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Abstract
We study the game redesign problem in which an
external designer has the ability to change the pay-
off function in each round, but incurs a design cost
for deviating from the original game. The players
apply no-regret learning algorithms to repeatedly
play the changed games with limited feedback. The
goals of the designer are to (i) incentivize players
to take a specific target action profile frequently;
(ii) incur small cumulative design cost. We present
game redesign algorithms with the guarantee that
the target action profile is played in T−o(T ) rounds
while incurring only o(T ) cumulative design cost.
Simulations on four classic games confirm the ef-
fectiveness of our proposed redesign algorithms.

1 Introduction
Consider a finite normal-form game with loss function `o.
This is the “original game.” As an example, the Volunteer’s
Dilemma (see Table 1) has each player choose whether or
not to volunteer for a cause that benefits all players. It is
known that all pure Nash equilibria in this game involve a
subset of the players free-riding the contribution from the re-
maining players. M players, who initially do not know `o,
use no-regret algorithms to individually choose their action
in each of the t = 1 . . . T rounds. The players receive lim-
ited feedback: suppose the chosen action profile in round t
is at = (at1, . . . , a

t
M ), then the i-th player only receives her

own loss `oi (a
t) but not the other players’ actions or losses.

Game redesign is the following task. A game designer –
not a player – does not like the solution concept to `o. In-
stead, the designer wants to incentivize a target action pro-
file a†, for example “every player volunteers”. The designer
has the power to redesign the game: before each round t is
played, the designer can change `o to some `t. The players
will receive new losses `ti(a

t), but the designer pays a design
cost C(`o, `t, at) in that round for deviating from `o. The
designer’s goal is to make the players play the target action
profile a† in the vast majority (T − o(T )) of rounds, while
incurring o(T ) cumulative design cost. Game redesign natu-
rally emerges in two opposing contexts:
• A benevolent designer (interested party) wants to re-

design the game to improve social welfare, as in the

Volunteer’s Dilemma. This is the motivation behind k-
implementation [Monderer and Tennenholtz, 2004];

• A malicious designer (attacker) wants to poison the pay-
offs to force a nefarious target action profile. This is
an extension of reward-poisoning attacks (previously
studied on bandits [Jun et al., 2018; Liu and Shroff,
2019; Ma et al., 2018; Yang et al., 2021; Guan et al.,
2020; Garcelon et al., 2020; Bogunovic et al., 2021;
Zuo, 2020; Lu et al., 2021] and reinforcement learn-
ing [Zhang et al., 2020; Ma et al., 2019; Rakhsha et al.,
2020; Sun et al., 2020; Huang and Zhu, 2019]) to game
playing.

For both contexts the mathematical question is the same.
Since the design costs are measured by deviations from the
original game `o, the designer is not totally free in creating
new games. Our idea for successful game redesign is:

1. Do not change the loss of the target action profile, i.e. let
`t(a†) = `o(a†), ∀t. If game redesign is indeed success-
ful, then a† will be played for T − o(T ) rounds. As we
will see, `t(a†) = `o(a†) means there is no design cost
in those rounds under our definition of C. The remaining
rounds incur at most o(T ) cumulative design cost.

2. The target action profile a† forms a strictly dominant strat-
egy equilibrium. This ensures no-regret players will even-
tually learn to prefer a† over any other action profiles.

Game redesign is closely related to the k-implementation
problem [Monderer and Tennenholtz, 2004]. Both aim to ma-
nipulate player behaviors by changing the payoff. However,
there are major differences: k-implementation assumes play-
ers know the game, while in our case the players have to learn
the game; k-implementation only allows increase to existing
payoffs, while we allow both positive (subsidy) and negative
(tax) changes. Our interior design (Algorithm 1) indeed pro-
duces a 0-implementation in their terminology because we
keep the payoff of the desired strategy profile unchanged.
Nonetheless, our players have to discover this strategy pro-
file by exploration, meaning that the designer will still incur
costs especially in earlier rounds.

More broadly, game redesign is related to, but distinct
from, constrained mechanism design. The players in game
redesign are no-regret learners, not rational (best-response)
players of a repeated game.
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2 Formal Definition
We first describe the original game without the designer.
There are M players. Let Ai be the finite action space of
player i, and let Ai = |Ai|. The original game is defined
by the loss function `o : A1 × . . .AM 7→ RM . The play-
ers do not know `o. Instead, we assume they play the game
for T rounds using no-regret algorithms. This may be the
case, for example, if the players are learning an approximate
Nash equilibrium in zero-sum `o or coarse correlated equi-
librium in general sum `o. In running the no-regret algo-
rithm, the players maintain their own action selection poli-
cies πti ∈ ∆Ai over time, where ∆Ai is the probability sim-
plex over Ai. In each round t, every player i samples an
action ati according to policy πti . This forms an action profile
at = (at1, . . . , a

t
M ). The original game produces the loss vec-

tor `o(at) = (`o1(at), ..., `oM (at)). However, player i only ob-
serves her own loss value `oi (a

t), not the other players’ losses
or their actions. All players then update their policy accord-
ing to their no-regret algorithms.

We now bring in the designer. The designer knows `o and
wants players to frequently play an arbitrary but fixed target
action profile a†. We stress that a† does not need to coin-
cide with any solution concept in `o. At the beginning of
round t, the designer commits to a potentially different loss
function `t. Note this involves preparing the loss vector `t(a)
for all action profiles a (i.e. “cells” in the payoff matrix).
The players then choose their action profile at. Importantly,
the players receive losses `t(at), not `o(at). For example,
in games involving money such as the volunteer game, the
designer may achieve `t(at) via taxes or subsidies, and in
zero-sum games such as the rock-paper-scissors game, the
designer essentially “makes up” a new outcome and tell each
player whether they win, tie, or lose via `ti(a

t); The designer
incurs a cost C(`o, `t, at) for deviating from `o. The inter-
action among the designer and the players is summarized as
below.

Protocol: Game Redesign
Designer knows `o, a†, M ,A1:M , and player no-regret rate α

for t = 1, . . . , T do
Designer prepares new loss function `t.
Players form action profile at = (at1, ..., a

t
M ), where

ati ∼ πti , ∀i ∈ [M ].
Player i observes its loss `ti(a

t), updates policy πti .
Designer incurs cost C(`o, `t, at).

end for

The designer has two goals simultaneously:

1. To incentivize the players to frequently choose the target
action profile a† (which may not coincide with any solu-
tion concept of `o). Let NT (a) =

∑T
t=1 1 [at = a] be the

number of times an action profile a is chosen in T rounds,
then this goal is to achieve E

[
NT (a†)

]
= T − o(T ).

2. To have a small cumulative design cost CT :=∑T
t=1 C(`o, `t, at), specifically E

[
CT
]

= o(T ).

The per-round design cost C(`o, `t, a) is application de-
pendent. One plausible is to account for the overall cost in
all action profiles, not just what is actually chosen: an ex-
ample is C(`o, `t, at) =

∑
a ‖`o(a) − `t(a)‖1. Note that it

ignores the at argument. In many applications, though, only
the chosen action profile costs the designer (the implementa-
tion cost in [Monderer and Tennenholtz, 2004]). An example
is C(`o, `t, at) = ‖`o(at)− `t(at)‖1. We use a slight gener-
alization of the latter cost:
Assumption 1. The non-negative designer cost function C
satisfies ∀t, ∀at, C(`o, `t, at) ≤ η‖`o(at)−`t(at)‖p for some
Lipschitz constant η and norm p ≥ 1.

This implies no design cost if the losses are not modified,
i.e., when `o(at) = `t(at), C(`o, `t, at) = 0 .

3 Assumption: No-Regret Players
The designer assumes that the players are each running a
no-regret learning algorithm like EXP3.P [Bubeck and Cesa-
Bianchi, 2012]. It is well-known that for two-player (M = 2)
zero-sum games, no-regret learners can find an approximate
Nash Equilibrium [BLUM, 2007]. More general results sug-
gest that for multi-player (M ≥ 2) general-sum games, no-
regret learners can find an approximate Coarse Correlated
Equilibrium [Hart and Mas-Colell, 2000]. We first define the
player’s regret. We use at−i to denote the actions selected by
all players except player i in round t.
Definition 1. (Regret). For any player i, the best-in-
hindsight regret with respect to a sequence of loss functions
`ti(·, at−i), t ∈ [T ], is defined as

RTi =
T∑
t=1

`ti(a
t
i, a

t
−i)− min

ai∈Ai

T∑
t=1

`ti(ai, a
t
−i). (1)

The expected regret is defined as E
[
RTi
]
, where the expecta-

tion is taken with respect to the randomness in the selection
of actions at, t ∈ [T ] over all players.
Remark. The loss functions `ti(·, at−i), t ∈ [T ] depend on the
actions selected by the other players at−i, while at−i further
depends on a1, ..., at−1 of all players in the first t−1 rounds.
Therefore, `ti(·, at−i) depends on a1i , ..., a

t−1
i . That means,

from player i’s perspective, the player is faced with a non-
oblivious (adaptive) adversary [Slivkins, 2019].

Remark. Note that a∗i := argminai∈Ai
∑T
t=1 `

t
i(ai, a

t
−i)

in (1) would have meant a baseline in which player i always
plays the best-in-hindsight action a∗i in all rounds t ∈ [T ].
Such baseline action should have caused all other players
to change their plays away from a1−i, ..., a

T
−i. However, we

are disregarding this fact in (1). For this reason, (1) is not
fully counterfactual, and is called the best-in-hindsight re-
gret [Bubeck and Cesa-Bianchi, 2012]. The same is true
when we define the expected regret.

Our key assumption is that the learners achieve sublinear
regret. This assumption is satisfied by standard bandit algo-
rithms such as EXP3.P [Bubeck and Cesa-Bianchi, 2012].
Assumption 2. (No-regret Learner) We assume the players
apply no-regret learning algorithm that achieves expected re-
gret E

[
RTi
]

= O(Tα), ∀i for some α ∈ [0, 1).
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4 Game Redesign Algorithms
There is an important consideration regarding the allowed
values of `t. The original game `o has a set of “natural loss
values” L. For example, in the rock-paper-scissors game
L = {−1, 0, 1} for the player wins (recall the value is the
loss), ties, and loses, respectively; while for games involving
money it is often reasonable to assume L as some interval
[L,U ]. Ideally, `t should take values in L to match the se-
mantics of the game or to avoid suspicion (in the attack con-
text). Our designer can work with discrete L (section 4.3);
but for exposition we will first allow `t to take real values
in L̃ = [L,U ], where L = minx∈L x and U = maxx∈L x.
We assume U and L are the same for all players and U > L,
which is satisfied whenL contains at least two distinct values.

4.1 Algorithm: Interior Design
The name refers to the narrow applicability of Algorithm 1:
the original loss values for the target action profile `o(a†)
must all be in the interior of L̃. Formally, we require ∃ρ ∈
(0, U−L2 ], ∀i, `oi (a†) ∈ [L + ρ, U − ρ]. In Algorithm 1, we
present the interior design. The key insight is to keep `o(a†)
unchanged: If the designer is successful, a† will be played in
T − o(T ) rounds. In these rounds, the designer cost is zero.
The other o(T ) rounds each incur bounded cost. Overall, this
ensures sublinear design cost. For the design to be successful,
the designer can make a† the strictly dominant strategy. The
designer can do this by judiciously increasing or decreasing
the loss of other action profiles in `o: there is enough room
because `o(a†) is in the interior. In fact, the designer can de-
sign a time-invariant game `t = ` as Algorithm 1 shows.

Algorithm 1 Interior Design

Input: the target action profile a†; the original game `o.
Output: a time-invariant game ` constructed as follows:

∀i, a, `i(a) =

{
`oi (a

†)− (1− d(a)
M )ρ if ai = a†i ,

`oi (a
†) + d(a)

M ρ if ai 6= a†i ,

(2)
where d(a) =

∑M
j=1 1

[
aj = a†j

]
.

Lemma 3. The redesigned game (2) satisfies:

1. ∀i, a, `i(a) ∈ L̃, thus ` is valid.

2. For every player i, the target action a†i strictly domi-
nates any other action by (1 − 1

M )ρ, i.e., `i(ai, a−i) =

`i(a
†
i , a−i) + (1− 1

M )ρ, ∀i, ai 6= a†i , a−i.

3. `(a†) = `o(a†).
4. If the original loss for the target action profile `o(a†) is

zero-sum, then the redesigned game ` is also zero-sum.
Our main result is that Algorithm 1 achieves the design

goal with sublinear cumulative design cost. It is worth not-
ing that although many entries in the redesigned game ` can
appear to be quite different than the original game `o, their
contribution to the design cost is small because the design
discourages them from being played often.

Theorem 4. Using Algorithm 1, the designer can achieve
E
[
NT (a†)

]
= T − O(MTα) while incurring expected cu-

mulative design cost E
[
CT
]

= O(ηM1+ 1
pTα).

Corollary 5. If the players use EXP3.P, the designer can
achieve E

[
NT (a†)

]
= T − O(MT

1
2 ) while incurring ex-

pected cumulative design cost E
[
CT
]

= O(ηM1+ 1
pT

1
2 ).

If the original game `o is two-player zero-sum, then under
redesign, players will think that a† is a Nash equilibrium.

Corollary 6. Assume M = 2 and `o is zero-sum. Then
with the redesigned game (2), the expected averaged policy
E
[
π̄Ti
]

= E
[
1
T

∑
t π

t
i

]
converges to a point mass on a†i .

4.2 Boundary Design
When `o(a†) has some values hitting the boundary of L̃, the
designer cannot apply Algorithm 1 directly because the loss
of other action profiles cannot be increased or decreased fur-
ther to make a† a dominant strategy. However, a time-varying
design can still achieve the design goals with sublinear design
cost. In Algorithm 2, we present the boundary design which
is applicable to both boundary and interior `o(a†) values.

Algorithm 2 Boundary Design

Input: the target action profile a†; a loss vector v ∈ RM
whose elements are in the interior, i.e., ∀i, vi ∈ [L +
ρ, U−ρ] for some ρ > 0; the regret rate α; ε ∈ (0, 1−α);

Output: a time-varying game with loss `t, t ∈ [T ].
1: Use v in place of `o(a†) in (2) and apply the interior de-

sign 1. Call the resulting game the “source game” `.
2: Define a “destination game” ` where `(a) = `o(a†), ∀a.
3: Interpolate the source and destination games:

`t = wt`+ (1− wt)` (3)

where wt = tα+ε−1.

The designer can choose any loss vector v as long as v lies
in the interior of L̃. We give two exemplary choices of v.

1. Let the average player cost of a† be ¯̀(a†) =∑M
i=1 `

o
i (a
†)/M , then if ¯̀(a†) ∈ (L,U), one could

choose v to be a constant vector with value ¯̀(a†). The nice
property about this choice is that if `o is zero-sum, then v
is zero-sum, thus property 4 is satisfied and the redesigned
game is zero-sum. However, note that when ¯̀(a†) does hit
the boundary, the designer cannot choose this v.

2. Choose v to be a constant vector with value (L + U)/2.
This choice is always valid, but may not preserve the zero-
sum property of the original game unless L = −U .

The designer applies the interior design on v to obtain a
“source game” `. Note that the target action profile a† strictly
dominates in the source game. The designer also creates a
“destination game” `(a) by repeating the `o(a†) entry every-
where. The boundary algorithm then interpolates between
the source and destination games with a decaying weight wt.
Note after interpolation (3), the target a† still dominates by
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roughly wt. We design the weight wt = tα+ε−1 so that cu-
mulatively, the sum of wt grows with rate α + ε, which is
faster than the regret rate α. This is a critical consideration
to enforce frequent play of a†. Also note that asymptotically,
`t converges toward the destination game. Therefore, in the
long run, when a† is played the designer incurs diminishing
cost, resulting in o(T ) cumulative design cost.
Lemma 7. The redesigned game (3) satisfies:
1. ∀i, a, `ti(a) ∈ L̃, thus the loss function is valid.

2. For every player i, the target action a†i strictly domi-
nates any other action by (1− 1

M )ρwt, i.e., `ti(ai, a−i) =

`ti(a
†
i , a−i) + (1− 1

M )ρwt, ∀i, t, ai 6= a†i , a−i.

3. ∀t, C(`o, `t, a†) ≤ η(U − L)M
1
pwt

4. If the original loss for the target action profile `o(a†) and
the vector v are both zero-sum, then ∀t, `t is zero-sum.
Given Lemma 7, we provide our second main result.

Theorem 8. Using Algorithm 2, the designer can achieve
E
[
NT (a†)

]
= T−O(MT 1−ε) while incurring expected cu-

mulative design cost E
[
CT
]

= O(M1+ 1
pT 1−ε+M

1
pTα+ε).

Remark. By choosing a larger ε in Theorem 8, the designer
increases E

[
NT (a†)

]
. However, the design cost can grow.

When ε = 1−α
2 , the design cost attains the minimum order

O
(
T

1+α
2

)
and E

[
NT (a†)

]
= T −O(T

1+α
2 )

Corollary 9. Assume the no-regret learning algorithm is
EXP3.P. The designer can achieve expected number of tar-
get plays E

[
NT (a†)

]
= T − O(MT

3
4 ) while incurring

E
[
CT
]

= O
(
M

1
p (1 +M)T

3
4

)
design cost.

4.3 Discrete Design
In previous sections, we assumed the games `t can take arbi-
trary continuous values in the relaxed loss range L̃ = [L,U ].
However, there are many real-world situations where contin-
uous loss does not have a natural interpretation. For example,
in the rock-paper-scissors game, the loss is interpreted as win,
lose or tie, thus `t should only take value in the original loss
value setL = {−1, 0, 1}. We now provide a discrete redesign
to convert any game `t with values in L̃ into a game ˆ̀t only
involving loss values L and U , which are both in L. Specifi-
cally, the discrete design is illustrated in Algorithm 3.

Algorithm 3 Discrete Design

Input: the target action profile a†; a loss vector v ∈ RM
whose elements are in the interior, i.e., ∀i, vi ∈ [L+ρ, U−
ρ] for some ρ > 0; the regret rate α; ε ∈ (0, 1− α);

Output: a time-varying game with loss ˆ̀t ∈ L as below:

∀t, i, a, ˆ̀t
i(a) =

{
U with probability `ti(a)−L

U−L

L with probability U−`ti(a)
U−L .

(4)

It is easy to verify E
[
ˆ̀t
]

= `t. In experiments we show
such discrete games also achieve the design goals.

4.4 Thresholding the Redesigned Game
For all designs in previous sections, the designer could im-
pose an additional min or max operator to threshold on the
original game loss, e.g., for the interior design, the redesigned
game loss after thresholding becomes ∀i, a,

`i(a) =

{
min{`oi (a†)− (1− d(a)

M )ρ, `o(a)} if ai = a†i ,

max{`oi (a†) + d(a)
M ρ, `o(a)} if ai 6= a†i .

(5)
We point out a few differences between (5) and (2). First, (5)
guarantees a dominance gap of “at least” (instead of exactly)
(1 − 1

M )ρ. As a result, the thresholded game can induce a
larger NT (a†) because the target action a† is redesigned to
stand out even more. Second, one can easily show that (5) in-
curs less design cost CT compared to (2) due to thresholding.
Therefore, Theorem 4 still holds. However, thresholding no
longer preserves the zero-sum property.

5 Experiments
We perform empirical evaluations of game redesign algo-
rithms on four games — the volunteer’s dilemma (VD),
tragedy of the commons (TC), prisoner’s dilemma (PD) and
rock-paper-scissors (RPS). Throughout the experiments, we
use EXP3.P [Bubeck and Cesa-Bianchi, 2012] as the no-
regret learner. The concrete form of the regret bound for
EXP3.P is illustrated in the appendix. Based on that, we de-
rive the exact form of our theoretical upper bounds for The-
orem 4 and Theorem 8, and we show the theoretical value
for comparison in our experiments. We let the designer cost
function be C(`o, `t, at) = ‖`o(at) − `t(at)‖p with p = 1.
For VD, TC and PD, the original game is not zero-sum, and
we apply the thresholding (5) to slightly improve the redesign
performance. For the RPS game, we apply the design without
thresholding to preserve the zero-sum property. The results
we show in all the plots are produced by taking the average
of 5 trials.

5.1 Volunteer’s Dilemma (VD)
In volunteer’s dilemma (Table 1) there are M players. Each
player has two actions: volunteer or not. When there exists at
least one volunteer, those players who do not volunteer gain
1 (i.e. a −1 loss). The volunteers receive zero payoff. On the
other hand, if no players volunteer, then every player loss 10.

Other players
exists a volunteer no volunteer exists

Player i volunteer 0 0
not volunteer −1 10

Table 1: The loss function `oi for individual player i in VD.

As mentioned earlier, all pure Nash equilibria involve free-
riders. The designer aims at encouraging all players to vol-
unteer, i.e., the target action profile a†i is “volunteer” for any
player i. Note that ∀i, `oi (a†) = 0, which lies in the interior
of L = [−1, 10]. Therefore, the designer could apply the in-
terior design Algorithm 1. The margin parameter is ρ = 1.
We let M = 3. In table 2, we show the redesigned game
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(a) T −NT (a†) on TC. (b) CT on TC. (c) Loss change on TC. (d) T −NT (a†) on PD. (e) CT on PD.

Figure 1: Interior design on TC and PD. The dashed lines are the theoretical upper bound.

`. Note that when all three players volunteer (i.e., at a†), the
loss is unchanged compared to `o. Furthermore, regardless
of the other players, the action “volunteer” strictly dominates
the action “not volunteer” by at least (1− 1

M )ρ = 2
3 for every

player. When there is no other volunteers, the dominance gap
is 32

3 ≥ (1− 1
M )ρ, which is due to the thresholding in (5). We

Number of other volunteers
0 1 2

Player i volunteer −2/3 −1/3 0
not volunteer 10 1/3 2/3

Table 2: The redesigned loss function `i for player i in VD.

simulated play for T = 104, 105, 106, 107, respectively on
this redesigned game `. In Figure 2a, we show T − NT (a†)
against T . The plot is in log scale. The standard deviation
estimated from 5 trials is less than 3% of the corresponding
value and is hard to see in log-scale plot, thus we do not show
that. We also plot our theoretical upper bound in dashed lines
for comparison. Note that the theoretical value indeed up-
per bounds our empirical results. In Figure 2b, we show CT

against T . Again, the theoretical upper bound holds. As our
theory predicts, for the four T ’s the designer increasingly en-
forces a† in 60%, 82%, 94%, and 98% of the rounds, respec-
tively; The per-round design costs CT /T decreases at 0.98,
0.44, 0.15, and 0.05, respectively.

(a) Number of rounds at 6=
a† grows sublinearly.

(b) The cumulative design
cost grows sublinearly too.

Figure 2: Interior design on VD with M = 3. The dashed lines are
theoretical upper bounds.

5.2 Tragedy of the Commons (TC)
Our second example is the tragedy of the commons (TC).
There are M = 2 farmers who share the same pasture to
graze sheep. Each farmer i is allowed to graze at most 15
sheep, i.e., the action space is Ai = {0, 1, ..., 15}. The
more sheep are grazed, the less well fed they are, and thus
less price on market. We assume the price of each sheep is

p(a) =
√

30−
∑2
i=1 ai, where ai is the number of sheep

that farmer i grazes. The loss function of farmer i is then
`oi (a) = −p(a)ai, i.e. negating the total price of the sheep
that farmer i owns. The Nash equilibrium strategy of this
game is that every farmer grazes a∗i = 12 sheep.

It is well-known that this Nash equilibrium is subopti-
mal. Instead, the designer hopes to maximize social welfare:
p(a)(a1 + a2), which is achieved when a1 + a2 = 20. More-
over, to promote equity the designer desires that the two farm-
ers graze the same number of sheep. Thus the target action
profile is a†i = 10, ∀i. Note that the original loss function
takes value in [−15

√
15, 0] while `oi (a

†) = −10
√

10, thus
this is the interior design scenario. Due to the large number
of entries, we only visualize the difference `1(a) − `o1(a) for
player 1 in Figure 1c; the other player is the same. We ob-
serve three patterns of loss change. For most a’s, e.g., a1 ≤ 6
or a2 ≥ 11, the original loss `o1(a) is already sufficiently large
and satisfies the dominance gap in Lemma 3, thus the loss re-
mains unchanged. For those a’s where a†1 = 10, the designer
reduces the loss to make the target action more profitable. For
those a’s close to the bottom left (a1 > a†1 and a2 ≤ 10), the
designer increases the loss to enforce the gap (1− 1

M )ρ.
We simulated the game play for T = 104, 105, 106, 107

rounds and show the results in Figure 1a, 1b, and 1c. Again
the game redesign is successful: the figures confirm T −o(T )
target action play and o(T ) cumulative design cost. Numeri-
cally, for the four T ’s the designer enforces a† in 41%, 77%,
92%, and 98% of rounds, and the per-round design costs are
9.4, 4.2, 1.4, and 0.5, respectively.

5.3 Prisoner’s Dilemma (PD)
Our third example is the prisoner’s dilemma (PD). There are
two prisoners, each can stay mum or fink. The original loss
`o is given in Table 5a. The Nash equilibrium strategy of this
game is that both prisoners fink. Suppose a mafia designer
hopes to force a† =(mum, mum) by sabotaging the losses.
Note that ∀i, `oi (a†) = 2, which lies in the interior of the
loss range L = [1, 5]. Therefore, this is again an interior de-
sign scenario. In Table 5b we show the redesigned game `.
Note that when both prisoners stay mum or both fink, the de-
signer does not change the loss. However, when one prisoner
stays mum and the other finks, the designer reduces the loss
for the mum prisoner and increases the loss for the betrayer.
We simulated plays for T = 104, 105, 106, and 107. In Fig-
ure 1d and 1e, we plot the number of non-target selections
T −NT (a†) and the cumulative design cost CT for PD. Both
grow sublinearly as T increases. The designer enforces a† in
85%, 94%, 98%, and 99% of rounds. The per-round design
costs are 0.71, 0.28, 0.09, and 0.03, respectively.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3325



R P S
R −0.5, 0.5 0, 0 −0.5, 0.5
P 0, 0 0.5,−0.5 0, 0
S 0, 0 0.5,−0.5 0, 0

(a) `t(t = 1).

R P S
R 0.62,−0.62 0.75,−0.75 0.62,−0.62
P 0.75,−0.75 0.87,−0.87 0.75,−0.75
S 0.75,−0.75 0.87,−0.87 0.75,−0.75

(b) `t(t = 103).

R P S
R 0.94,−0.94 0.96,−0.96 0.94,−0.94
P 0.96,−0.96 0.98,−0.98 0.96,−0.96
S 0.96,−0.96 0.98,−0.98 0.96,−0.96

(c) `t(t = 107).

Table 3: The redesigned RPS games `t for selected t (with ε = 0.3). Note the target entry a† = (R,P ) converges toward (1,−1).

R P S
R 0, 0 1,−1−1, 1
P −1, 1 0, 0 1,−1
S 1,−1−1, 1 0, 0

(a) The original loss `o.

R P S
R 1, 1 1, 1 −1, 1
P −1,−1 1,−1 −1,−1
S −1, 1 −1,−1−1,−1

(b) ˆ̀t(t = 1).

R P S
R 1,−1 1, 1 −1,−1
P 1,−1 1,−1 1,−1
S 1,−1 1,−1 1, 1

(c) ˆ̀t(t = 103).

R P S
R 1,−1 1,−1 1,−1
P 1,−1 1,−1 1,−1
S 1,−1 1,−1 1,−1

(d) ˆ̀t(t = 107).

Table 4: Instantiation of discrete design on the same games as in Table 3. The redesigned loss lies in L = {−1, 0, 1}.

mum fink
mum 2, 2 5, 1
fink 1, 5 4, 4

(a) The original loss `o of PD.

mum fink
mum 2, 2 1.5, 2.5
fink 2.5, 1.5 4, 4

(b) The redesigned loss ` of PD.

Table 5: Interior redesign on Prisoner’s Dilemma.

(a) Number of rounds at 6= a†. (b) The cumulative design cost.

Figure 3: Boundary design on RPS. The dashed lines are the theo-
retical upper bound.

5.4 Rock-Paper-Scissors (RPS)
Our last example is the RPS game, as shown in Table 4a.
Boundary Design. Suppose the target profile is a† =
(R,P ). Since `o(a†) = (1,−1) hits the boundary of loss
range L̃ = [−1, 1], the designer must use the boundary de-
sign. For simplicity we choose v with vi = U+L

2 , ∀i. This
choice of v preserves the zero-sum property. Table 3 shows
the redesigned games at t = 1, 103 and 107 under ε = 0.3.
Note that the designer maintains the zero-sum property of the
games. Also note that the redesigned loss function guaran-
tees strict dominance of a† for all t, but the dominance gap
decreases as t grows. Finally, the loss of the target action
a† = (R,P ) converges to the original loss `o(a†) = (1,−1)
asymptotically, thus the designer incurs diminishing cost.

We ran Algorithm 2 for ε = 0.1, 0.2, 0.3, 0.4. For each ε
we simulated game play for T = 104, 105, 106 and 107. In
Figure 3a, we show T−NT (a†) under different ε (solid lines)
and the theoretical upper bounds of Theorem 8 (dashed lines)
for comparison. In Figure 3b, we show CT and the upper
bounds. Note that both T − NT (a†) and CT grow sublin-
early. For ε = 0.3, for the four T ’s the designer forces a†
in 34%, 60%, 76%, and 88% rounds. The per-round design
costs are 1.7, 1.2, 0.73 and 0.40. The results are similar for

(a) Number of rounds at 6= a†. (b) The cumulative design cost.

Figure 4: Discrete redesign for a† = (R,P ) with natural loss values
in L. The dashed lines are the corresponding boundary design.

the other ε’s. We note that empirically the cumulative design
cost achieves the minimum at some ε ∈ (0.3, 0.4) while The-
orem 8 suggests the minimum at ε∗ = 0.25. We investigate
this inconsistency in the appendix.
Discrete Design. We now compare the performance of dis-
crete design (Algorithm 3) with the boundary design. The tar-
get profile is still a† = (R,P ). Recall the purpose of discrete
design is to only use natural game loss values, in the RPS case
L = {−1, 0, 1}. Figure 4 shows that the performance of the
discrete design nearly matches the boundary design. When
ε = 0.3, for the four T ’s discrete design enforces a† 35%,
59%,75% and 88% of the time. The per-round design costs
are 1.7, 1.2, 0.79, and 0.41. Overall, discrete design does not
lose much performance. Table 4 shows the redesigned “ran-
dom” games at t = 1, 103 and 107 under ε = 0.3. As t in-
creases, the redesigned loss function converges to a constant
function that takes the target loss value `o(a†).

6 Conclusion
We studied the game redesign problem where players apply
no-regret algorithms to play the game. We show that a de-
signer can enforce a target action profile in T − o(T ) rounds
while incurring o(T ) cumulative design cost. Experiments
demonstrate the performance of our redesign algorithms.
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