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Abstract

Recent studies have proven that deep neural net-
works are vulnerable to backdoor attacks. Specifi-
cally, by mixing a small number of poisoned sam-
ples into the training set, the behavior of the trained
model can be maliciously controlled. Existing at-
tack methods construct such adversaries by ran-
domly selecting some clean data from the benign
set and then embedding a trigger into them. How-
ever, this selection strategy ignores the fact that
each poisoned sample contributes inequally to the
backdoor injection, which reduces the efficiency of
poisoning. In this paper, we formulate improving
the poisoned data efficiency by the selection as an
optimization problem and propose a Filtering-and-
Updating Strategy (FUS) to solve it. The experi-
mental results on CIFAR-10 and ImageNet-10 in-
dicate that the proposed method is effective: the
same attack success rate can be achieved with only
47% to 75% of the poisoned sample volume com-
pared to the random selection strategy. More im-
portantly, the adversaries selected according to one
setting can generalize well to other settings, ex-
hibiting strong transferability. The prototype code
of our method is now available at https://github.
com/xpf/Data-Efficient-Backdoor-Attacks.

1 Introduction
Despite tremendous success in many learning tasks [Silver et
al., 2016; Li et al., 2022], Deep Neural Networks (DNNs)
have been demonstrated to be vulnerable to various mali-
cious attacks [Szegedy et al., 2013; Orekondy et al., 2019].
One of them is known as backdoor attacks [Gu et al., 2017;
Liu et al., 2017]: by mixing a small number of poisoned sam-
ples into the training set, a hidden threat can be implanted
into the trained DNN. The infect model behaves normally on
benign inputs, making the attack hard to notice. But once
the backdoor is activated by a predefined trigger, the victim’s
prediction will be forced to an attacker-specific target. As
the demand for data to train DNNs increases, collecting data
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Figure 1: White-box result of the proposed Filtering-and-Updating
Strategy (FUS) and the previous Random Selection Strategy (RSS)
on CIFAR-10 and VGG-16, where the mixing ratio represents the
ratio of the poisoned sample volume to the clean sample volume.
Under the same computing time, the experiment is repeated 3 and
30 times for FUS and RSS, respectively, and the solid lines represent
the best runs. For the same mixing ratio, using the FUS-selected ad-
versaries for the injection can yield a higher attack success rate than
using the RSS-selected adversaries. The subplot shows the percent-
age of the sample volumes of the FUS selection to the RSS selection
for the same attack strength, where the lowest value is less than 50%.

from the Internet or other unknown sources has gradually be-
come common, which opens up a viable path for the attack.
This vulnerability builds a hurdle to the realistic deployment
of DNNs in security-sensitive scenarios, such as self-driving
cars [Wang et al., 2021].

One of the major trends in the development of backdoor at-
tacks is to become more stealthy to evade human or machine
detection. Since Gu et al. [2017] first explored the hidden
threat, many variants have been developed to fulfill this goal.
For example, Zhong et al. [2020] proposed to use an imper-
ceptible noise as the trigger instead of the previous visible
patterns to avoid being perceived. Turner et al. [2019] ar-
gued that the inconsistency between an adversary’s semantic
and its given label can raise human suspicion and leverage
generative models to address this issue. Some studies [Tan
and Shokri, 2020; Xia et al., 2022] suggested to add a con-
straint item to the loss during the backdoor training to escape
defense algorithms.

However, these methods do not consider that the random
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selection strategy used in constructing the poisoned set could
also raise the risk of the attack being exposed. Specifically,
when building adversaries, almost all existing attack methods
follow a common process: first randomly select some clean
data from the benign training set and then fuse a trigger into
them. This strategy implicitly assumes that each adversary
contributes equally to the backdoor injection, which does not
hold in practice. It poses the problem that the poisoning can
be less efficient because there may be many low-contribution
samples in the constructed set. As a result, more adversaries
need to be created and mixed to maintain the attack strength,
which certainly lowers the stealthiness of the threat.

In this paper, we focus on the above issue and propose a
method to tackle it. As far as we know, our method is the
first one to improve the efficiency of poisoning by a rational
selection of poisoned samples. The main contributions are:

• We point out that the selection of poisoned samples af-
fects the efficiency of poisoning in backdoor attacks and
formulate the solving to it as an optimization problem.

• We propose a Filtering-and-Updating Strategy (FUS) to
solve this problem, where the core idea is to find those
poisoned samples that contribute more to the backdoor
injection. Our experimental results on CIFAR-10 and
ImageNet-10 consistently demonstrate the effectiveness
of the proposed method. In both the white-box and the
black-box settings, using the FUS-selected adversaries
can save about 9% to 59% of the data volume to achieve
the same attack strength as the random strategy.

• We explore the possible reason for the efficient perfor-
mance of the FUS-selected poisoned samples.

2 Related Work

Backdoor attacks intend to inject a hidden threat into a DNN
to control its behavior. Various methods have been proposed
and can be roughly divided into two categories [Li et al.,
2020b], i.e., poisoning-based attacks [Li et al., 2020a; Liu et
al., 2020; Nguyen and Tran, 2021] and non-poisoning-based
attacks [Dumford and Scheirer, 2018; Kurita et al., 2020;
Rakin et al., 2020]. As the names imply, the first type ex-
ecutes the Trojan horse implantation by dataset poisoning,
while the second one attacks through transfer learning or
weight modification. Existing studies on poisoning-based
backdoor attacks have centered on building more stealthy and
effective poisoned samples by designing the trigger. For ex-
ample, Liu et al. [2017] established a method to implant a
backdoor, where the trigger is optimized rather than fixed.
They argued that this optimization can bring a better attack
performance. Zhong et al. [2020] and Turner et al. [2019]
suggested to modify the trigger to improve the stealthiness of
the attack from two perspectives, respectively. Nguyen and
Tran [2021] proposed to use an image warping-based trig-
ger to bypass backdoor defense methods. In this paper, we
improve the efficiency of poisoning from the selection of poi-
soned samples, which is orthogonal to the previous studies.

3 Methodology
3.1 Problem Formulation
Formally, given a clean training set D = {(x, y)} and a poi-
soned training set U = {(x′, t)}, dataset poisoning performs
the attack by mixing U into D. (x, y) denotes a benign in-
put and its ground-truth label and (x′, t) denotes a malicious
input and the attacker-specific target. The procedure of in-
jecting a backdoor can be formulated as:

θ = argmin
θ

1

|D|
∑

(x,y)∈D

L(fθ(x), y)+

1

|U|
∑

(x′,t)∈U

L(fθ(x
′), t)

, (1)

where fθ denotes the DNN model and its parameters, and L
denotes the loss function. The trained model is expected to
generalize well on a clean test set T and a poisoned test set
V . We define the ratio of the poisoned sample volume to the
clean sample volume as the mixing ratio, i.e., r = |U|/|D|,
which is an important hyperparameter. Under the same attack
strength, a smaller r usually means that the poisoning is more
efficient and the attack is harder to be perceived.

As can be seen, how to construct U is crucial for backdoor
attacks. Given a clean data and its label (x, y) sampled from
D, one can always get the corresponding poisoned pair (x′, t),
where x′ = F (x, k). F denotes a function that fuses the
trigger k into x. For example, Chen et al. [2017] proposed
the blended attack that generates an adversary via x′ = λ ·
k + (1− λ) · x, where λ denotes the blend ratio. Since every
clean pair in D can be used to create an adversarial pair, a
set D′ = {(F (x, k), t)|(x, y) ∈ D} containing all candidates
can be obtained. U is built by selecting a small number of
samples from D′, i.e., U ⊂ D′ and |U| � |D′|. It should be
noted that, in practice, the attacker constructs U by selecting
some clean samples from D and embedding the trigger into
them, where D′ is not built explicitly. We define D′ here so
that the problem can be described more clearly.

Currently, most of the attack methods adopt the random
selection strategy, which ignores that the importance of each
adversary is different. Our goal is to improve the efficiency
of poisoning by selecting U fromD′. It can be formulated as:

max
U⊂D′

1

|V|
∑

(x′,t)∈V

I(fθ(x′) = t)

s.t. θ = argmin
θ

1

|D|
∑

(x,y)∈D

L(fθ(x), y)+

1

|U|
∑

(x′,t)∈U

L(fθ(x
′), t)

1

|T |
∑

(x,y)∈T

I(fθ(x) = y) ≥ ε

|U| = r · |D|

, (2)

where I denotes the indicator function and ε denotes a value
that guarantees the clean accuracy of the trained model fθ.
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The equation poses a discrete constraint optimization prob-
lem and is hard to solve. We propose a practical method to
find an approximate solution.

3.2 Low- and High-contribution Samples

The core idea of our method is to find those poisoned sam-
ples that contribute more to the backdoor injection and then
keep them to build U . The primary thing that needs to be
clarified is what the properties of low- and high-contribution
samples are. In a regular classification task, several studies
[Katharopoulos and Fleuret, 2018; Toneva et al., 2018] have
shown that it is often hard or forgettable samples are more
important for forming the decision boundary of the classi-
fier. Since once the mixing of poisoned samples is completed,
there is no significant difference between training an infected
model and training a regular model, we wonder if there are
also some forgettable adversaries that play a major role in de-
termining the attack strength.

To verify the above viewpoint, we use the forgetting events
[Toneva et al., 2018] to characterize the learning dynamics of
each adversary during the injection process. An event’s oc-
currence signifies that the sample undergoes a process from
being remembered by the model to being forgotten. For-
mally, given a poisoned sample and its target (x′, t) sam-
pled from U , if x′ is correctly classified at the time step s,
i.e., I(fθs(x′) = t) = 1, but is misclassified at s + 1, i.e.,
I(fθs+1(x′) = t) = 0, then we record this as a forgetting
event for that sample, where θs and θs+1 denote the parame-
ters of the model under training at s and s + 1, respectively.
Because a poisoned sample may go through such transitions
several times during the entire injection process, we count
the number of forgetting events per sample and use it as a
measure of the forgettability. An experiment on CIFAR-10
[Krizhevsky and Hinton, 2009] and VGG-16 [Simonyan and
Zisserman, 2014] is conducted and the result is shown in Fig-
ure 2(a). About 66.1% of poisoned samples are never for-
gotten, 17.0% are forgotten once, and 16.9% are forgotten at
least twice. It indicates that forgettable adversaries do exist.

Next, we perform a sample removal experiment to figure
out if forgettable adversaries contribute more to the backdoor
injection. The result is shown in Figure 2(b). As we can
see, the random removal of poisoned samples has a signifi-
cant impact on the attack success rate from the beginning. In
contrast, the impact on the attack strength using the selective
removal, i.e., the removal according to the order of adver-
saries’ forgetting events from small to large, can be divided
into three stages. The first stage is when the removal percent-
age is less than 40%, at which the attack success rate is barely
diminished as all the removed samples are unforgettable. The
next stage lies at 40% to 60%. Although the removal does not
include any forgettable adversary, the increase in the percent-
age also leads to a decrease in the attack strength. While as it
is greater than 60%, the attack success rate decreases rapidly
since forgettable samples start to be removed. The result con-
firms that forgettable poisoned samples are more important to
the backdoor injection.
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Figure 2: Experimental results of poisoned samples’ forgetting
events on CIFAR-10 and VGG-16. (a): Histogram of the number of
forgetting events when r = 0.05. About 33.9% of data are forgot-
ten at least 1 time during the injection process. (b): Attack success
rate when poisoned samples are increasingly removed. Compared to
the random removal, the attack strength can be maintained well us-
ing the selective removal according to the order of forgetting events
from small to large. (c): Number of adversaries when the mixing
ratio changes. The poisoned sample volume with forgetting events
greater than 1 does not increase as the ratio rises.

3.3 Filtering-and-Updating Strategy

Through the analysis and experiments in the last part, we have
known to find high-contribution poisoned samples by record-
ing the forgetting events. It provides a simple way to im-
prove the efficiency of the poisoning, that is, to keep these
adversaries greedily. However, a major drawback of this ap-
proach is the samples been recorded are only a small fraction
of all candidate adversaries, because only the samples in U
are recorded and |U| � |D′|. It makes the selection only
local, rather than global. The most intuitive solution is to
contain and record more poisoned samples directly. We con-
duct an experiment with this possible solution and the result
is shown in Figure 2(c). As we can see, including more sam-
ples in the training procedure increases the number of unfor-
gettable adversaries, while the poisoned sample volume with
forgetting events greater than 1 basically remains the same.
We think this phenomenon happens because the features of
the trigger are too easy to learn. Namely, the increase in the
number of adversaries results in the differences between sam-
ples failing to emerge, as the model learns the backdoor more
easily and more quickly.

Considering the above results, to alleviate the local se-
lection problem, we propose a method called FUS to itera-
tively filter and update a sample pool. The proposed method
is twofold. On the one hand, the filtering step is based on
the forgetting events recorded on a small number of adver-
saries, which ensures that the differences between samples
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Algorithm 1: Filtering-and-Updating Strategy
Input: Clean training set D; fusion function F ; backdoor trigger k; attack target t; mixing rating r; number of iterations

N ; filtration ratio α
Output: Constructed poisoned training set U

1 Build the candidate poisoned set D′ = {(F (x, k), t)|(x, y) ∈ D};
2 Initialize the poisoned sample pool U ′ by randomly sampling r · |D| adversaries from D′;
3 for n← 1 to N do
4 Filtering step:
5 Train an infected model fθ from scratch on D and U ′, and record the forgetting events for each sample in U ′;
6 Filter α · r · |D| samples out according to the order of forgetting events from small to large on U ′;
7 Updating step:
8 Update U ′ by randomly sampling α · r · |D| adversaries from D′ and adding to the sample pool;
9 end

10 Return the sample pool U ′ as the constructed poisoned training set U

can emerge. On the other hand, to allow the selection to cover
a wider range, after the filtering, some new poisoned samples
are sampled randomly from the candidate set to update the
pool. The above two steps, i.e., the filtering and the updat-
ing, are iterated several times to find a suitable solution U .
The procedure of FUS is presented in Algorithm 1, where α
denotes the filtration ratio that controls the proportion of ad-
versaries removed and N denotes the number of iterations.

4 Experiments
4.1 Setup
We perform experiments on CIFAR-10 [Krizhevsky and Hin-
ton, 2009] and ImageNet-10 to test the effectiveness of the
proposed method. To build the latter set, we randomly select
10 categories from ImageNet-1k [Deng et al., 2009]. The
approach used to generate poisoned samples is the blended
attack [Chen et al., 2017], where x′ = λ · k + (1 − λ) · x
and λ is set to 0.15. The attack target t is set to category 0 for
both datasets. When selecting U with FUS, we use VGG-16
[Simonyan and Zisserman, 2014] as the victim DNN architec-
ture and use SGD with the momentum of 0.9 and the weight
decay of 5e-4 as the optimizer. α is set to 0.5 and N is set
to 10, if not otherwise specified. The total training duration
is 60, and the batch size is 512 for CIFAR-10 and 256 for
ImageNet-10. The initial learning rate is set to 0.01 and is
dropped by 10 after 30 and 50 epochs.

Once the build of U is completed, we use it to perform
the backdoor injection under two conditions, i.e., the white-
box setting and the black-box setting. The first case assumes
that the attacker knows in advance the model architecture,
the optimizer, and the training hyperparameters used by the
user, and therefore can select U with the same setting. The
black-box condition is more realistic, where the attacker is
agnostic about the user’s configuration. Here, we test U on
four DNN architectures, VGG-13 [Simonyan and Zisserman,
2014], VGG-16 [Simonyan and Zisserman, 2014], ResNet-18
[He et al., 2016a], and PreActResNet-18 [He et al., 2016b],
two optimizers, SGD and ADAM [Kingma and Ba, 2014],
three batch sizes, 128, 256, 512, and four initial learning
rates, 0.001, 0.002, 0.01, 0.02, to simulate this situation.
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Figure 3: White-box result of FUS and RSS on ImageNet-10 and
VGG-16. Under the same computing time, the experiment is re-
peated 3 and 30 times for FUS and RSS, respectively, and the solid
lines represent the best runs. The subplot shows the percentage of
the FUS-selected sample volume to the RSS-selected sample vol-
ume for the same attack strength.

4.2 Experimental Results
The white-box results on CIFAR-10 and ImageNet-10 are
shown in Figure 1 and Figure 3, where the Random Selected
Strategy (RSS) is used as a baseline for comparison. It can
be seen that, for different mixing ratios, the attack success
rate using the FUS-selected poisoned samples is always bet-
ter than using the RSS-selected poisoned samples with a large
margin. The boosts are about 0.02 to 0.05 for CIFAR-10 and
0.04 to 0.05 for ImageNet-10. To provide the comparison of
the data volumes of FUS and RSS for reaching the same at-
tack strength, we calculate the percentage using the linear in-
terpolation and the results are shown in the subplots of Figure
1 and Figure 3. FUS can save 25% to 53% of the data volume
on CIFAR-10 and 26% to 32% of data volume on ImageNet-
10 to achieve the same attack success rate as RSS. These re-
sults indicate that the proposed method can improve the effi-
ciency of data poisoning in the white-box setting, thereby re-
ducing the number of poisoned samples required. This surely
increases the stealthiness of backdoor attacks.

In practice, the more common scenario is that the attacker
does not know any prior knowledge about the user’s config-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3995



V
-1

3,
SG

D
,
51

2,
0.

02

V
-1

3,
SG

D
,
51

2,
0.

01

V
-1

3,
A

D
A

M
,
51

2,
0.

00
2

V
-1

3,
A

D
A

M
,
51

2,
0.

00
1

V
-1

3,
SG

D
,
25

6,
0.

02

V
-1

3,
SG

D
,
25

6,
0.

01

V
-1

3,
A

D
A

M
,
25

6,
0.

00
2

V
-1

3,
A

D
A

M
,
25

6,
0.

00
1

V
-1

6,
SG

D
,
51

2,
0.

02

V
-1

6,
SG

D
,
51

2,
0.

01

V
-1

6,
A

D
A

M
,
51

2,
0.

00
2

V
-1

6,
A

D
A

M
,
51

2,
0.

00
1

V
-1

6,
SG

D
,
25

6,
0.

02

V
-1

6,
SG

D
,
25

6,
0.

01

V
-1

6,
A

D
A

M
,
25

6,
0.

00
2

V
-1

6,
A

D
A

M
,
25

6,
0.

00
1

R
-1

8,
SG

D
,
51

2,
0.

02

R
-1

8,
SG

D
,
51

2,
0.

01

R
-1

8,
A

D
A

M
,
51

2,
0.

00
2

R
-1

8,
A

D
A

M
,
51

2,
0.

00
1

R
-1

8,
SG

D
,
25

6,
0.

02

R
-1

8,
SG

D
,
25

6,
0.

01

R
-1

8,
A

D
A

M
,
25

6,
0.

00
2

R
-1

8,
A

D
A

M
,
25

6,
0.

00
1

P
-1

8,
SG

D
,
51

2,
0.

02

P
-1

8,
SG

D
,
51

2,
0.

01

P
-1

8,
A

D
A

M
,
51

2,
0.

00
2

P
-1

8,
A

D
A

M
,
51

2,
0.

00
1

P
-1

8,
SG

D
,
25

6,
0.

02

P
-1

8,
SG

D
,
25

6,
0.

01

P
-1

8,
A

D
A

M
,
25

6,
0.

00
2

P
-1

8,
A

D
A

M
,
25

6,
0.

00
1

V-16, SGD, 512, 0.01, 0.01

V-16, SGD, 512, 0.01, 0.015

V-16, SGD, 512, 0.01, 0.02

V-16, SGD, 512, 0.01, 0.025

V-16, SGD, 512, 0.01, 0.03

V-16, SGD, 512, 0.01, 0.035

0.02

0.04

0.06

(a)

0.922 0.970
49%

77%

0.913 0.962
49%

71%

0.967 0.984
44%

50%

0.961 0.982
41%

51%

0.940 0.977
44%

75%

0.944 0.969
43%

49%

0.962 0.983
56%

69%

0.968 0.981
43%

49%

0.935 0.972
43%

53%

0.894 0.959
45%

79%

0.935 0.981
42%

84%

0.956 0.982
46%

63%

0.945 0.972
40%

57%

0.945 0.968
42%

54%

0.959 0.983
55%

86%

0.961 0.980
45%

69%

0.954 0.977
42%

47%

0.929 0.970
42%

64%

0.966 0.986
55%

63%

0.961 0.983
44%

77%

0.953 0.980
51%

60%

0.947 0.977
42%

56%

0.969 0.983
47%

72%

0.969 0.982
44%

53%

0.953 0.977
41%

50%

0.918 0.976
51%

79%

0.958 0.977
47%

63%

0.960 0.979
43%

61%

0.963 0.980
41%

53%

0.956 0.979
50%

63%

0.951 0.982
42%

70%

0.972 0.983
42%

53%

(b)

Figure 4: Black-box results of FUS and RSS on CIFAR-10. (a): The difference between the attack success rate using the FUS-selected
samples and the rate using the RSS-selected samples, where the vertical axis represents the settings used in the selection of U , including the
model, the optimizer, the batch size, the initial learning rate, and the mixing ratio, and the horizontal axis represents the settings used in the
backdoor injection, including the model, the optimizer, the batch size, and the initial learning rate. V-13, V-16, R-18, and P-18 denote VGG-
13, VGG-16, ResNet-18, and PreActResNet-18, respectively. (b): The percentage of the FUS-selected sample volume to the RSS-selected
sample volume in the black-box setting for the same attack strength. The figures correspond to the settings of the horizontal axis of (a) from
left to right and from top to bottom, respectively.

uration. The black-box results on CIFAR-10 are shown in
Figure 4. The results on ImageNet-10 are similar and are
presented in the appendix. With multiple black-box settings,
using the FUS-selected poisoned samples consistently has a
higher success rate than using the RSS-selected samples. The
improvements are about 0.01 to 0.06 for CIFAR-10 and 0.01
to 0.08 for ImageNet-10. Likewise, we calculate the percent-
age of the poisoned sample volumes of the FUS selection to
the RSS selection for the same attack intensity. As it can
be seen, approximately 14% to 59% of the data volume for
CIFAR-10 and 9% to 49% of the data volume for ImageNet-
10 is saved. These results indicate that the FUS-selected sam-
ples have good transferability and can be applied in practice,
as the method does not require prior knowledge of the model
architecture, the optimizer, and the training hyperparameters
employed by the user.

4.3 Ablation Studies
We conduct ablation studies of the hyperparameters in FUS,
i.e., α and N , and the results are shown in Table 1 and Fig-
ure 5, respectively. α represents the proportion of the sample

α
r 0.01 0.015 0.02 0.025 0.03 0.035

0.1 0.909 0.946 0.960 0.967 0.978 0.980
0.3 0.923 0.966 0.980 0.983 0.988 0.991
0.5 0.921 0.966 0.977 0.985 0.990 0.991
0.7 0.913 0.955 0.976 0.981 0.987 0.992
0.9 0.882 0.936 0.955 0.967 0.978 0.982
1.0 0.876 0.932 0.941 0.956 0.963 0.970

Table 1: Attack success rate with different α on CIFAR-10 and
VGG-16, where the underlines highlight the best values for each
column.

pool that is filtered out each time and has a relatively large
effect on FUS. α that is either too small or too large leads to
a degradation of FUS’s performance, with the former causing
a slower update of the sample pool and the latter causing a
failure of the algorithm to converge. Numerically, FUS per-
forms best with α set to 0.3 or 0.5. N represents the num-
ber of iterations of FUS. When N = 0, FUS degenerates to
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Figure 5: Attack success rate withN = 20 on CIFAR-10 and VGG-
16 when r = 0.02. The solid line represents the average of 10 runs.

Target RSS with U RSS with S
mean max mean max

“airplane” 0.954 0.963 0.955 0.963
“cat” 0.955 0.966 0.955 0.965
“dog” 0.954 0.962 0.955 0.962

“truck” 0.957 0.964 0.958 0.968

Table 2: Attack success rate of RSS on CIFAR-10 and VGG-16 with
the Uniform distribution (U) and RSS with the same class distribu-
tion (S) as the FUS-selected samples. Each experiment is repeated
10 times.

RSS, and when N = 1, FUS is equivalent to greedily select-
ing the high-contribution poisoned samples. As can be seen
from Figure 5, the success rate of the attack grows gradually
as the iteration proceeds. This indicates that the previously
mentioned local selection problem does exist, and that our
method can alleviate it to some extent. Considering the time
consumption and the slowing down of the growth rate when
N is greater than 10, we set N to 10 in this paper.

4.4 Attribution Study
In this part, we want to know what makes these adversaries
selected by FUS poison efficiently. The first reason we con-
sider is that FUS may select more samples from the categories
associated with the attack target t. Therefore, we count the
original classes for the FUS-selected samples and the RSS-
selected samples with different t, as shown in Figure 6. The
results seem to show that our assumption is correct. For ex-
ample, when t is set to 9, “truck”, the most original category
of the FSS-selected poisoned samples is “automobile”.

Naturally, the next question is whether the adversaries sam-
pled randomly based on the same class distribution as the
FUS-selected samples would yield the same attack perfor-
mance, too. We experiment and the result is shown in Table
2. The attack success rates of the poisoned samples selected
using RSS are similar in the two distributions. This indicates
that the fundamental reason why the FUS-selected samples
work well is not because of the class distribution, but rather
the samples themselves. The class distribution is a symptom,
not a cause.
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Figure 6: Original category statistics for the FUS-selected samples
and the RSS-selected samples with different t on CIFAR-10 and
VGG-16 when r = 0.03. (a): t is set to category 0, “airplane”.
(b): t is set to category 9, “truck”.

5 Conclusion
The selection of poisoned samples is important for the effi-
ciency of poisoning in backdoor attacks. Existing methods
use the random selection strategy, which ignores the fact that
each adversary contributes differently to the backdoor injec-
tion. It reduces the efficiency and further raises the probabil-
ity of the attack being detected. In this paper, we formulate
the selection as an optimization problem and propose a strat-
egy named FUS to solve it. Experiments on CIFAR-10 and
ImageNet-10 are conducted to test our method. In the white-
box setting, FUS can save about 25% to 53% of the poisoned
data volume to reach the same attack strength as the random
selection strategy. In the black-box setting, the value is about
9% to 59%. These results indicate that FUS can increase the
efficiency of poisoning data and thus the stealthiness of the
attack.
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