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Abstract

One of the key challenges in visual Reinforce-
ment Learning (RL) is to learn policies that can
generalize to unseen environments. Recently,
data augmentation techniques aiming at enhanc-
ing data diversity have demonstrated proven per-
formance in improving the generalization ability of
learned policies. However, due to the sensitivity
of RL training, naively applying data augmenta-
tion, which transforms each pixel in a task-agnostic
manner, may suffer from instability and damage
the sample efficiency, thus further exacerbating the
generalization performance. At the heart of this
phenomenon is the diverged action distribution and
high-variance value estimation in the face of aug-
mented images. To alleviate this issue, we propose
Task-aware Lipschitz Data Augmentation (TLDA)
for visual RL, which explicitly identifies the task-
correlated pixels with large Lipschitz constants,
and only augments the task-irrelevant pixels for sta-
bility. We verify the effectiveness of our approach
on DeepMind Control suite, CARLA and Deep-
Mind Manipulation tasks. The extensive empirical
results show that TLDA improves both sample ef-
ficiency and generalization; it outperforms previ-
ous state-of-the-art methods across 3 different vi-
sual control benchmarks.

1 Introduction
Deep Reinforcement Learning (DRL) from visual observa-
tions has carved out brilliant paths in many domains such
as video games [Mnih et al., 2015], robotics manipula-
tion [Kalashnikov et al., 2018], and visual navigation [Zhu
et al., 2017]. However, it remains challenging to obtain gen-
eralizable policies across different environments with visual
variations due to overfitting [Zhang et al., 2018].

Data Augmentation [Shorten and Khoshgoftaar, 2019]
and Domain Randomization [Tobin et al., 2017] based ap-
proaches are widely used to learn generalizable visual repre-
sentations. However, recent work [Hansen et al., 2021] find
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Figure 1: Augmenting observation in a task-agnostic manner (in the
middle) distracts the agent’s decision, hence it will damage agent’s
asymptotic performance. This problem can be alleviated by task-
aware data augmentation (in the bottom).

that in visual RL, there is a dilemma: heavy data augmen-
tations are vital for better generalization, but it will cause
a significant decrease in both the sample efficiency and the
training stability. One of the main reasons is that data aug-
mentation conventionally perform pixel-level transformation,
where each pixel is transformed in a task-agnostic manner.
However, each pixel in the observation has different relevance
to the task and the reward function. Hence, it is worth rethink-
ing data augmentation in the new context of visual RL.

To better understand the effect of data augmentation in vi-
sual RL, we visualize the action distribution output from poli-
cies trained with various data augmentation choices in Fig-
ure 2. We find that the agent’s actions vary dramatically
when faced with different augmentation methods. Specifi-
cally, when weak augmentation such as shifting is applied,
the action distribution remains closer to the original distribu-
tion that has no augmentation (Figure 2(c)); however, when
strong augmentation e.g., random convolution is applied, the
action distribution drastically changes (Figure 2(a)) and the
Q-estimation yields the discrepancy with the un-augmented
data, as shown in Figure 3. This comparison reveals the se-
vere problem that causes instability when data augmentation
is applied blindly without knowing the task information.

In this work, we propose a task-aware data augmentation
method in visual RL that learns to augment the pixels less
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Figure 2: Action Distribution. We use t-SNE to show high-dimensional actions employed by the same agent. The grey dots are the actions
given the observations without augmentation (w/o aug); the blue dots (a) and orange dots (c) are the actions given the same observations
under strong (random conv) and weak augmentation (random shift), respectively. The visualized results demonstrate that there is a significant
action distribution shift under strong augmentation, while under weak augmentation, the policy is closer to the original distribution. The red
dots (b) are TLDA under strong augmentation, which comes up with an action distribution that remains similar to the grey dots.

correlated to the task, namely Task-aware Lipschitz Data
Augmentation (TLDA), as shown in Figure 1. A desirable
quality for such a method is that it maintains a stable policy
output even on augmented observations. Following this in-
sight, we introduce the Lipschitz constant that measures the
relevance between the pixel and the task, then guides the aug-
mentation strategy. Specifically, we first impose a perturba-
tion on a certain pixel, and calculate the corresponding Lips-
chitz constant for the pixel via the policy change before and
after the perturbation. Then, to avoid the occurrence of drastic
policy changes, we treat the pixels with larger Lipschitz con-
stant as the task-relevant ones and avoid augmenting them.
Therefore, the output could be more stable while keeping the
diversity of augmented data.

We conduct experiments on 3 benchmarks: DMControl
Generalization Benchmark (DMC-GB) [Hansen and Wang,
2021], CARLA [Dosovitskiy et al., 2017], and DMControl
manipulation tasks [Tunyasuvunakool et al., 2020]. We train
agents in a fixed environment and evaluate on the unseen en-
vironments. Extensive experiments show that TLDA outper-
forms the prior state-of-the-art methods due to more stable
and efficient training and robust generalization performance.

Our main contributions are summarized as follows: (i) We
propose Task-aware Lipschitz Data Augmentation (TLDA),
which can be implemented on downstream visual RL algo-
rithm easily without adding auxiliary objectives or additional
learnable parameters; (ii) We provide theoretical understand-
ing and experiments to show TLDA can alleviate the action
distribution shift and high variance Q-estimation problems ef-
fectively; (iii) TLDA achieves competitive or better sample
efficiency and generalization ability than previous state-of-
the-art methods in 3 different kinds of benchmarks.

2 Related Work
Generalization in RL. Researchers have been investigated
RL generalization from various perspectives, such as visual
appearances [Cobbe et al., 2019], dynamics [Packer et al.,
2018] and environment structures [Cobbe et al., 2020]. In
this paper, we focus on generalization over different visual
appearances. Two popular paradigms are proposed to address

the overfitting issue in current visual RL research. The first is
to regard generalization as a representation learning problem.
Bi-simulation metric [Ferns et al., 2011] is implemented to
learn robust representation features [Zhang et al., 2020]. The
other paradigm is to design auxiliary tasks. SODA [Hansen
and Wang, 2021] adds a BYOL-like [Grill et al., 2020] ar-
chitecture and introduces an auxiliary loss which encourages
the representation to be invariant to task-irrelevant properties
of the environment. In contrast to the previous efforts, our
method does not require to employ a specific metric to learn
representation, nor to introduce additional modules.

Data Augmentation for RL. Data Augmentation is an ef-
ficient method to improve the generalization of visual RL.
RAD [Laskin et al., 2020] compares different data aug-
mentation methods and reveals that the benefits of different
augmentation methods to RL tasks are not the same. SE-
CANT [Fan et al., 2021] mentions that weak augmentation
can improve sample efficiency but not generalization abil-
ity. It also shows that the simple use of strong augmentation
is likely to cause training divergence, though generalization
ability is improved. Automatic data augmentation is proposed
in [Raileanu et al., 2021] to make better use of data augmen-
tation. We advocate this paradigm and believe that one crucial
factor for improving sample efficiency and generalization lies
in the design of data augmentation, namely, how we can di-
versify the input as much as possible while maintaining the
invariance of output. We show that how strong augmentation
affects action distribution shifts and causes high variance of
Q estimation, and illustrate that our approach is effective in
alleviating these two problems.

3 Preliminaries
We consider learning in a Markov Decision Process (MDP)
formulated by the tuple ⟨S,A, r,P, γ⟩ where S is the state
space, A is the action space, r : S × A 7→ R is a re-
ward function, P (st+1 | st, at) is the state transition func-
tion, γ ∈ [0, 1) is the discount factor. The goal is to learn a
policy π∗ to maximize the expected cumulative return π∗ =

argmaxπ Eat∼π(·|st),st∼P

[∑T
t=1 γ

tr (st, at)
]
, starting from
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Figure 3: Q-estimation error. Top: We measure the Q-estimation mean square error of the different augmented observation vs.the non-
augmented observation. The blue bar and the red bar are the error between strong augmented data and TLDA-augmented data vs non-
augmented data, separately. It shows that TLDA can significantly reduce the Q-estimation error to alleviate the high-variance estimation
problems. Bottom: The distribution of Q-estimation. TLDA comes up with a closer Q-estimation distribution with the original one.

an initial state s0 ∈ S and following the policy πθ (· | st)
which is parameterized by a set of learnable parameters θ.
Meanwhile, we expect the learned policy π∗

θ can be well gen-
eralized to new environments, which have the same structure
and definition of the original MDP, but with different obser-
vation space O constructed from the same state space S .

3.1 Data Augmentation
Definition 1 (Optimality-Invariant State Transformation)
Given an MDP M, we define an augmentation method
ϕ : O → O′ as an optimality-invariant transformation
if ∀o ∈ O, a ∈ A, ϕ(o) ∈ O′, where O′ is a new set of
observation satisfies:

Q(o, a) = Q(ϕ(o), a) π(· | o) = π(· | ϕ(o)) (1)

A desirable quality for data augmentation is to satisfy the
form of Optimality-Invariant State Transformation while dis-
tortion or distracting noise is added to the observation.

3.2 Lipschitz Constant
The Lipschitz constant is frequently utilized to measure the
robustness of a model, we introduce Lipschitz continuity of
the policy here. A function f : Rn → Rm is Lipschitz con-
tinuous on X ⊆ Rn if there exists a non-negative constant
K ≥ 0 such that

∥f(x)− f(y)∥ ≤ K∥x− y∥ for all x, y ∈ X (2)

The smallest such K is called the Lipschitz constant of
f [Pauli et al., 2021].

Definition 2 (Lipschitz constant of the policy) Assume the
state space is equipped with a distance metric d(·, ·). Un-
der a certain augmentation method ϕ, the Lipschitz constant
of a policy π is defined as follows:

Kπ = sup
s∈S

DTV (π (· | ϕ(s)) ∥π (· | s))
d(ϕ(s), s)

(3)

where DTV (P ||Q) = 1
2

∑
a∈A |P (a) − Q(a)| is the total

variation distance between distributions. If Kπ is finite, the
policy π is Lipschitz continuous.

For a certain model, a smaller Lipschitz constant represents
higher stability against the variance of input [Finlay et al.,
2018]. The following proposition illustrates that the estima-
tion error of Q-value can be bounded by Lipschitz constant:

Proposition 1 We consider an MDP M, a policy π and
an augmentation method ϕ. Suppose the rewards are
bounded by rmax and state space is equipped with a dis-
tance metric d(·, ·), such that ∀a ∈ A, ∀s ∈ S, |r(s, a)| ≤
rmax, the following inequality holds, where ∥d(ϕ)∥∞ =
sups∈S d(ϕ(s), s) :

|Qπ(s, a)−Qπ(ϕ(s), a)| ≤ 2rmax
(Kπ ∥d(ϕ)∥∞ + 1)

1− γ
(4)

This proposition indicates that if a smaller Lipschitz con-
stant under one specific augmentation is acquired, we will
have a tighter bound of the Q-value estimation with a lower
variance while implementing data augmentation.

4 Method
To maintain the training stability and improve the gener-
alization ability, we propose: Task-aware Lipschitz Data
Augmentation (TLDA), an efficient and general task-aware
data augmentation method for visual RL.

4.1 Construct the K-matrix
We first calculate the Lipschitz constant from perturbed in-
put images. By using a kernel to perturb the original im-
age o ∈ RH×W , we obtain the perturbed image denoted as
A(o). Next, we choose the pixels centered with the location
(i, j) of A(o) as in the Eq (5), denoted as Φ(o, i, j). Specifi-
cally, we use the Hadamard product ⊙ to choose the perturbed
pixels around location(i, j) by an image mask M(i, j) ∈
(0, 1)H×W :
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Φ(o, i, j) = o⊙ (1−M(i, j)) +A (o)⊙M(i, j) (5)
To derive the Lipschitz constant, we use the notation

d(Φ(o, i, j), o) to represent the distance between input o and
Φ(o, i, j) under metric d(·, ·). As in Definition 2, for a given
observation o, the Lipschitz constant of the pixel (i, j) can be
computed as follows:

Kπ
ij =

DTV (π (· | Φ(o, i, j)) ∥π(· | o))
d(Φ(o, i, j), o)

(6)

where the numerator can be interpreted as distance between
two action distributions: π(· | Φ(o, i, j)), π(· | o), and the
denominator is the distance between the original observation
and the perturbed one. With the per-pixel Lipschitz constant
in hand, we then construct the matrix that can reflect the task-
relevance information and be applied on the whole observa-
tion. By arranging Kπ

ij into a matrix which have the same size
as o following Eq (7), we denote this matrix as the K-matrix:

K-matrix ≜


Kπ

11 Kπ
12 · · · Kπ

1n

Kπ
21 Kπ

22 · · · Kπ
2n

...
...

. . .
...

Kπ
m1 Kπ

m2 · · · Kπ
mn

 (7)

We aim to capture the task-related locations with large Lips-
chitz constants which tend to cause high variance in the pol-
icy/value output during the same level of perturbation.

4.2 Task-Aware Lipschitz Augmentation (TLDA)
with the K-matrix

Intuitively, data augmentation operations should not modify
the task-related pixels indicated by large Lipschitz constants.
We follow this intuition and propose a simple yet effective
way to decide which areas can be modified. We use the
mean value of the K-matrix as a threshold, and binarize the
K-matrix by the following way, where N is the number of
pixels (H ×W ), Kmean = 1

N ×
∑

ij K
π
ij :

MK
ij =

{
1, if Kπ

ij ≥ Kmean

0, else
(8)

The obtained mask MK is used to decide which pix-
els can be augmented. For any data augmentation method
o′ = Aug(o), we apply the following operation:

õ = MK ⊙ o+ (1−MK)⊙ o′ (9)

We note that the output õ is only modified in the areas that
have low relevance to the task.

As mentioned above, TLDA tends to preserve the pixels
with large Kπ

ij and augment only the pixels associated with
the small ones, which adds an implicit constraint to maintain
the stable output of the policy and value network. Hence, it
echoes with the Optimality-Invariant State Transformation as
in Definition 1. Figure 4 demonstrates the overall framework
of TLDA. During the training process, the K-matrix is cal-
culated on the fly against every training step on augmented
observations. Take cutout (adding a black patch to the image)
in Figure 4 as an example, since the corresponding K-matrix
shows that the upper part of the robot’s body features large
Lipschitz constants, therefore, blindly augmenting the image
might touch the pixels in this area and cause catastrophic ac-
tion/value changes. In contrast, TLDA preserves the critical
parts of the original observations indicated by K-matrix.

4.3 Reinforcement Learning with TLDA
We use soft-actor-critic (SAC) as the base reinforcement
learning algorithm for TLDA. Similar to previous work,
we also include a regularization term RQ(θ) to the SAC
critic loss JQ (θ) to handle augmented data. Our critic loss
LQ(θ) is as follows, where saug

t is calculated by Eq (9), and
Q̂ (st, at) = r (st, at) + γEst+1∼P [V (st+1)]:

LQ(θ) = JQ(θ) + λRQ(θ) (10)

with

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st, at)− Q̂ (st, at)

)2
]

RQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (s

aug
t , at)− Q̂ (st, at)

)2
]
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Figure 5: Sample efficiency in training environment. We compare TLDA, SVEA, and random patch under two kinds of augmentations.
Top row and Bottom Row are corresponding to Random Conv and Random Overlay training curves of the episode return respectively. TLDA
(red line) shows better sample efficiency on the training period. Mean and standard deviation of 5 runs.

5 Experiment
In this section, we explore how TLDA can affect the agent’s
sample efficiency and generalization performance. We com-
pare our method with other baselines on a wide spectrum of
tasks including DeepMind control suite, CARLA simulator,
as well as DeepMind Manipulation tasks.

5.1 Evaluation on DeepMind Control Suite
Setup. For comparison, we mainly consider two augmenta-
tion ways applied in the prior state-of-the-art methods: ran-
dom convolution (passing input through a random convolu-
tional layer) and random overlay (linearly combining the ob-
servation o with the extra image I, ϕ(o) = αo+ (1− α)I).
Baselines. We benchmark TLDA against the follow-
ing state-of-the-art methods: (1) DrQ [Kostrikov et al.,
2020]: SAC with weak augmentation (random shift); (2)
PAD [Hansen et al., 2020]: adding an auxiliary task for
adapting to the unseen environment; (3) SODA [Hansen and
Wang, 2021]: maximizing the mutual information between
latent representation by employing a BYOL-like [Grill et al.,
2020] architecture; (4) SVEA [Hansen et al., 2021]: modify-
ing the form of Q-target.
Sample efficiency under strong augmentations. We com-
pare the sample efficiency with SVEA to exhibit the effec-
tiveness of TLDA. We also include another baseline that pre-
serves random patches from the un-augmented observation
as opposed to TLDA that preserves task-related parts. We
call this baseline random patch. By contrast, SVEA only
uses the strong augmentation method but retains no raw pixel.
Figure 5 demonstrates that TLDA achieves better or com-
parable asymptotic performance in the training environment
than baselines on DM-control suite while having better sam-
ple efficiency. The results also indicate that random patch
will hinder the performance in some tasks. We reckon that
since random patch does not have any pixel-to-task relevance
knowledge, it inevitably destroys the image’s integrity and

even leads to further distortion to the observations after data
augmentation. Therefore, blindly keeping the original obser-
vation’s information cannot improve the agent’s training per-
formance. It is the retention of areas with larger Lipschitz
constants, instead of random original areas, that boosts the
sample efficiency of training agents.

Generalization Performance. We evaluate the agent’s
generalization ability on two settings from DMControl-
GB [Hansen and Wang, 2021]. Results are shown in Table 1.
TLDA outperforms prior state-of-the-art methods in 7 out of
10 instances. The agent trained with TLDA is able to acquire
a good robust policy in different unseen environments. Mean-
while, we notice that prior methods are sensitive to augmen-
tation methods, which makes their testing performance varies
dramatically. On the contrary, our method with task-aware
observations is more stable and not susceptible to this issue.

Effect on Action Distribution and Q-estimation. In this
section, we analyze how TLDA influences the output of the
policy and value networks. Given a DrQ agent trained in the
original environment, we assess the Q-value estimation and
the action distribution under different augmentation. To get a
better understanding of this issue, we visualize the action dis-
tribution of the agent under different augmentation methods,
as shown in Figure 2. For weak augmentation, although its
action distribution is closest to the un-augmented one (Fig-
ure 2(c)), it cannot improve generalization, as shown in Ta-
ble 1(DrQ). Strong augmentation, on the other hand, will
cause an obvious distribution shift (Figure 2(a)), thus signif-
icantly hindering the training process. TLDA has a closer
action distribution than simply applying strong augmentation
(Figure 2 (b)) by using the Lipschitz constant to identify and
preserve the task-aware areas. Furthermore, as shown in Fig-
ure 3, we find that the Q-estimation of TLDA has a lower
variance than that of naively applying strong augmentation.
These two results illustrate that TLDA has the potential to
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Setting DMControl DrQ PAD SVEA
(conv)

SVEA
(overlay)

SODA
(conv)

SODA
(overlay)

TLDA
(conv)

TLDA
(overlay)

Cartpole-Swingup 485±105 521±76 606±85 782±27 474±143 758±62 607±74 671±57

Walker-Stand 873±83 935±20 795±70 961±8 903±56 955±13 962±15 973±6

Walker-Walk 682±89 717±79 612±144 819±71 635±48 768±38 873±34 868±63

Ball in cup-Catch 318±157 436±55 659±110 871±106 539±111 875±56 892±68 863±56

Cheetah-Run 102±30 206±34 292±32 249±20 229±29 223±32 356±52 366±57

Cartpole-Swingup 586±52 630±63 837±23 832±23 831±21 805±28 748±40 760±60

Walker-Stand 770±71 797±46 942±26 933±24 930±12 893±12 919±24 947±26

Walker-Walk 520±91 468±47 760±145 749±61 697±66 692±68 743±83 823±58

Ball in cup-Catch 365±210 563±50 961±7 959±5 892±37 949±19 932±32 930±40

Cheetah-Run 100±27 159±28 264±51 273±23 294±34 238±28 371±51 358±25

Table 1: DMC-GB Generalization Performance. Episode return in test environments. The agents are trained on a fixed environment and
evaluated on random colors (Bottom) and video backgrounds (Top) these two unseen test environments. Mean and std.deviation of 5 runs.

achieve higher sample efficiency in training and learn a more
robust policy to perform well in unseen environments.

5.2 Evaluation on Autonomous Driving in CARLA
To further evaluate the TLDA’s performance, we apply this
method in the tasks with more realistic observations: au-
tonomous driving in the CARLA simulator. In our experi-
ment, we use one camera as our input observation for driving
tasks, where the goal of the agent is to drive along a curvy
road as far as possible in 1000 time-steps without colliding
with the moving vehicles, pedestrians and barriers. We adapt
the reward function and train an agent under the weather with
the same setting from previous work [Zhang et al., 2020].
We find that our method achieves the best training sample
efficiency. For generalization, CARLA provides different
weather conditions with built-in parameters. We evaluate our
method in 4 kinds of weather with different lighting condi-
tions, realistic raining and slipperiness. Results are in Table 2,
where we choose the success rate for reach 100m distance as
the driving evaluation metric. TLDA outperforms all base al-
gorithms in both sample efficiency and generalization ability
with a more stable driving policy.

Setting DrQ SVEA Ours

Training 24% 49% 52%
Wet Noon 0.8% 8.8% 18%

SoftRain noon 0.4% 1.2% 7.6%
Wet Sunset 0.8% 1.6% 9.2%

MidRain Sunset 0.0% 5.2% 12%

Table 2: CARLA Driving. We report the success rate for reaching
100m distance under the unseen weather during 250 episodes across
5 seeds for each weather. (50 episodes for each seed)

5.3 Evaluation on DMC Manipulation Tasks
Robot manipulation is another set of challenging and mean-
ingful tasks for visual RL. DM control [Tunyasuvunakool et
al., 2020] provides a set of configurable manipulation tasks
with a robotic Jaco arm and snap-together bricks. We con-
sider two tasks for experiments: reach and push. All the
agents are trained on the default background and evaluated

on different colors of arms and platforms. The generalization
performance are shown in Table 3. The results show that our
method can be adapted to the unseen environments more ap-
propriately. The Modified Platform and Modified Both setting
are challenging for agents to discern the target objects from
the noisy backgrounds. SVEA under strong data augmenta-
tion suffers from instability and divergence for training, while
TLDA can augment the pixel in a task-aware manner, thus
further maintaining the training stability. Despite that DrQ
shows better training performance, it barely generalizes to
the environments with different visual layouts. In summary,
sample efficiency and generalization performance contribute
to exhibiting the superiority of the proposed algorithm.

Task Setting DrQ SVEA Ours

Reach

Training 136 ±20 49 ±48 124 ±32

M Arm 68 ±20 21 ±25 55 ±21

M Platform 0.8 ±1.3 24 ±25 89 ±40

M Both 1 ±2 13 ±14 36 ±25

Push

Training 141 ±47 42 ±40 109 ±27

M Arm 88 ±52 21 ±16 60 ±43

M Platform 4 ±1 34 ±28 95 ±33

M Both 5 ±1 32 ±20 56 ±42

Table 3: DMC Manipulation Tasks. M in the Setting column
means: Modified. TLDA can better focus on the aim objects in the
noisy and colorful visual backgrounds.

6 Conclusion
In this paper, we propose Task-aware Lipschitz Data
Augmentation (TLDA) for visual RL, which can reliably
identify and augment pixels that are not strongly correlated
with the learning task while keeping task-related pixels un-
touched. This technique aims to provide a principled mech-
anism for boosting the generalization ability of RL agents
and can be seamlessly incorporated into various existing vi-
sual RL frameworks. Experimental results on 3 challeng-
ing benchmarks confirm that, compared with the baselines,
TLDA not only features higher sample efficiency but also
helps the agents generalize well to the unseen environments.
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