Unsupervised representation learning2 does not use label in-
formation at all to learn feature extractor h. Suppose unla-
beled dataset Dun = {xi}Mi=1, where M is the number of
unlabeled samples. The difference from supervised repre-
sentation learning is that unsupervised representation learn-
ing trains feature extractor h by solving an unsupervised
task on Dun. To do so, unsupervised representation learning
studies reviewed in [Jing and Tian, 2019] proposed a novel
unsupervised objective function that is called “pretext task”
to train h without supervised signals. For example, auto-
encoders [Rumelhart et al., 1986] minimize a reconstruction
error as unsupervised loss L̂un defined by

L̂un(h,g) =
1

M

M∑
i=1

∥g(h(xi))− xi∥2 . (2)

Intuitively, h compresses x such that g recovers x from h(x)
by minimizing Eq. (2). We expect that such compressed fea-
ture representation h(x) captures useful features of x to solve
other machine learning tasks. As the counterpart of Defini-
tion 1, we define unsupervised representation learning as fol-
lows:
Definition 2. Unsupervised representation learning aims to
learn generic feature extractor h : RI → Rd by optimizing
L̂un on unlabeled dataset Dun automatically without feature
engineering by domain experts.

Thanks to the unsupervised nature, we can easily increase
the sample size of Dun at almost no cost. For example,
[Mikolov et al., 2018] trained word representations on 630
billion words collected from CommonCrawl and [He et al.,
2020] trained self-supervised models on one billion images
collected from Instagram. This property is desirable be-
cause the scale of a dataset is essential to improve the per-
formance of downstream tasks in practice [He et al., 2020;
Kaplan et al., 2020]. Surprisingly, even if we train a fea-
ture extractor on the same amount of data, unsupervised rep-
resentation learning gives better transfer performance [Er-
icsson et al., 2021] and better generalization on out-of-

1Due to the space limitation, we do not introduce the weakly
supervised representation learning in this review. However, shortly
they minimize the supervised loss with auxiliary information such
as user-provided tags [Mahajan et al., 2018] or an image descrip-
tion [Radford et al., 2021].

2We use unsupervised representation learning and self-
supervised representation learning interchangeably.
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distribution [Sariyildiz et al., 2021] than supervised represen-
tation learning depending on downstream tasks.

One of the disadvantages of unsupervised representation
learning is the difficulty of evaluation at the representation
phase. We do not even know the existence of a universal un-
supervised objective that indicates the minimizer can guaran-
tee downstream performance. As an empirical observation,
[Kolesnikov et al., 2019] reported that lower validation loss of
representation learning tasks did not imply better validation
accuracy on ImageNet classification across different models.
Hence, the generalization performance of a downstream task
is often used as an evaluation metric in practice, as explained
in Section 3.1.

3 Evaluation Methods of Representation
Learning

We now organize the current evaluation methods of repre-
sentation learning algorithms. We do not discuss general
evaluation metrics for machine learning algorithms, such as
computing efficiency. For future directions of representation
learning, we also briefly discuss the theoretical work from our
evaluation perspectives.

For all evaluation perspectives except for “Representation
Learning as an Auxiliary Task” described in Section 3.4, sup-
pose that we have R pre-trained representation learning mod-
els, {ĥr}Rr=1. Given R pre-trained models, we would like to
determine the best one.

3.1 Representation Learning for Pre-training
Since representations play an important role in solving ma-
chine learning problems, as explained in Section 1, we ex-
pect that extracted representations by a representation learn-
ing algorithm generalize to unseen machine learning tasks:
downstream tasks, such as classification. Motivated by this
expectation, the most common evaluation method is how
learned representations help solve downstream tasks. In this
sense, representation learning can be considered the pre-
training [Hinton et al., 2006] of the feature extractor of down-
stream tasks.

As a running example, we suppose a classification prob-
lem for a downstream task. Downstream dataset is denoted
DD = {(xi, yi)}ND

i=1, where ND is the number of samples
and yi ∈ Y is a class label. Suppose that pre-trained model
ĥ is used in the model of the downstream task denoted by
hD. For example, both ĥ and hD are the same neural net-
works to extract feature representations from x. We use the
pre-trained parameters of ĥ as initialization values of the pa-
rameters of hD. To solve the downstream task, we require an
additional function gD that maps feature space to label space:
Rd → R|Y| since ĥ is designed for the representation learning
task, not for the downstream task. Note that gD tends to be
implemented as a simple function such as logistic regression,
support vector machines, or shallow neural networks. This is
because such a simple gD is enough to solve the downstream
task if extracted representations already capture discrimina-
tive features [Bengio et al., 2013].

Experimental Procedure
Given R pre-trained feature extractors {ĥr}Rr=1 and down-
stream dataset DD, we compare the extractors by using the
evaluation metric of the downstream task. This is equivalent
to treating the feature extractor as a hyperparameter in the
model of the downstream task. The evaluation procedures
are as follows: i) Train hD,gD on downstream dataset DD

with pre-trained feature extractor ĥr for each r. ii) Compare
evaluation metric of the downstream task such as validation
accuracy. At the first step, there are two common protocols to
evaluate feature extractors: “frozen” and “fine-tuning”.

Frozen protocol This evaluation protocol has been quite
common in recent representation learning experiments. Since
we expect that ĥ can extract discriminative features for the
downstream task, we do not train hD initialized by ĥ during
the training of the downstream task. Training gD requires
less computing budget and converges faster than the training
of hD and gD from scratch on the downstream dataset. For-
mally, we solve the following problem:

min
gD

L̂D(ĥ,gD), (3)

where L̂D is an empirical risk on DD such as Eq. (1) for
classification. The standard choice of gD is a linear classi-
fier [Donahue et al., 2014; He et al., 2020] or non-parametric
method, such as k-nearest neighbors. When we use a linear
classifier as gD, the evaluation protocol is also called “linear
probing”. To attain a further performance gain with additional
computing cost, we implement gD as a nonlinear model, for
example, shallow neural networks with a nonlinear activation
function [Bachman et al., 2019].

Fine-tuning protocol To achieve further performance gain
for the downstream task, we train both hD initialized by ĥ
and gD as a single model on the downstream task. This pro-
cedure is called “fine-tuning”. Formally, we solve the follow-
ing problem:

min
hD,gD

L̂D(hD,gD), where hD is initialized by ĥ. (4)

We might fine-tune hD with a smaller learning rate in gradi-
ent descent-based optimization than the random initialization.
This is because we expect that hD with pre-trained weights
has already been able to extract useful feature representations
for the downstream task. If we set an optimizer’s inappropri-
ate hyperparameters, such as too large a learning rate or too
many epochs, hD is likely to forget the pre-trained weights.
As a result, the model overfits DD. To avoid this explic-
itly, we can use ĥ as a regularizer as reviewed in Section 3.2.
Even though the fine-tuning protocol requires more comput-
ing budget than the frozen protocol, it empirically performs
better than the frozen protocol [Zhai et al., 2019].

Efficiency Complementary to the two evaluation protocols,
varying the size of the downstream dataset and comput-
ing budget is concerned in representation learning experi-
ments [Hénaff et al., 2020]. Intuitively, if feature extractor ĥ
captures discriminative feature representations, training hD
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and gD requires fewer labeled data or less computing bud-
get, i.e., fewer epochs in a gradient descent algorithm, than
the same model with random initialization to achieve similar
generalization performance [Erhan et al., 2010].

Discussion
Fair comparison We need to pay attention to the size of
representation learning data and feature extractor ĥ to com-
pare different representation learning algorithms. For deep
neural network-based representation learning algorithms,
there exists a positive correlation between the model size of
ĥ and downstream performance, for example, [Kolesnikov et
al., 2019] for vision and [Devlin et al., 2019] for language.
This phenomenon is known as the scaling-law [Kaplan et
al., 2020]. Enlarging the size of data makes this tendency
stronger [Kolesnikov et al., 2020]. Suppose we propose a
novel representation learning algorithm to improve the state-
of-the-art performance on downstream tasks. In this case, we
should use the same architecture and dataset to disentangle
the factors of performance gain. We also highly recommend
following suitable suggestions to representation learning ex-
periments by [Oliver et al., 2018].

Best representations in the layers of neural networks For
deep neural network-based models, we have multiple can-
didates of ĥ depending on which layer we select as a fea-
ture extractor. The optimal feature extractor among the lay-
ers differs depending on the downstream task. Concretely,
the representations extracted by using until the last layer tend
to be specialized for the representation task [Yosinski et al.,
2014]. As a result, such ĥ performs poorly as a feature
extractor on the downstream task, especially without fine-
tuning. Empirically, removing the last few layers from the
network is a common technique to improve the downstream
performance [Girshick et al., 2014; Donahue et al., 2014;
Bachman et al., 2019]. We recommend trying different in-
termediate representations as a hyperparameter of the down-
stream task, especially in the frozen protocol.

Relation to other machine learning problems The de-
scribed experimental protocols are similar to transfer learn-
ing settings. The frozen and fine-tuning protocols are similar
to “feature-representation-transfer” and “parameter transfer”
in transfer learning [Pan and Yang, 2010], respectively. In
transfer learning terminology, we train feature extractor h on
a source domain, and then we transfer pre-trained ĥ to a tar-
get domain, a downstream task. Another formulation is semi-
supervised learning [Chapelle et al., 2006], where we train a
predictor from many unlabeled data and a few labeled data.
Since unsupervised representation learning does not require a
labeled dataset, we train h on the unlabeled data, then train
hD and gD with ĥ on the labeled data [Zhai et al., 2019]. We
will discuss other representation learning-based approaches
for the semi-supervised learning scenario in the other evalua-
tion perspectives described in Sections 3.2 and 3.4.

Benefits for optimization As described above, pre-trained
weights of representation learning model ĥ behave as the ini-
tialization of downstream task’s model hD. Since an initial-
ization method is a key factor to improve performance in the

gradient-based optimization of deep neural nets [Sutskever et
al., 2013], pre-trained models help the optimization of the
downstream task. Concretely, we can compare representa-
tion learning algorithms in terms of stability [Erhan et al.,
2010]. If pre-trained feature extractor ĥ is the good initial-
ization of hD, the variance of optimum among multiple runs
with different random seeds is smaller than random initializa-
tion, which means the pre-trained ĥ is stable initialization to
the randomness of the training for the downstream task.

Theoretical Analysis
A pre-training setting is also a common scenario regard-
ing theoretical analysis in representation learning. Several
theoretical analyses show the sample complexity bound of
learning theory or the inequality of losses of representa-
tion learning and downstream tasks, usually classification
by specifying the representation learning task. For exam-
ple, contrastive learning [Arora et al., 2019], language mod-
eling [Saunshi et al., 2021], unsupervised learning with
data-augmentation [Nozawa and Sato, 2021], and references
therein. These analyses mainly assume the datasets of repre-
sentation learning and downstream tasks are the same; they
do not cover transfer scenarios. We believe that combining
these bounds and transfer learning analysis is worth explor-
ing future directions for theoretical analysis to understand the
transferability of representation learning algorithms.

3.2 Representation Learning for Regularization
Even though we fine-tune the weights of hD initialized by
pre-trained ĥ as described in Section 3.1, we obtain poor
feature extractor hD after fine-tuning such that they are far
from ĥ due to inappropriate hyper-parameters: too large
learning rate or too many iterations for stochastic gradient-
based optimization. As a result, the performance of the
downstream task degrades because the model forgets the
pre-trained weights to extract useful representations, and the
downstream model overfits the downstream dataset. To avoid
this, learned feature extractor ĥ works as the explicit regular-
izer of hD [Li et al., 2018].

Suppose the same notations and classification introduced
in Section 3.1. Given pre-trained feature extractor ĥ, we de-
fine the loss function for the downstream task with the regu-
larizer of hD(.) as follows:

min
hD,gD

L̂D(hD,gD) +
λ

ND

ND∑
i=1

Ω
(
hD(xi), ĥ(xi)

)
, (5)

where λ ∈ R≥0 and regularization function Ω : Rd × Rd →
R≥0.3 A common choice of Ω is the L2 distance.

We use the parameters of ĥ for the regularizer of hD

rather than for only one representation (5). Suppose pre-
trained feature extractor ĥ is modeled by a neural net-
work with J layers. Let feature extractor’s parameters be
θ̂ = {ŵ(1), b̂(1), . . . , ŵ(J), b̂(J)}, where weights w and
bias b. Similarly, let θ be parameters in hD: θ =

3Note that this formulation is called “feature-based knowledge
distillation” in the distillation context [Gou et al., 2021].
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{w(1), b(1), . . . ,w(J), b(J)}. For θ, regularization term
Ω(., .) with L2 distance is defined as

Ω
(
θ, θ̂

)
=

J∑
j=1

(
∥w(j) − ŵ(j)∥2 + ∥b(j) − b̂(j)∥2

)
. (6)

As a special case of Eq. (6), we obtain L2 regularization when
we set θ̂ = 0 instead of pre-trained weights θ̂. [Li et al.,
2018] reported that Eq. (6) performed better on transfer learn-
ing tasks than L2 regularization.

Experimental procedure
Since we use these regularizations to solve a downstream
task, the evaluation procedure is the same as in Section 3.1.

Discussion
Compared with Section 3.1, these regularizations consume
more memory space, particularly Eq. (6) because the number
of parameters doubles for hD, which might make training in-
feasible, especially for large parametric models, such as deep
neural networks. Therefore fine-tuning protocol with hyper-
parameter tuning is a more practical evaluation method than
this explicit regularization.

Theoretical Analysis
A similar regularization term to Eq. (6) can be obtained
from PAC-Bayesian analysis [McNamara and Balcan, 2017].
Through the lens of the PAC-Bayes analysis, θ̂ can be consid-
ered the prior of θ. If θ̂ is the good prior of θ, Eq. (6) helps
solve the downstream task. In contrast, if we pick poor θ̂, the
regularization hurts the optimization of the downstream task,
making optimization unstable or leading to a poor feature ex-
tractor.

3.3 Representation Learning for Dimensionality
Reduction

Dimensionality reduction [Espadoto et al., 2021] maps a
raw data sample into a lower-dimensional space such that
the mapped representation preserves important information
of the original data sample. Representation learning works
as dimensionality reduction when the dimensionality of ex-
tracted feature representation d is smaller than the dimen-
sionality of the original input I . Indeed, matrix factorization-
based dimensionality reduction algorithms are compared with
unsupervised representation learning [Perozzi et al., 2014;
Baroni et al., 2014] to extract feature vectors.

Data visualization can be viewed as a special case of di-
mensionality reduction when extracted feature representa-
tions are in R2 or R3, where a human can recognize fea-
tures visually. Related to this, it is also common to apply
a visualization algorithm to extracted feature representations{
ĥ(xi)

}ND

i=1
rather than directly learn feature representations

in R2 or R3 to see samples with the same label are close to
others [Donahue et al., 2014].

Experimental Procedure
Suppose R pre-trained feature extractors {ĥr}Rr=1 and down-
stream dataset DD. Note that we might not require the labels
of DD depending on the evaluation metric.

Dimensionality reduction i) Extract feature representa-
tions with each feature extractor ĥr from DD. ii) Compare
sets of extracted representations using evaluation metric for
dimensionality reduction [Espadoto et al., 2021].
Visualization i) Extract feature representations with each
feature extractor ĥr from DD. ii) If d > 3, apply a dimen-
sionality reduction algorithm to each set of extracted feature
representations for visualization. iii) Compare visualized fea-
tures, usually with scatter plots.

Discussion
To our best knowledge, numerical evaluation of represen-
tation learning as dimensionality reduction is not common.
However, investigating what information is implicitly embed-
ded in learned representations is an interesting analysis and
actively performed to understand extracted feature represen-
tations. For example, [Adi et al., 2017] the existence of the
word, or order of two words, in order to understand sentence
feature extractors. Intuitively, if the properties are embedded
into extracted sentence representations, the model can predict
the properties accurately.

Numerical evaluation of visualization is challenging be-
cause it tends to require human evaluation. This is why rep-
resentation learning papers [Donahue et al., 2014; Kornblith
et al., 2019] showed only generated figures without numeri-
cal evaluation on visualization. Another problem is that vi-
sualization algorithms generate different plots depending on
their hyper-parameters. For example, t-SNE algorithm gives
largely different visualization results depending on its hyper-
parameters [Wattenberg et al., 2016]. Hence we do not en-
courage evaluating representation learning algorithms using
visualizations without careful the hyper-parameters tuning of
visualization algorithms. Another approach is to use label in-
formation if we access a label of each sample by following
t-SNE’s theoretical analysis [Arora et al., 2018]. In this case,
we can use the similar evaluation protocol discussed in Sec-
tion 3.1 with a simple classifier such as a linear classifier.

Theoretical Analysis
Since representation learning can be seen as dimensionality
reduction, researchers try to explain what information is em-
bedded using a representation learning algorithm by spec-
ifying its loss function. Matrix factorization-based analy-
sis [Levy and Goldberg, 2014] is a common approach, es-
pecially for word representation learning. [Kong et al., 2020]
unified widely used algorithms in natural language process-
ing from a mutual information perspective, including more
recent models such as BERT [Devlin et al., 2019]. Similarly,
a specific unsupervised loss function can be interpreted as a
lower bound of mutual information [Oord et al., 2018].

3.4 Representation Learning as Auxiliary Task
This evaluation perspective differs from the others. We focus
on a representation learning algorithm itself rather than pre-
trained feature extractor ĥ. Since representation learning at-
tempts to learn generic feature representations from a dataset,
the representation learning algorithm is expected to improve
another machine learning algorithm’s performance by opti-
mizing its loss and the loss of the downstream task simultane-
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ously or cyclically. For example, supervised learning [Islam
et al., 2021], semi-supervised learning [Weston et al., 2008;
Zhai et al., 2019], and reinforcement learning [Oord et al.,
2018]

Suppose the same notations and classification introduced
in Section 3.1. Recall that we aim to learn a classifier
that consists of feature extractor hD and classification head
gD by minimizing supervised loss LD, e.g., cross-entropy
loss (1). Let Laux be a representation learning’s loss, e.g.,
mean squared loss (2) for an auto-encoder-based representa-
tion learning algorithm and gaux be a representation learning
specific projection head, e.g., the decoder of the auto-encoder
model. Suppose that the supervised and representation learn-
ing models share hD. Formally, we optimize the following
loss function to solve supervised loss LD with representation
learning loss Laux:

min
hD,gD,gaux

LD(hD,gD) + βLaux(hD,gaux), (7)

where predefined coefficient β ∈ R≥0.

Experimental Procedure
Suppose R representation learning algorithms. For each rep-
resentation learning algorithm, we optimize Eq. (7). We se-
lect the best one using the evaluation metric, such as valida-
tion accuracy.

Variety of the dataset for representation learning There
exist several ways to calculate representation learning loss
Laux. The simplest way is to use the same labeled dataset,
DD [Islam et al., 2021]. Other ways are to use an addi-
tional unlabeled dataset [Luong et al., 2016] or the union of
labeled and unlabeled datasets [Weston et al., 2008; Zhai et
al., 2019]. When we use an unlabeled dataset, the unlabeled
dataset can come from the same data distribution [Zhai et al.,
2019] or different data distribution [Luong et al., 2016].

Discussion
This formulation can be seen as multi-task learning whose
tasks are the combination of a supervised task and a rep-
resentation learning task. Compared with the other evalua-
tions, this evaluation is easy to tune hyperparameters of the
representation learning algorithm because we can search the
hyper-parameters in the single training stage. Recall that pre-
training in Section 3.1 and regularization in Section 3.2 re-
quire two-stage training: training the representation learning
model and training the model of the downstream task. More-
over, the final performance tends to be better than pre-training
in practice [Zhai et al., 2019].

Theoretical Analysis
[Le et al., 2018] showed the stability bound of a supervised
loss with a linear auto-encoder used for the auxiliary task.
Similarly, [Garg and Liang, 2020] proposed sample complex-
ity bounds for unsupervised representation learning and su-
pervised learning losses. In their analysis, intuitively, repre-
sentation learning can work as a learnable regularizer to re-
duce the hypothesis size of the supervised model. [Maurer
et al., 2016] gave sample complexity bounds for multi-task
learning and learning-to-learn via shared feature extractor hD

for all tasks.

4 Conclusion and Future Directions
Representation learning trains a feature extractor that au-
tomatically extracts generic feature representations from a
dataset. Unlike existing representation learning’s survey pa-
pers, we reviewed four evaluation methods of representation
learning algorithms to understand the current representation
learning applications. We conclude this review by discussing
the future directions based on Vapnik’s principle.

A famous principle [Vapnik, 2000] to solve a problem says
When solving a given problem, try to avoid solving
a more general problem as an intermediate step.

Regarding the common evaluations in representation learn-
ing, representation learning seems to oppose Vapnik’s princi-
ple. For example, suppose a binary image classification: dog
versus cat, as a downstream task. We should not need a fea-
ture extractor that can distinguish the difference between Bir-
man and Ragdoll, which are quite similar cat species, to solve
the downstream task by following the principle. However,
we impose such ability on representation learning because it
learns the generic feature extractor from a massive dataset for
unseen downstream tasks. In this sense, Vapnik’s principle
is inapplicable to representation learning. Therefore we be-
lieve that we need a different metric to evaluate representation
learning algorithms rather than the performance of a single
downstream task, such as validation accuracy on ImageNet-
1K. One possible solution is to measure the averaged perfor-
mance among diverse downstream tasks, such as VTAB [Zhai
et al., 2020] for vision or SuperGLUE [Wang et al., 2019]
for language. This idea can be generalized to modal-agnostic
evaluation as discussed in [Tamkin et al., 2021].

More pessimistically, solving the downstream task via rep-
resentation learning, especially two-stage training, is less ef-
fective than solving the problem directly with comprehen-
sive hyper-parameter tuning. We expect the learned repre-
sentations to capture redundant features to solve the down-
stream task, i.e., distinguishing between Birman and Rag-
doll. Such unnecessary expressiveness could hurt down-
stream tasks’ performance. In transfer learning terminology,
a negative transfer might cause this ineffectiveness. How-
ever, unsupervised representation learning has advantages
compared with supervised learning, such as robustness to
class imbalance [Liu et al., 2022] or generalization to unseen
classes [Sariyildiz et al., 2021]. Hence we reach the same fu-
ture direction as in the previous paragraph: can we develop
suitable evaluation metrics rather than only a single metric
of a downstream task for representation learning?
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