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Abstract
When collaborating with an artificial intelligence
(AI) system, we need to assess when to trust its
recommendations. Suppose we mistakenly trust it
in regions where it is likely to err. In that case,
catastrophic failures may occur, hence the need for
Bayesian approaches for reasoning and learning to
determine the confidence (or epistemic uncertainty)
in the probabilities of the queried outcome. Pure
Bayesian methods, however, suffer from high com-
putational costs. To overcome them, we revert to
efficient and effective approximations. In this pa-
per, we focus on techniques that take the name of
evidential reasoning and learning from the process
of Bayesian update of given hypotheses based on
additional evidence. This paper provides the reader
with a gentle introduction to the area of investi-
gation, the up-to-date research outcomes, and the
open questions still left unanswered.

1 Introduction
Even in simple collaboration scenarios—like those in which
an artificial intelligence (AI) system assists a human op-
erator with predictions—the human has developed insights
(i.e., a mental model) of when to trust the AI system with
its recommendations [Bansal et al., 2019b]. If the hu-
man mistakenly trusts the AI system in regions where it
is likely to err, catastrophic failures may occur. This is
a strong argument favouring Bayesian approaches to prob-
abilistic reasoning: research in the intersection of AI and
human-computer interaction (HCI) has found that interaction
improves when setting expectations right about what the sys-
tem can do and how well it performs [Kocielnik et al., 2019;
Bansal et al., 2019a]. Guidelines have been produced [Amer-
shi et al., 2019], and they recommend to Make clear what the
system can do, and Make clear how well the system can do
what it can do.

To identify such regions where the AI system is likely to
err, we need to distinguish between (at least) two different
sources of uncertainty: aleatory (or aleatoric) and epistemic
uncertainty [Hora, 1996; Hüllermeier and Waegeman, 2021].

∗The work was done prior to joining Amazon.

Aleatory uncertainty refers to the variability in the outcome of
an experiment due to inherently random effects (e.g. flipping
a fair coin): no additional source of information but Laplace’s
daemon1 can reduce such variability. Epistemic uncertainty
refers to the epistemic state of the agent using the model,
hence its lack of knowledge that—in principle—can be re-
duced on the basis of additional data samples.

This paper dwells on the research at the intersection of
quantifying aleatory and epistemic uncertainty in reasoning
and learning, while using very efficient approximations based
upon the idea of updating the Bayesian posterior in light of
further evidence collected in favour (or against) a hypothe-
sis. We primarily focus on the case of uncertain probabil-
ities represented as beta or Dirichlet distributions following
the Bayesian statistics paradigm (Section 2).

Unlike existing surveys on approaches for quantifying
epistemic uncertainty in (deep) learning, e.g., [Hüllermeier
and Waegeman, 2021; Abdar et al., 2021], in this paper, we
aim at giving a overview of the challenges associated with the
reasoning in the presence of epistemic uncertainty and with
learning both with full and partial data. Logical reasoning in
the presence of aleatory and epistemic uncertainty (Section
3) brings entirely novel problems that need to be addressed
when wishing to limit the need for computational resources.
Evidential reasoning thus introduces the idea of choosing
either beta or Dirichlet distributions to represent uncertain
probabilities and then using efficient methods—such as the
the moment matching—for manipulating them. We illustrate
this idea using Cerutti et al.’s proposal [2022] as it builds on
the notion of probabilistic circuits [Choi et al., 2020], which
can encompass a large set of reasoning problems. It can be
used as a common representation framework for various other
approaches, from Bayesian networks [Darwiche, 2009]—an
interested reader here is also referred to Rohmer’s survey
[2020] on uncertainties in Bayesian networks—to probabilis-
tic logic programming [Fierens et al., 2015].

We further discuss the challenges of ascertaining epistemic
and aleatory uncertainty of probabilistic circuits parameters,
particularly with partial observability of the training data
(Section 4). This is the most challenging and the least devel-

1“An intelligence that, at a given instant, could comprehend all
the forces by which nature is animated and the respective situation
of the beings that make it up” [Laplace, 1825, p.2].
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oped task, and we illustrate the preliminary results achieved
so far. We also add a few remarks on the importance of epis-
temic uncertainty in determining the logical structures under-
pinning our reasoning.

We finally discuss how to ascertain uncertain probabilities
from the real world (Section 5). Unsurprisingly, they are ei-
ther provided by an oracle (e.g., an intelligence analyst) or
learnt from raw data. We illustrate approaches to evidential
learning, mainly focusing on Şensoy et al.’s proposal [2018]
in the light of its simplicity. Instead of assigning probabilities
to the classes, Şensoy et al. count the pieces of evidence in
favour of each of the possible classes. Then, some of them
also add a regularisation term to the loss function to ensure
that the total number of pieces of evidence should shrink to-
wards zero—equivalent to say: I do not know—when a data
sample cannot be correctly classified.

We conclude the paper (Section 6) with a discussion on
open questions still left unanswered.

2 A Primer in Bayesian Statistics
Given a learning model—e.g. a neural network—whose pa-
rameters w we want to learn from a dataset D, the frequen-
tist paradigm to statistics considers w a fixed parameter and
searches for an estimation. A widely used estimator is the
maximum likelihood in which w is set to the value that max-
imises p(D | w). The negative log of the likelihood function
is often chosen as the loss function.

The Bayesian paradigm, instead, considers that the ob-
served data set D tightens probabilistic knowledge about the
value of w. Bayes theorem is used to convert a prior probabil-
ity into a posterior probability by incorporating the evidence
provided by the observed data. Given the parameters of our
model w, we can capture our assumptions about w, before
observing the data, in the form of a prior probability distri-
bution p(w). The effect of the observed data D is expressed
through the conditional p(D | w), hence Bayes theorem takes
the form:

p(w | D) =

likelihood︷ ︸︸ ︷
p(D | w)

prior︷ ︸︸ ︷
p(w)

p(D)
(1)

The denominator in (1) is the normalisation constant,
which ensures that the posterior distribution on the left-hand
side is a valid probability density and integrates to one. If the
posterior distribution is in the same probability distribution
family as the prior probability distribution, the prior is called
a conjugate prior for the likelihood. Choosing a conjugate
prior often leads to a closed-form expression of the posterior,
thus avoiding the need for a numerical integration for com-
puting the denominator of (1).

2.1 Binary Classification and Uncertain
Probabilities

When facing a binary classification a complete dataset D is
then a sequence (allowing for repetitions) of examples, each
of those is a vector of instantiations of independent Bernoulli
distributions with true but unknown parameter π.

From this, the likelihood is thus: p(D | π) =
∏|D|

n=1 p(xn |
π) =

∏N
n=1 π

xn(1 − π)1−xn where xi represents the i-th
example in the dataset D, that is assumed to hold either the
value 1 or 0.

To develop a Bayesian analysis of the phenomenon, we
can choose as prior the beta distribution, with parameters
α = ⟨αx, αx⟩, αx > 0 and αx > 0, that is conjugate to
the Bernoulli:

Beta(π | α) = Γ(αx+αx)
Γ(αx)Γ(αx)

παx−1(1 − π)αx−1 where
Γ(t) ≡

∫∞
0

ut−1e−udu is the gamma function.
Considering a beta distributed prior Beta(π | α̂) and

the Bernoulli likelihood function, and given |D| observations
m = ⟨mx,mx⟩ of x, viz., mx observations of x = 1, mx

observations of x = 0, and mx +mx = |D|:

p(π | D, α̂) = Beta(π | α̂+m) (2)

Thus, the parameters of a beta distribution can be consid-
ered pseudocounts [Murphy, 2012] of pieces of evidence for
the two outcomes of a phenomenon, and the beta distribution
itself can be seen as a representation of the uncertain prob-
ability associated with the phenomenon. Among the various
priors, using α̂ = 1 = ⟨1, 1⟩ is equivalent to using the uni-
form distribution, which represents a non-informative prior
that maximises entropy.

2.2 Multi-class Classification
The Dirichlet distribution generalises the beta distribution
to K dimensions: indeed, the marginals of a Dirich-
let distribution are beta distributions. Dir(π | α) =

Γ(α0)
Γ(α1)···Γ(αK)

∏K
k=1 π

αk−1
k such that

∑
k πk = 1, α =

(α1, . . . , αK)T, αk > 0 and α0 =
∑K

k=1 αk.
Considering a Dirichlet distribution prior and the categor-

ical likelihood function—which is the generalisation of the
Bernoulli to K dimensions—and considering |D| observa-
tions m, the posterior when choosing as prior Dir(π | α̂)
is then:

p(π | D, α̂) = Dir(π | α̂+m) (3)

The uniform prior is given by Dir(π | 1).

3 Evidential Reasoning
Following Kimmig et al.’s approach [2017], let us consider
a propositional logic theory T over a set of variables V . An
interpretation of V assigns a truth value from the set {⊤,⊥}
to every variable in V . The set M(T ) of models of theory
T contains exactly those interpretations of V for which T
evaluates to true. Given the set of literal L for the variables in
V , let p : L → [0, 1] and, for l ∈ L, p(l) + p(¬l) = 1.

Given a query q ⊆ L and I(q) = {I | I ∈ M(T ) ∧ q ⊆
I} the set of interpretations where the query is true, then the
probabilistic inference task is:

PROB(q) =
∑

I∈I(q)

∏
l∈I

p(l). (4)

The complexity of probabilistic reasoning in (4) is hidden
in the computation of I(q) which is #P -complete [Valiant,
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Figure 1: A compiled circuit of (5) allowing for polytime calculation
of its set of models.
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Figure 2: Beta(17, 12): in shaded blue the 95% confidence interval.

1979a; Valiant, 1979b]. However, with knowledge compi-
lation techniques [Darwiche and Marquis, 2002], a proposi-
tional theory can be compiled off-line into a rich, nested lan-
guage based on representing propositional sentences using di-
rected acyclic graphs or circuit—where each leaf is labelled
with elements of L or {⊤,⊥}, and each internal node is la-
belled either ∧ or ∨—which is then used on-line to answer a
large number of queries in polynomial time.

Let us revisit a simplified version of the alarm-burglary-
earthquake notorious example [Kim and Pearl, 1983]: an
alarm goes off and that can be triggered only by either a bur-
glary or an earthquake. In propositional logic:

alarm ∧ (alarm ⇐⇒ (burglary ∨ earthquake) ). (5)

Figure 1 depicts a compiled circuit of (5) allowing for
polynomial-time calculation of its set of models and the in-
terpretation of a query.

Figure 1 can be transformed into an equivalent probabilis-
tic circuit by: changing each ∧-labelled node into a multipli-
cation; each ∨-labelled node into an addition; and consider-
ing the probabilistic labels associated with each literal at the
leaves. In general, probabilistic circuits (PCs) [Choi et al.,
2020] refer to a family of tractable probabilistic models—
which include, among others, arithmetic circuits [Darwiche,
2003], probabilistic sentential decision diagrams [Kisa et
al., 2014], and sum-product networks [Poon and Domingos,
2011]—that are known to be able to closely capture the prob-
ability space in density estimation tasks [Dang et al., 2022;
Peharz et al., 2020], usually under the independence as-
sumption, while allowing tractable inference of many useful
queries.

From Section 2.1, we see that uncertain probabilities can
be expressed in the form of beta distributions. Figure 2 de-

picts the PDF of Beta(17, 12), whose expected value is 0.59
and variance is 8.06 · 10−3 thus representing an imprecise
probability around 0.6. The research question then becomes:
how to reason efficiently when dealing with imprecise proba-
bilities in a probabilistic circuit?.

Cerutti et al. [2019] label leaves of probabilistic circuits—
built from aProbLog programs [Kimmig et al., 2011]—with
beta distributions and propose multiplication and addition op-
erators that receive as input two beta distributions, and return
a beta distribution that matches the first two moments of the
distribution resulting from the multiplication (resp. addition)
of the two input distributions. Beta distributions have two pa-
rameters, hence having the first two moments—the expected
value and the variance—suffices for determining the two pa-
rameters of a beta distribution with the same expected value
and the same variance—modulo certain values that are im-
possible for a beta distribution.

Cerutti et al. [2022] then generalise the idea by proposing
an algorithm for computing the probabilistic (conditional) in-
ferences with imprecise probabilities that accepts as input the
covariance between the various distributions associated with
the leaves of the circuit. It also no longer requires circuits
built from aProbLog programs.

Probabilistic circuits are known to be able to solve also the
problem of inference in Bayesian networks [Bacchus et al.,
2009]. That might induce the computational overhead of de-
riving a probabilistic circuit from a Bayesian network, while
more efficient algorithms exist. Kaplan and Ivanovska [2018]
use the moment-matching approach to deal with inferences in
singly-connected Bayesian networks using a modified version
of the message-passing algorithm for belief propagation.

Subjective logic [Jøsang, 2016] provides (1) an alterna-
tive, intuitive way of representing the parameters of beta-
distributed random variables, and (2) a set of operators for
manipulating them. Unlike previously discussed approaches
[Kaplan and Ivanovska, 2018; Cerutti et al., 2019; Cerutti et
al., 2022], subjective logic approximates Bayesian reasoning
via a least commitment principle, i.e., matching the expected
values but then maximising the variance.

Subjective logic also provides a mapping with Demp-
ster–Shafer theory [Dempster, 1967; Shafer, 1976], which
abandons the additivity principle of probability theory, viz.
that the sum of probabilities on all pairwise exclusive possi-
bilities must add up to one. In this way, the lack of evidence
to support any specific probability can be explicitly expressed
by assigning belief mass to the whole frame of discernment,
which comprises the set of exclusives possible states. Smets
introduced [1993] a computationally efficient method to ma-
nipulate Dempster-Shafer belief assignments.

Figure 3 compares the proposals discussed above—and
a simple Monte Carlo approach over 100 samples—when
facing the problem of probabilistic inference over a singly-
connected Bayesian network [Cerutti et al., 2022, Fig. 12a].
We judge the quality of the results on how well their expres-
sions of uncertainty capture the spread between its projected
probability and the actual ground truth probability [Kaplan
and Ivanovska, 2018]. By knowing the ground truth, confi-
dence bounds can be formed around the projected probabili-
ties at a significance level and determine the fraction of cases
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Cerutti et al., 2022

Jøsang,  2016

Monte Carlo

Kaplan and Ivanovska, 2018

Smets, 1993

Cerutti et al., 2019

Figure 3: Actual versus desired significance of bounds derived from
the uncertainty when dealing with probabilistic inference over the
single-connected Bayesian network [Cerutti et al., 2022, Fig. 12a].
Monte Carlo has been run over 100 samples. Best closest to the di-
agonal: below the diagonal, the desired confidence is greater than
the actual confidence and thus such an approach is generally over-
confident in its assessment of epistemic uncertainty.

when the ground truth falls within the bounds. If the uncer-
tainty is well determined, this fraction should correspond to
the strength of the confidence interval [Kaplan and Ivanovska,
2018, Appendix C]; thus best results are closest to the di-
agonal. From Figure 3, it is immediate to see that: (1) the
Monte Carlo approach, [Cerutti et al., 2022], and [Kaplan and
Ivanovska, 2018] comfortably sit on the diagonal; (2) [Cerutti
et al., 2019] is underconfident in its evaluation, which is due
to the independence assumption; and (3) both [Jøsang, 2016]
and [Smets, 1993] are overconfident.

4 Evidential Learning of Parameters (and
Structures) of Probabilistic Circuits

For each of the leaves of probabilistic circuits—such as the
one that can be derived from Figure 1—that is labelled with
a literal, there is an associated distribution. When a set of
complete observations is given, i.e., a set of interpretations
where each interpretation assigns a truth value to each literal,
learning the associated distributions θ is a relatively simple
task resulting in counting the pieces of evidence for the vari-
ous outcomes considered by the distributions and use them to
update a chosen prior (see Sections 2.1 and 2.2).

Instead, when learning with incomplete observations, a.k.a.
the incomplete-features problem, traditional approaches in-
clude skipping missing values or performing data reconstruc-
tion (data completion) before using the data in a model.
This, however, might fail to capture the joint distributions of
the variables faithfully. The expectation-maximization (EM)
framework has classically been used, for instance, to learn
conditional probabilities for Bayesian networks with incom-
plete training data, e.g., [Lauritzen, 1995].

There is, however, limited work aimed at identifying the
posterior distributions learned from incomplete training data,

particularly when it comes to determining their covariances.
One of the most prominent approaches is the Online

Bayesian Moment Matching (BMM) [Rashwan et al., 2016],
which approximates the posterior distribution as a product of
Dirichlet random variables, presuming that the group of con-
ditional probabilities are statistically independent. It is known
that the ground-truth, i.e., latent distribution, of θ is Dirichlet,
so we begin with a prior that is a product of Dirichlets with
respect to the weights of each sum node in a probabilistic cir-
cuit.

The evaluation of a given circuit consists of alternating
sums and products, which means that the posterior becomes a
mixture of products of Dirichlet distributions. While the mix-
ture of Dirichlet products admits a closed form expression for
its posterior distribution, unfortunately it is also computation-
ally intractable since the number of mixture components is
exponential in the number of sum nodes in the circuit [Rash-
wan et al., 2016]. BMM solves this problem by presuming
the posterior is a product of Dirichlets which is fit via mo-
ment matching.

Alternatively, estimating the posterior distribution could be
addressed in a two-step procedure: (1) first estimating the ex-
pected value via, for instance, EM; and (2) then estimating the
covariance of parameters using the Fisher information matrix
(FIM) [Ly et al., 2017] as per the Bernstein-von Mises theo-
rem [van der Vaart, 1998]. Suppose to have T uninstantiated
observations, then the FIM is given by:

Ep(T |θ)[∇θ log(p(T | θ)) · (∇θ log(p(T | θ)))T]

where ∇θ log(p(T | θ)), the score function, is the gradient
of log likelihood function, and FIM is the covariance of score
function which provides an assessment of the certainty of the
model. The Bernstein-von Mises theorem [van der Vaart,
1998] then informs us that, under certain conditions, posterior
distributions converge to normal distributions centred at the
maximum likelihood estimator with covariance matrix given
by the inverse of the FIM.

For incomplete training data, Kaplan et al. [2020] provide
a derivation for the FIM (EM-FIM), which, having also the
interpretation of being the negative expected Hessian of score
function [Martens, 2020], can be estimated using a Gaus-
sian approximation of the parameters (EM-GA). Hougen et
al. compared BMM, EM-FIM, and EM-GA [2021], and sug-
gest that, when data not only is incomplete but is scarce too,
best approximations are provided by EM-FIM and BMM,
which seems also to be the best option when the datasets are
becoming more complete but independent. When inducing
stronger statistical dependencies between variables, unsur-
prisingly BMM’s performance deteriorates while EM-FIM in
particular still appears to provide better estimations. Unfor-
tunately, EM-FIM appears also to be the slowest and the least
scalable of the alternatives.

Finally, although so far the circuit structures has been as-
sumed to be given, there are, however, several algorithms for
learning them, e.g., [Benjumeda et al., 2019b; Benjumeda et
al., 2019a; Dang et al., 2022]. Most of them rely on some
score function that is used to guide a search procedure in the
space of alternative structures. To our knowledge, the only
evidential score function so far employed has been illustrated
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[Cunnington et al., 2021] in the specific case of learning logic
programs—from which it is possible to derive probabilistic
circuits following knowledge compilation techniques similar
to the one summarised in Section 3—from positive and neg-
ative examples with an associated epistemic uncertainty in
the form of Dirichlet distributions which are learnt using the
evidential deep learning (EDL) approach we discuss in the
following section.

5 Ascertain Evidence from the the Real World
The scientific and the intelligence communities have long re-
lied on scales for classifying pieces of information in terms of
both likeability (e.g., likely, very likely, . . . ) and confidence
(e.g., low confidence, medium confidence, . . . ) [Mastrandrea
et al., 2011]. Following, for instance, a mapping similar to
the one proposed by Jøsang [2016, Section 3.7.2], each com-
bination of such statements can be represented by a propo-
sition, for instance, with an associated beta distribution with
low expected value (unlikely) and with large variance (low
confidence).

The simplest case for learning uncertain probabilities from
raw data is to use classifiers that expand on discriminative
classifiers (e.g. logistic regression, vanilla neural network
classifiers) [Murphy, 2012], which are models of the form
p(y | x) where a distribution over the K possible categories
is estimated directly. Using the EDL (Evidential Deep Learn-
ing) approach [Şensoy et al., 2018], the learning problem
shifts from learning a probability distribution between the
labels, to count pieces of evidence for each class. While a
typical discriminative classifier makes a point estimate of π
directly, EDL estimates a Dirichlet distribution over π.

To illustrate the benefits of Şensoy et al.’s approach [2018],
let us use the idea of rotating an MNIST—a database of hand-
written digits [Lecun et al., 1998]—image for the digit 1 to
analyse the behaviour in the light of unknown inputs [Gal and
Ghahramani, 2016; Louizos and Welling, 2017]. A softmax
approach will identify a class as very likely (see top part of
Figure 4) independently of the rotation angle. EDL [Şensoy et
al., 2018], instead, will raise the epistemic uncertainty (mid-
dle part of Figure 4) while reverting each class probability
to the prior uniform distribution when the rotated digit stops
resembling anything the machine has previously seen.

Each of the loss functions introduced by Şensoy et al.
[2018] has two components: one aims at minimising the pre-
diction error, the other the number of pieces of evidence gen-
erated for each class, thus learning to say I do not known when
facing ambiguous datapoints. Concerning the first component
Li(θ), the simplest—yet very effective—version looks at the
prediction error in terms of the sum of squares loss ||yi−πi||22
which aims to achieve the joint goal of minimising the predic-
tion error and the variance of the Dirichlet experiment gen-
erated by the neural net, specifically for each sample in the
training set.

Regarding the second component of the loss function, EDL
[Şensoy et al., 2018] enforces a total count of evidence equal
to zero for a sample if it cannot be correctly classified. In this
case, the posterior Dirichlet distribution is equivalent to the
prior distribution: when choosing a uniform prior distribu-

So
ft

m
ax

Rotation Angle

E
D

L

Rotation Angle

Figure 4: Classification of the rotated digit 1 (at bottom) at different
angles between 0 and 180 degrees. Top: The classification proba-
bility is calculated using the softmax function considering three pos-
sible classes, digit 1, digit 2, and digit 5. Middle: The classification
probability (aleatory uncertainty) considering the same three possi-
ble classes, and (epistemic) uncertainty are calculated using EDL
[Şensoy et al., 2018].

tion, this correspond to total uncertainty (maximum entropy).
This aim can be achieved by incorporating a Kullback-Leibler
(KL) divergence term that penalises cases that do not con-
tribute to the data fit. The loss with this regularising term, in
the case of a multi-epoch training procedure, reads

L(θ) =
N∑
i=1

Li(θ)+

+ λt

N∑
i=1

KL[Dir(πi | α̃i)∥Dir(πi | 1)],
(6)

where λt = min(1.0, t/10) ∈ [0, 1] is the annealing coeffi-
cient, t is the index of the current training epoch, Dir(πi | 1)
is the uniform Dirichlet distribution with 1 = [1, . . . , 1], and
lastly α̃i = yi + (1 − yi) ⊙ αi is the Dirichlet parameters
after removal of the non-misleading evidence from predicted
parameters αi for sample i. The role of the annealing co-
efficient λt is paramount: by gradually increasing the effect
of the KL divergence on the loss, the learning algorithm ex-
plores the parameter space and avoid premature convergence
to the uniform distribution for the misclassified samples.

EDL [Şensoy et al., 2018] is not the only proposal for as-
certain epistemic uncertainty from raw data, nowadays a very
florid research area as testified also by recent, detailed surveys
[Hüllermeier and Waegeman, 2021; Abdar et al., 2021]. Prior
Networks [Malinin and Gales, 2018] also predicts Dirichlet
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distribution for classification. To avoid overconfident predic-
tions, it uses an auxiliary data set as the out-of-distribution
samples and explicitly trains the neural networks to give
highly uncertain output for them. In their followup work, Ma-
linin and Gales [2019] use loss functions similar to the ones
introduced by Şensoy et al. [2018].

To overcome some of the limitations of Prior Networks,
Charpentier et al. [2020] propose Posterior Networks which
uses normalising flow [Rezende and Mohamed, 2015] for
learning a latent representation of the input. They then learn
a mapping to a Dirichlet distribution using a Bayesian loss
function composed by (1) the Uncertain Cross Entropy loss
introduced by Biloš et al. [2019], which increases confidence
for observed data, and (2) a regulariser which favours smooth
distributions. Kopetzki et al. analysed the relative perfor-
mance of such proposed approaches [2021] focusing on the
detection of adversarial attacks.

Also Gast and Roth [2018] suggest probabilistic output
layers for classification (and regression) that require only
minimal changes to existing networks. In particular, classi-
fication tasks can be approached with a Dirichlet layer that
can be trained by conditional likelihood maximisation.

Haussmann et al. [2021] build upon the EDL proposal
[Şensoy et al., 2018] by converting it to a Bayesian neu-
ral network [Mackay, 1995]. To overcome the prohibitively
large number of hyperparameters, Haussmann et al. derive
a vacuous PAC [McAllester, 2003] bound that comprises the
marginal likelihood of the predictor and a complexity penalty.

Building upon the notion of Knowledge as Justified Belief
from the field of epistemology [Ichikawa and Steup, 2018],
Virani et al. propose [2020] epistemic classifiers that use con-
textual information based on location of training data points
in input and hidden layers to add reliability on individual pre-
dictions. Evidence to construct justification is gathered using
various domain-agnostic neighbourhood operators. Bhushan
et al. further developed the approach [2020] basing the clas-
sification upon a latent representation obtained using varia-
tional auto encoders [Kingma and Welling, 2014].

Variational auto encoders are also exploited by Şensoy et
al. [2020], where the original EDL proposal [Şensoy et
al., 2018] has been extended so to harvest the same bene-
fits there would be by using an auxiliary dataset of out-of-
distribution samples, but without the costs of selection and
creation, by using variational autoencoders and generative
adversarial networks are incorporated to automatically gen-
erate out-of-distribution exemplars for training. Şensoy et al.
[2020] demonstrate how that provides excellent estimates of
uncertainty for in- and out-of-distribution samples, and ad-
versarial examples on well-known data sets.

Finally, also approaches based upon the Dempster–Shafer
theory [Dempster, 1967; Shafer, 1976] has been proposed.
For instance, Denœux proposes [2019] to convert inputs (or
higher-level features) into Dempster-Shafer mass functions
and aggregating them by Dempster’s rule of combination.

6 Conclusion
This paper dwells on the research at the intersection of quan-
tifying aleatory and epistemic uncertainty in reasoning and

learning, while using very efficient approximations based
upon the idea of updating the Bayesian posterior in light of
further evidence collected in favour (or against) a hypothe-
sis. Evidential reasoning (Section 3) introduces the idea of
choosing either beta or Dirichlet distributions to represent un-
certain probabilities and then using efficient methods—such
as the the moment matching—for manipulating them. Rea-
soning structures can be captured by probabilistic circuits:
we discussed (Section 4) the challenges of ascertaining epis-
temic and aleatory uncertainty of their parameters. We finally
discussed (Section 5) how to fathom uncertain probabilities
from the real world, with large emphasis on the case where
they are learnt from raw data. As a corollary here, it is worth
mentioning that Amini et al. propose [2020] an evidential
approach to regression. Also evidential learning approaches,
in various forms, have been employed in a large variety of
application domains, from chest radiography classification to
cyber-threat classification.

Despite the large set of results, several research questions
remain open. As discussed in Section 4, we are still far from
having a coherent picture of the best algorithms for estimat-
ing aleatory and epistemic uncertainty of parameters in prob-
abilistic circuits, leaving aside efficient—and user-friendly—
implementations. Similarly, the role of epistemic uncertainty
in parameter learning is far from being exhaustively eviscer-
ated. In addition, Sections 3 and 4 focus on logical reasoning
over propositional theories. Open research questions include
how to effectively represent and reason about more complex
cases, such as uncertain spatial and temporal relationships,
which are topics of great practical importance too when con-
sidering, for instance, information retrieval or autonomous
navigation.

Moreover, when dealing with real-world problems it is still
unclear how to deal with an input which is classified with
high epistemic uncertainty: does it identify a new class? For
instance, Bao et al. use [2021] evidential learning to boost
the performance of existing models to recognise actions in
an open testing set. However, we believe further investiga-
tions are still needed, particularly when uncertainty might
be linked to ambiguity. For instance, it might be advan-
tageous for a classifier trained to distinguish between cats,
dogs, and wolves, to be able to assign belief masses to am-
biguous classes such as “this input is either a dog or a wolf,
but not a cat.”

Finally, currently there are only very preliminary proposals
[Cunnington et al., 2021] trying to link evidential deep net-
works with evidential probabilistic circuits in a single neuro-
symbolic architecture, leaving aside the possibility to use ev-
idential reasoning in neuro-programming architectures. This
is clearly an exciting research areas that, we are certain, will
receive great attention in the near future.
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Sanchez, P. Larrañaga, and C. Bielza. Tractable learning
of Bayesian networks from partially observed data.
Pattern Recogn., 91:190–199, 2019.

[Bhushan et al., 2020] C. Bhushan, Z. Yang, N. Virani, and
N. Iyer. Variational Encoder-Based Reliable Classifica-
tion. In ICIP, pages 1941–1945, 2020.
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