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Abstract

Fartial label learning (PLL) learns from a typi-
cal weak supervision, where each training instance
is labeled with a set of ambiguous candidate la-
bels (CLs) instead of its exact ground-truth label.
Most existing PLL works directly eliminate, rather
than exploiting the label ambiguity, since they ex-
plicitly or implicitly assume that incorrect CLs are
noise independent of the instance. While a more
practical setting in the wild should be instance-
dependent, namely, the CLs depend on both the
true label and the instance itself, such that each CL
may describe the instance from some sensory chan-
nel, thereby providing some noisy but really valid
information about the instance. In this paper, we
leverage such additional information acquired from
the ambiguity and propose AmBiguity-induced con-
trastive LEarning (ABLE) under the framework of
contrastive learning. Specifically, for each CL of
an anchor, we select a group of samples currently
predicted as that class as ambiguity-induced pos-
itives, based on which we synchronously learn a
representor (RP) that minimizes the weighted sum
of contrastive losses of all groups and a classi-
fier (CS) that minimizes a classification loss. Al-
though they are circularly dependent: RP requires
the ambiguity-induced positives on-the-fly induced
by CS, and CS needs the first half of RP as the
representation extractor, ABLE still enables RP
and CS to be trained simultaneously within a co-
herent framework. Experiments on benchmark
datasets demonstrate its substantial improvements
over state-of-the-art methods for learning from the
instance-dependent partially labeled data.

1 Introduction

The remarkable performance of modern deep neural networks
(DNNs) owes much to the large amount of fully supervised
training data, and the stringent data requirements can be a
barrier to the application of DNNs to certain tasks. Re-
searchers therefore often resort to cheap non-expert labelers,
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Figure 1: Compared with “dolphin”, “bookcase” and etc., “Bengal-
tiger” and “leopard” are more likely to be labeled as CLs for the
given input instance (e.g., image.a) belonging to “Siberian tiger”.
Therefore, we reasonably pull the input instance (anchor) and in-
stances predicted to be “Siberian tiger”, “Bengal-tiger” or “leopard”
(ambiguity-induced positives) closer in the representation space, and
meanwhile, push the remaining instances away.

but this invariably leads to low-quality data, a typical exam-
ple of which is the ambiguity of the labels. Label ambiguity
is pervasive [Chen et al., 2017] for a simple reason: people
have difficulty making exact judgments about tasks that are
beyond their expertise, which means that each instance may
be labeled with a set of candidate labels (CLs) such that a
fixed and unknown candidate is the ground truth. Such super-
vision constantly has negative impacts on the performance
of DNNs, since memorization effects [Feldman and Zhang,
2020] make them prone to overfitting all CLs. Thus, par-
tial label learning (PLL) [Xu et al., 2019; Lv et al., 2020;
Feng et al., 2020; Wang et al., 2020b; Wang et al., 2020a;
Wang et al., 2022] which can handle the label ambiguity has
drawn a lot of attention in recent years. The goal of PLL is to
induce the optimal hypothesis which can generalize well for
fully supervised data.

Recent works have presented promising methods on PLL
with a common goal to disambiguate incorrect label associ-
ation [Cour et al., 2011], i.e., purifying the CLs heuristically
in the training phase to avoid undesired memorization of in-
correct CLs. For this purpose, a strand of works [Yu and
Zhang, 2017] regard the ground-truth label as a latent vari-
able and identify it by leveraging the information from feature
space. For example, [Xu er al., 2019] construct a weighted
graph over the training instances to characterize the structure
of feature space, and then migrate this graph to label space
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to identify the ground-truth label. Average-based PLL ap-
proaches [Cour ef al., 2011; Zhang and Yu, 2015] treat all the
candidate labels equally and average the modeling outputs as
the prediction. Deep PLL methods of late [Lv et al., 2020;
Feng et al., 2020] capitalize on the inductive bias of the learn-
ing model itself. DNNs typically exhibit an important behav-
ior in that they learn patterns first [Arpit er al., 2017]: this
means that labels that are remembered first can be consid-
ered as the ground-truth labels. Revisiting all previous PLL
works, we note that few of them exploited the label ambigu-
ity, since they explicitly or implicitly assume that incorrect
CLs are noise independent of the instance.

Unfortunately, this is often the case where human label-
ing is prone to varying degrees of confusion for instances
of varying ambiguity. An overwhelming majority of pre-
vious PLL works assume that given the true category (e.g.,
“Siberian tiger”), each of the other categories (e.g., “Bengal-
tiger”, “leopard” or “cat”) has a fixed probability of being the
CL [Zhang and Yu, 2015; Feng et al., 2020]. But apparently,
human labeling tends to pick CLs related to both the true la-
bel and the instance itself. Let us focus on the two input in-
stances (referred to as image.a and image.b respectively) in
the upper left of Figure 1. Despite they belong to the same
category (“Siberian tiger”), each of the other categories (e.g.,
“Bengal-tiger”, “leopard” or “cat”) has a unfixed probability
of being the CL which depends on both the true label and
the instance itself. This setting is more realistic, i.e., the CLs
are instance-dependent, such that it is arguable that each CL
tends to describe the instance from some sensory channels,
such as physics, geometry and semantics. Therefore, it is nat-
ural to conclude that the potentially useful information from
label ambiguity should also be exploited rather than elimi-
nated directly in more practical instance-dependent PLL.

In this paper, we leverage such additional information ac-
quired from the ambiguity and propose AmBiguity-induced
contrastive LEarning (ABLE) under the framework of con-
trastive learning [Khosla et al., 2020; Chen et al., 2020].
Specifically, we construct various positives per anchor by
considering each CL of this anchor and selecting a group of
samples currently predicted as that class as the ambiguity-
induced positives. Then each training instance has multiple
(the number of its CLs) groups of ambiguity-induced pos-
itives for building contrastive losses to pull the anchor and
its ambiguity-induced positives closer in the representation
space, and push the remaining instances away. Based on
them, we learn a representor (RP) to minimize the weighted
sum of these contrastive losses, where each contrastive loss
serves as a sub-objective, assigned with an ambiguity-induced
weight. The weights should be learned, and the larger weights
will bias sub-objectives that lead to better representations. To
learn the weights and estimate the class of training samples,
we train a classifier (CS) that minimizes a classic PLL classi-
fication loss [Lv et al., 2020]. It deserves a particular mention
that there exists a circular dependency between RP and CS:
RP requires the ambiguity-induced positives and weights on-
the-fly induced by CS, and CS needs the first half of RP as the
representation extractor. ABLE proposes a synchronous up-
date strategy of RP and CS to break the circular dependency
hopefully. Our contributions are summarized as follows:
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* We consider a more general setting — instance-dependent
PLL and for the first time propose the label ambiguity con-
taining valid information should be exploited.

* We introduce a novel instance-dependent PLL method,
which for the first time adapts contrastive learning, and pro-
pose an end-to-end training strategy.

» Experiments on benchmark datasets demonstrate substan-
tial improvements over state-of-the-art methods for learn-
ing from the instance-dependent partially labeled data.

2 Related Work
2.1 Partial Label Learning

Most recent PLL methods focus on label disambiguation
which aims to identify the ground-truth label from the CL
set [Lv et al., 2020; Feng et al., 2020; Xu et al., 2021b]. For
averaging-based disambiguation [Cour er al., 2011; Zhang
and Yu, 2015], all the CLs of each instance are treated equally
and the prediction is made by averaging their modeling out-
puts. For identification-based disambiguation [Yu and Zhang,
20171, the ground-truth label is regarded as a latent variable
and identified. For deep-based methods, [Lv et al., 2020]
proposes a classifier-consistent risk estimator and a progres-
sive identification algorithm. [Feng et al., 2020] deduces a
risk-consistent method and a classifier-consistent method by
proposing a statistical model. These methods corrupt data
without considering the CLs are always instance-dependent
in practice. [Xu et al., 2021b] firstly considers the instance-
dependent PLL and proposes VALEN which recovers the la-
tent label distribution via inferring the true posterior density
of the latent label distribution [Xu er al., 2021a] by Dirichlet
density parameterized with an inference model and deduces
the evidence lower bound for optimization. However, we note
that few of them exploited the label ambiguity. In this pa-
per, we aim to leverage such potentially useful information
acquired from the label ambiguity for learning from the par-
tially labeled data.

2.2 Contrastive Learning

Contrastive learning is an approach which is committed to
learning an representation space where representations from
the same instance are pulled closer and representations from
different instances are pushed apart [Khosla er al., 2020].
Positives and negatives are generated for each instance to
construct the loss. A plethora of works have explored the
effectiveness in unsupervised representation learning [Chen
et al., 2020; He er al., 2020]. Lately, [Khosla et al., 2020]
proposes Supervised Contrastive Learning which combines
explicit supervision to aggregate data from the same class as
the positive set. Recently, the success has stimulated a series
of works to utilize contrastive learning to weakly supervised
learning problems [Li et al., 2021], etc. In this paper, we aim
to construct various positives per anchor by considering each
CL of this anchor and selecting ambiguity-induced positives
currently predicted as that class. Then each training instance
has multiple groups of ambiguity-induced positives for build-
ing contrastive losses. We further consider that each group of
ambiguity-induced positives contributes differently to learn-
ing from the partially labeled instances.
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Figure 2: Illustration of ABLE. We construct various positives per anchor by selecting ambiguity-induced positives currently predicted as
that class which corresponds to each CL of this anchor. Based on its multiple groups of ambiguity-induced positives, we learn a RP (f and g)
to minimize the weighted ambiguity-induced loss, where the weights are obtained by training a CS (/) that minimizes a classification loss.
We propose a synchronous update strategy of RP and CS to break a circular dependency existed between RP and CS.

3 Method

In this section, we describe our novel ABLE method in de-
tail. First of all, we give an overview of ABLE (Section
3.1). Then, we describe two key components of ABLE which
consists of ambiguity-induced positives selection mecha-
nism (Section 3.2) and ambiguity-induced contrastive learn-
ing (Section 3.3). Figure 2 gives an illustration of ABLE.

3.1 Overview of ABLE

First of all, we briefly introduce some necessary notations.
Let X be the input space, Y = {1,2,...,c} be the label
space with ¢ class labels. Given PLL training set D =
{(zk, Sk)|1 < k < M} where x), denotes the training in-
stance and S C ) denotes the CL set. The key definition
of PLL is that the latent ground-truth label y;, € ) of an in-
stance xj, is always included in its CL set. And the goal is
as the same with supervised classification: learning a clas-
sifier A that can make correct predictions on unseen inputs.
Here, we get rid of the traditional instance-independent as-
sumption [Feng et al., 20201, i.e., p(Sk|zk, yx) = p(Sk|yk),
and consider a more general instance-dependent case.

Given each mini-batch B, {(z,Sk)|1 < k < n}, we
generate two random augmentations [Khosla et al., 2020],
ie., Boug = {(aug(xr),Sk)|1 < k < n} and B,y =
{(aug’(zr), Sk)|1 < k < n}, where aug(-) and aug’(-) rep-
resent two augmentation functions. Therefore, for each mini-
batch B, the corresponding batch used for training consists
of 2n samples, {(x;,5;)|1 < i < 2n}, i.e., Baug U Baug'-
For the remainder of this paper, we refer to the n samples
as a “batch” and the 2n samples as an “augmented batch”.
Within an augmented batch, let I = {1,2,...,2n} be the in-
dex set corresponding to the representation pool, ¢ € I be the
index of an arbitrary augmented sample. Following [Chen
et al., 20201, first of all, both augmented views are sepa-
rately fed into the same encoder network f(-) which maps
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Z; to an representation v; = f(x;) € R, yielding a pair
of representations. Note that v; is normalized to the unit hy-
persphere in R%. Afterwards we utilize the projection net-
work, g(-), which maps v; to a low-dimensional representa-
tion z; = g(v;) € R%. %, is also normalized to the unit
hypersphere in R%. Now we have representations corre-
sponding to the augmented batch. We call f(-) and g(-) as
RP. For each augmented training instance x;, we select mul-
tiple groups of ambiguity-induced positives for building con-
trastive losses. Based on them, we learn the RP to minimize
the weighted sum of these contrastive losses which is called
weighted ambiguity-induced loss. Meanwhile, CS, i.e., h(-),
receives v, as input and outputs p; = h(v;), which is trained
by minimizing a PLL classification loss. It is worth noting
that there exists a circular dependency between RP and CS:
RP requires the ambiguity-induced positives and weights on-
the-fly induced by CS, and CS needs f(-) which is the first
half of RP as the representation extractor. To break the cir-
cular dependence, we jointly train the classification loss and
the weighted ambiguity-induced loss which is a synchronous
update strategy of RP and CS.

3.2 Ambiguity-Induced Positives Selection

In more practical and realistic instance-dependent PLL, the
potentially useful information from label ambiguity should
be exploited rather than eliminated directly. We leverage
such additional information acquired from the ambiguity by
adopting an ambiguity-induced positives selection mecha-
nism. Given each PLL training sample (&;, S;) in the aug-
mented batch, we construct various positives by consider-
ing each CL in S; and selecting a group of samples cur-
rently predicted as that class as the ambiguity-induced pos-
itives. Note that we impose limits on the class prediction
v = argmaz ; egi@j to be in the CL set S;, where p;;
denotes the j-th entry of CS output p,. Then each train-
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ing sample has multiple groups of ambiguity-induced pos-
itives and the number of groups equals to the number of
CLs. We define ambiguity-induced positives set as AP (x;) =
Upneg, A (@) for the training instance ; which is com-
posed of multiple ambiguity-induced positives groups. For
each CL in S;, the corresponding ambiguity-induced posi-
tives related to x; is defined as follows:

A7 (@) = {K'|k" € N(i), i = m}, 1
where N (i) = I\{i} be the index set of the other samples
originating from the same augmented batch. For efficient
consideration, we select the ambiguity-induced positives in
the current augmented batch. Despite its simplicity, we obtain
superior experimental results. We also consider maintaining
a queue to store the most current representations and updated
predictions [He et al., 20201, which is left for future research.

3.3 Ambiguity-Induced Contrastive Learning
After completing ambiguity-induced positives selection, each
training instance has multiple (the number of its CLs)
groups of ambiguity-induced positives. Then we construct
ambiguity-induced pairs which include the training instance
and its corresponding ambiguity-induced positives for the fol-
lowing contrastive learning. First of all, we build respective
contrastive loss to pull the anchor and its ambiguity-induced
positives closer in the representation space, and push the re-
maining instances away. Given the training representation z;
and an arbitrary ambiguity-induced positive z,, which is se-
lected from its ambiguity-induced positives set, we define the
contrastive loss as follows:
exp(Zi - Zp/7)

~ =~ ’
ZleN(i) exp(zi : zl/T)
where N (i) = I'\{i} be the index set of the other represen-
tations originating from the same augmented batch, 7 is the
temperature parameter and - denotes the dot product. We fur-
ther consider that each group of ambiguity-induced positives
contributes differently to learning from the partially labeled
instances. In other words, we consider learning a progres-
sively contrastive representation space to facilitate the pro-
cess of learning from the partially labeled data. We tackle
it using the labeling confidences of CLs for progressively
putting more weights on more reliable ambiguity-induced
pairs. Specifically, we define the ambiguity-induced weight
ina progressive fashion:

F(@) /Z F@)) if jes;, )

otherwise.

— log @)

Wi =

where j denotes the indices of CLs. We initialize w;; with
uniform weights, i.e., w;; = 1/]5;] if j € S;, otherwise
wij =0.

Given each training representation z; and its ambiguity-
induced positives set AP(x;), we define a novel weighted

ambiguity-induced loss Loycon(Zi,Si, AP, N, T) as follows:

exp(Zi - 2p/7)
w;; - log = ,
Z ‘Ap( z Z ’ ZleN(i) eXp(zi : ZZ/T)

jes; pEAp (@)
“4)

Algorithm 1 Pseudo code of ABLE (one epoch)

Input: The PLL training dataset D, encoder network f(-),
projection network g¢(-), classifier A(-), uniform ambiguity-
induced weights w, constant a.

Output: Parameters of encoder network f(-) and classifier

h(-).

1: foriter =1,2,..,do

2:  Sample a mini-batch {(x, Sk)}}_, from D.

3 for k =1tondo

4: pi. = h(f(aug(xr)))

5: ZTok—1, mzk =aug(zy), aug'(x)

6: Zok—1,  Zok = 9(f(@2k-1)), 9(f(Zar))
7 Sog—1 = Sok = Sk; Dap_1 = Pax, = Py,
8: end for

9: fork =1to2ndo
10: Yk = argmaxjegkﬁkj
11: N(k)={1,2,...,2n}\{k}
12: AP(zy,) = Umesk{k’|k’ € N(k),ypr = m}
13:  end for .
14 Ly = 21n k=123, Wilak\ 2peAr @)

exp(z;c Zp/T)
08 ZzeN(k) exp(zk z/7)
150 L= _% Zk:l ijl wy; - log(h;(f(aug(zy))))
16:  Minimize Lippq; = Lo + aly,.
17:  Update ambiguity-induced weights w.
18: end for

Wi

where 7 is the temperature parameter and - denotes the dot
product. We minimize the weighted ambiguity-induced loss
which is the weighted sum of these contrastive losses to train
the RP, where each contrastive loss serves as a sub-objective
to pull the anchor and its ambiguity-induced positives closer
in the representation space, and push the remaining instances
away. And the larger ambiguity-induced weights will bias
sub-objectives that lead to better representations. To learn the
weights and estimate the class of training samples, we train
the CS that minimizes a classic PLL classification loss [Lv et
al., 2020] for each training instance x;:

Zwu log(hy (f(aug(z))).  (5)

Ecls wza

It is worth mentioning in particular that there exists a
circular dependency between RP and CS: RP requires the
ambiguity-induced positives and weights on-the-fly induced
by CS, and CS needs the first half of RP as the representa-
tion extractor. To break the circular dependency, we propose
a synchronous update strategy of RP and CS. Specifically, we
jointly train the RP and CS. Therefore, the overall loss L,
for each training instance x; is defined as:

‘Ctot = £cls + O“C’wcon; (6)
where « is the trade-off parameter for the classification loss

and the weighted ambiguity-induced loss. The pseudo-code
of our ABLE is shown in Algorithm 1.
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MNIST Fashion-MNIST Kuzushiji-MNIST CIFAR-10
Supervised 99.3740.05% 95.2640.12% 98.8440.06% 97.1940.13%
ABLE 99.32+0.04 % 92.34+0.09% 98.50+0.14% 92.30+0.24%
VALEN 99.2140.02% 91.4540.18%e 96.8240.14%e 90.164+0.52%e
PRODEN 99.18+0.05% 91.42+0.12%e 96.71+0.15%e 89.53+£0.28%e
RC 98.88+0.05%e 91.03+0.13%e 95.34£0.17%e 89.58£0.26%
CcC 98.724+0.06%e 90.87+0.09%e 93.864+0.45%e 89.21£0.64%e
D2CNN 95.96+0.12%e 87.92+0.22%e 94.254+0.21%e 84.28+0.24%e

Table 1: Classification accuracy (mean=+std) on benchmark datasets corrupted by the instance-dependent generating procedure.

4 Experiments

4.1 Setup

Datasets. We adopt four widely wused benchmark
datasets including MNIST [LeCun et al., 1998], Fashion-
MNIST [Xiao et al., 2017], Kuzushiji-MNIST [Clanuwat et
al., 2018], CIFAR-10'. To generate the instance-dependent
candidate labels, we set the flipping probability of each
incorrect label corresponding to each instance by using the
confidence prediction of a neural network trained with clean
labels [Xu et al., 2021bl. We run five trials and record
the mean accuracy as well as standard deviation for all
comparing methods.

Baselines. We compare the performance of ABLE against
five methods, each configured with parameters suggested
in respective literature: 1) VALEN [Xu et al., 2021b]:An
instance-dependent PLL method which recovers the label dis-
tribution and deduces the evidence lower bound for optimiza-
tion; 2) PRODEN [Lv et al., 2020]: A progressive identifica-
tion PLL method which approximately minimizes a risk esti-
mator and identifies the true labels in a seamless manner; 3)
RC [Feng et al., 2020]: A risk-consistent PLL method which
employs the importance reweighting strategy to converge the
true risk minimizer; 4) CC [Feng et al., 2020]: A classifier-
consistent PLL method which uses a transition matrix to form
an empirical risk estimator; 5) D2CNN [Yao et al., 2020]: A
deep PLL method which designs an entropy-based regular-
izer to maximize the margin between the potentially correct
label and the unlikely ones.

Implementation details. For the encoder network f(-), we
experiment with ResNet-18 [He et al., 2016]. The normalized
activations of the final pooling layer (d. = 512) are used as the
representation. For the projection network g(-), we instanti-
ate g(-) as a multi-layer perceptron with a single hidden layer
of size 512 (as well as ReLU activation) and output represen-
tation of size 128. We also normalize the low-dimensional
representation to lie on the unit hypersphere. For the classifier
h(-), we instantiate h(-) as a single linear layer. We use two
data augmentation modules following [Khosla er al., 2020;
Wang er al., 2022]. The trade-off parameter is set as o = 1.0.
The temperature parameter is set as 7 = 0.1. The mini-batch
size, the number of training epochs, the initial learning rate
and the weight decay are set to 64, 500, 0.01 and le-3, re-
spectively. We adopt cosine learning rate scheduling. The

"https://www.cs.toronto.edu/~kriz/cifar.html
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\ Fashion-MNIST CIFAR-10
ABLE \ 92.344-0.09 % 92.30+0.24 %
Versionl 91.52+0.12%e 90.48+0.26%e
Version2 91.06+0.25%e 89.821+0.24%e
Version3 91.421+0.12%e 89.531+0.28%e

Table 2: Effect of exploiting label ambiguity and utilizing con-
trastive learning in ABLE on Fashion-MNIST and CIFAR-10.

optimizer is stochastic gradient descent (SGD) with momen-
tum 0.9. We implement ABLE with PyTorch. Source code
is available at https://github.com/AlphaXia/ABLE. We also
want to use ABLE on MindSpore?, which is a new deep learn-
ing framework. These problems are left for future work.

4.2 Experimental Results

ABLE achieves SOTA results. We report the classification
accuracy of each method in Table 1. e indicates whether
ABLE is statistically superior to the comparing method on
each dataset (pairwise t-test at 0.05 significance level). In ad-
dition, the best results are highlighted in bold. As shown in
Table 1, we can observe that ABLE always outperforms all
the compared methods by a significant margin on all datasets,
which validates the effectiveness of our ABLE. Finally, we
observe that ABLE achieves results that are comparable to
the fully supervised learning model on some datasets, show-
ing that exploiting label ambiguity facilitates the process of
learning from the instance-dependent partially labeled data.

Effect of exploiting label ambiguity and utilizing con-
trastive learning. We ablate the contributions of two key
components of ABLE: ambiguity-induced positives selec-
tion mechanism and ambiguity-induced contrastive learn-
ing. Specifically, we compare ABLE with three weak-
ened versions: (1)Versionl: ABLE w/o weighted ambiguity-
induced positives which removes the ambiguity-induced
weights. (2)Version2: ABLE w/o ambiguity-induced posi-
tives which removes the ambiguity-induced positives. (3)Ver-
sion3: ABLE w/o utilizing contrastive learning which re-
moves the contrastive learning part. As shown in Table 2,
we can observe that ABLE obtains more superior results than
Versionl (e.g., +2% on CIFAR-10) and Version2 (e.g., +3%

*https://www.mindspore.cn/
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Figure 4: Performance of ABLE with different mini-batch sizes and
training epochs on CIFAR-10.

on CIFAR-10), which verifies the effectiveness of two key
components of ABLE.

Effect of trade-off factor a.  As illustrated in Figure 3, we
also report the performance of ABLE with varying « val-
ues that trade-off the classification loss and our weighted
ambiguity-induced loss. In our setting, « is selected from
{0.01, 0.1, 0.5, 1.0, 5.0, 10.0}. We can find that the result
is stable when performing on Fashion-MNIST and CIFAR-
10. Similar empirical results were also found on other bench-
mark datasets. We also want to use dynamic trade-off factor
to balance the classification loss and our weighted ambiguity-
induced loss, which is left for future work.

ABLE benefits from longer training. We report the im-
pact of mini-batch size when models are trained for differ-
ent numbers of training epochs in Figure 4. We observe that
training longer progressively puts more ambiguity-induced
weights on more reliable ambiguity-induced pairs, which im-
proves the results. We also find that larger mini-batch size has
a significant advantage over the smaller one when the num-
ber of training epochs is small (e.g. 200 epochs). With more
training epochs, the gaps between different mini-batch sizes
decrease or disappear.

Bigger encoder networks promote ABLE. We report that
ABLE benefits from bigger encoder networks as illustrated in
Table 3 while similar findings hold for supervised learning.
We consider that means the power of contrastive learning can
be released by using bigger encoder networks.

Encoder \ ResNet18 ResNet34 ResNet50

Supervised | 97.19£0.13% 97.724+0.14% 98.24+0.10%
ABLE |92.30+0.24% 92.59£0.20% 92.9440.24%

Table 3: Performance of ABLE with different size of encoder net-
work on CIFAR-10.
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Figure 5: Performance of ABLE with different projection networks
and different projection output dimensionalities on CIFAR-10.

Nonlinear projection networks improve ABLE. We then
study the necessity of designing a suitable projection network
for ABLE, i.e. g(-). Figure 5 shows results using different
settings for the projection network: (1) None, i.e., no projec-
tion network. (2) Linear projection network with one linear
layer. (3) Nonlinear projection network with one additional
hidden layer and ReLU activation. We find that a nonlin-
ear projection network achieves better results than a linear
projection network (e.g., +2% on CIFAR-10), and also much
better than no projection network (e.g., +7% on CIFAR-10).
We consider that more knowledge which benefits training can
be obtained by utilizing the nonlinear projection network.

5 Conclusion

In this paper, we considered a more practical case of PLL
than those have been well-studied. We rethought label am-
biguity in instance-dependent PLL and pointed out that it
contains valid information which may help in representation
learning and deep classifier training. To leverage such use-
ful information, we proposed a novel method named ABLE
that extended the contrastive loss by selecting ambiguity-
induced positives, and updated the representor and classifier
synchronously within a coherent framework. To the best of
our knowledge, this is the first time to apply contrastive learn-
ing to instance-dependent PLL. Experiments on benchmark
datasets validated the effectiveness of our method.
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