
To Trust or Not To Trust Prediction Scores for Membership Inference Attacks

Dominik Hintersdorf ∗1 , Lukas Struppek ∗1 , Kristian Kersting 1,2,3

1Department of Computer Science, Technical University of Darmstadt, Germany
2Centre for Cognitive Science, Technical University of Darmstadt, Germany

3Hessian Center for AI (hessian.AI), Germany
{dominik.hintersdorf, lukas.struppek, kersting}@cs.tu-darmstadt.com,

Abstract

Membership inference attacks (MIAs) aim to deter-
mine whether a specific sample was used to train a
predictive model. Knowing this may indeed lead
to a privacy breach. Most MIAs, however, make
use of the model’s prediction scores—the proba-
bility of each output given some input—following
the intuition that the trained model tends to behave
differently on its training data. We argue that this
is a fallacy for many modern deep network archi-
tectures. Consequently, MIAs will miserably fail
since overconfidence leads to high false-positive
rates not only on known domains but also on out-
of-distribution data and implicitly acts as a defense
against MIAs. Specifically, using generative adver-
sarial networks, we are able to produce a poten-
tially infinite number of samples falsely classified
as part of the training data. In other words, the
threat of MIAs is overestimated, and less informa-
tion is leaked than previously assumed. Moreover,
there is actually a trade-off between the overconfi-
dence of models and their susceptibility to MIAs:
the more classifiers know when they do not know,
making low confidence predictions, the more they
reveal the training data.

1 Introduction
Deep learning models achieve state-of-the-art performances
in various tasks such as computer vision, language model-
ing, and healthcare. However, large datasets are needed to
train these models. Collecting and, in particular, cleaning and
labeling data is expensive. Hence, users may look for alter-
native data sources, which may not always be legal ones. To
detect data abuse, it would be desirable to prove whether a
model was trained on leaked or unauthorized retrieved data.
However, to prove that a specific data point was part of the
training set is difficult since neural networks do not store plain
training data like lazy learners. Instead, the learned knowl-
edge is encoded into the network’s weights.1

∗Equal contribution.
1Extended paper available at https://arxiv.org/abs/2111.09076.
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Figure 1: False-positive membership inference attacks (red frames)
against a ResNet-18 and their assigned maximum prediction scores.

One way to distinguish between unseen data and data
points used for training the neural networks is through mem-
bership inference attacks (MIAs). They attempt to identify
training samples in a large set of possible inputs. Besides ma-
licious intentions, MIAs might be used to prove illegal data
abuse in deep learning settings. To use membership inference
results as evidence in court, high accuracy and robustness to
different data types and network architectures is required.

Previous works on MIAs, see e.g., Shokri et al. [2017] and
Salem et al. [2019], state strong attack results in distinguish-
ing between training and test data, and give the impression
that MIAs have a strong impact on a model’s privacy. How-
ever, the evaluation of MIAs reported in the literature is usu-
ally done with limited data in a cross-validation setting, i.e.,
on samples from the exact same data distribution, not consid-
ering other distributions with possibly similar image contents.

We argue that MIAs, in particular attacks based on a
model’s prediction scores, are not robust and not very mean-
ingful in realistic settings, due to their high false-positive
rates, also criticized by Rezaei et al. [2021]. We take, how-
ever, a broader view and do not restrict evaluation on the tar-
get model’s exact training distribution. In a specific domain,
there is a possibly infinite number of samples and hence the
number of false positives can be increased arbitrarily. This
leads to reduced informative value and low reliability of the
attacks under realistic conditions. Fig. 1 shows samples from
various datasets for which all three MIAs studied in this paper
make false-positive predictions, even if the inputs are nothing
similar to the training data or do not contain any meaning-
ful information at all. We practically demonstrate the theo-
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retically unlimited number of false-positive member classi-
fications by using a GAN to generate images following the
training distribution.

Our argumentation is based on the already known over-
confidence of modern deep neural architectures [Nguyen et
al., 2015; Hendrycks and Gimpel, 2017; Guo et al., 2017;
Leibig et al., 2019]. However, overconfidence has consis-
tently been ignored in the MIA literature, even though MIA
findings are already having an impact on regulatory and other
legal measures. Our experimental results indicate that miti-
gating the overconfidence of neural networks using calibra-
tion techniques increases privacy leakage.

We argue that previous works performed misleading attack
evaluations and overestimated the actual attack effectiveness
by using only data from the target model’s exact training dis-
tribution. Actually, there might not exist any meaningful MIA
at all since the attacks will always produce a high number of
false positives due to the overconfidence of neural networks.

To summarize, we make the following contributions:
1. We demonstrate that the effectiveness of MIAs has been

systematically overestimated by ignoring the fact that
most neural networks are inherently overconfident and,
therefore, produce high false-positive rates.

2. We show that overconfidence acts as a natural defense
against MIAs.

3. We reveal that a trade-off exists between keeping models
secure against MIAs and mitigating overconfidence.

We proceed as follows. We start off by reviewing MIAs
and how overconfidence of neural networks can be mitigated.
Afterward, we introduce the theoretical background and our
experimental setup. Before discussing and concluding our
work, we present our experimental results.

2 Membership Inference Attacks
Membership inference attacks (MIAs) on neural networks
were first introduced by Shokri et al. [2017]. In a general
MIA setting, as usually assumed in the literature, an ad-
versary is given an input x following distribution D and a
target model Mtarget which was trained on a training set
Starget
train ∼ Dn with size n. The adversary is then facing

the problem to identify whether a given x ∼ D was part
of the training set Starget

train . To predict the membership of x,
the adversary creates an inference model h. In score-based
MIAs, the input to h is the prediction score vector produced
by Mtarget on sample x. Since MIAs are binary classification
problems, precision, recall, false-positive rate (FPR), and area
under the receiver operating characteristic (AUROC) are used
as attack evaluation metrics in our experiments.

All MIAs exploit a difference in the behavior of Mtarget

on seen and unseen data. Most attacks in the literature fol-
low Shokri et al. [2017] and train so-called shadow models
Mshadow on a disjoint dataset Sshadow

train drawn from the same
distribution D as Starget

train . Mshadow is used to mimic the be-
havior of Mtarget and adjust parameters of h, such as thresh-
old values or model weights. Note that the membership status
for inputs to Mshadow are known to the adversary. Fig. 2 vi-
sualizes the attack preparation process.

Figure 2: Membership inference preparation process.

In recent years, various MIAs have been proposed. Shokri
et al. [2017] trained multiple shadow models and queried each
of the shadow models with its training data (members), as
well as unseen data (non-members) to retrieve the prediction
scores of the shadow models. Multiple binary classifiers were
then trained for each class label to predict the membership
status. Salem et al. [2019] also used prediction scores and
trained a single class-agnostic neural network to infer mem-
bership. In contrast to Shokri et al. [2017], their approach
relies on a single shadow model. The input of h consists of
the k highest prediction scores in descending order.

Instead of focusing solely on the scores, Yeom et al. [2018]
took advantage of the fact that the loss of a model is lower
on members than on non-members and fit a threshold to the
loss values. More recent approaches [Choquette-Choo et al.,
2021; Li and Zhang, 2021] focused on label-only attacks
where only the predicted label for a known input is observed.

3 Overconfidence of Neural Networks
Neural networks usually output prediction scores, e.g., by ap-
plying a softmax function. To take model uncertainty into
account, it is usually desired that the prediction scores repre-
sent the probability of a correct prediction, which is usually
not the case. This problem is generally referred to as model
calibration. Guo et al. [2017] demonstrated that modern net-
works tend to be overconfident in their predictions. Hein et
al. [2019] have further proven that ReLU networks are over-
confident even on samples far away from the training data.

Existing approaches to mitigate overconfidence can be
grouped into two categories: post-processing methods ap-
plied on top of trained models and regularization methods
modifying the training process. As a post-processing method,
Guo et al. [2017] proposed temperature scaling using a single
temperature parameter T for scaling down the pre-softmax
logits for all classes. The larger T is, the more the resulting
scores approach a uniform distribution. Kristiadi et al. [2020]
further proposed to approximate a model’s final layer with
a Laplace approximation. Müller et al. [2019] demonstrated
that label smoothing regularization Szegedy et al. [2016] not
only improves the generalization of a model but also im-
plicitly leads to better model calibration. The calibration of
a model can be measured by the expected calibration error
(ECE) [Naeini et al., 2015] and the overconfidence error (OE)
[Thulasidasan et al., 2019]. Both metrics compute a weighted
average over the absolute difference between test accuracy
and prediction scores, while ECE penalizes the calibration
gap and OE penalizes overconfidence.
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4 Do Not Trust Prediction Scores for MIAs
In this section, we will show that predictions scores for MIAs
cannot be trusted because score-based MIAs make mem-
bership decisions based mainly on the maximum prediction
score. As a first step, we mathematically motivate our argu-
mentation and then verify our claims empirically.

Formally, a neural network f(x) using ReLU activations
decomposes the unrestricted input space Rm into a finite set
of polytopes (linear regions). We can then interpret f(x) as a
piecewise affine function that is affine in any polytope [Arora
et al., 2018]. Due to the limited number of polytopes, the
outer polytopes extend to infinity which allows to arbitrar-
ily increase the prediction scores through scaling inputs by
a large constant δ [Hein et al., 2019]. We now further de-
velop these findings from an MIA point of view and state the
following theorem:

Theorem 1. Given a (leaky) ReLU-classifier, we can force
almost any non-member input to be classified as a member by
score-based MIAs, simply by scaling it by a large constant.

Proof. Let f : Rm → Rd be a piecewise affine (leaky)
ReLU-classifier. We define a score-based MIA inference
model h : Rd → {0, 1} with 1 indicating a classification as
a member. For almost any input x ∈ Rm and a sufficiently
small ϵ > 0 if maxi=1,...,d f(x)i ≥ 1 − ϵ, it follows that
h(f(x)) = 1. Since limδ→∞ maxi=1,...,d f(δx)i = 1, then
limδ→∞h(f(δx))= 1 already holds.

By scaling the whole non-member dataset, one can force
the FPR to be close to 100%. Indeed, the theorem holds only
for (leaky) ReLU-networks and unbounded inputs. However,
since uncalibrated neural networks assign high prediction
scores to a wide range of different inputs, the number of
false-positive predictions is also large for unscaled inputs
from known and unknown domains. Next, we empirically
show that one cannot trust predictions scores for MIAs in
more general settings without input scaling required and
using other activation functions.

4.1 Experimental Protocol
We make our source code publicly available2.

Threat Model. As in most MIA literature [Salem et al.,
2019; Yeom et al., 2018; Song and Mittal, 2021], we fol-
lowed the MIA setting of Shokri et al. [2017], and like Salem
et al. [2019] only trained a single shadow model for each at-
tack. As in previous work, we also simulate a worst-case
scenario, i.e., the adversary knows the exact architecture and
training procedure of the target model. Therefore, a strong
shadow model can be trained, following the procedure de-
picted in Fig. 2. In our score-based MIA scenario, the adver-
sary only has access to the target model’s prediction scores.

Datasets. We evaluated the attacks on models trained on
the CIFAR-10 [Krizhevsky, 2009] and Stanford Dogs [Khosla
et al., 2011] datasets.

2Available at https://github.com/ml-research/To-Trust-or-Not-
To-Trust-Prediction-Scores-for-Membership-Inference-Attacks

SalemCNN ResNet-18 EfficientNetB0
Train Accuracy 100.00% 100.00% 99.03%
Test Accuracy 59.04% 69.38% 71.06%

Entropy Pre 65.51% 67.35% 61.36%
Entropy Rec 88.52% 92.32% 79.96%
Entropy FPR 46.60% 44.76% 50.36%
Entropy AUROC 70.94% 76.50% 66.57%

Max. Score Pre 65.34% 67.35% 61.43%
Max. Score Rec 87.48% 92.32% 79.64%
Max. Score FPR 46.40% 44.76% 50.00%
Max. Score AUROC 72.03% 77.50% 66.58%

Top-3 Scores Pre 62.48% 63.84% 60.74%
Top-3 Scores Rec 100.00% 98.04% 82.60%
Top-3 Scores FPR 60.04% 55.52% 53.40%
Top-3 Scores AUROC 71.57% 77.14% 66.61%

Table 1: Training and attack metrics for the target models trained on
CIFAR-10. We measure the attacks’ precision (Pre), recall (Rec),
FPR and AUROC on equally-sized member and non-member sub-
sets from CIFAR-10.

We created two disjoint training datasets for the target
and shadow models, each containing 12,500 (CIFAR-10) and
8,232 (Stanford Dogs) samples. We then randomly drew
2,500 and 2,058 samples, respectively, from the training and
test sets to create the member and non-member datasets.

We used various datasets to demonstrate the susceptibil-
ity of prediction score-based MIAs to high scores on sam-
ples from neighboring distributions and samples further away
from the training data—a kind of out-of-distribution (OOD)
setting. We used STL-10 [Coates et al., 2011], CIFAR-
100 [Krizhevsky, 2009], SVHN [Netzer et al., 2011], and An-
imal Faces-HQ (AFHQ) [Choi et al., 2020] as datasets.

Additionally, we used pre-trained StyleGAN2 [Karras et
al., 2020] models to generate synthetic CIFAR-10 and dog
images, referred to as Fake CIFAR-10 and Fake Dogs. To
empirically verify our theorem and push our approach to the
extreme, we created two additional datasets based on the re-
spective test images by scaling pixel values by factor 255
and randomly permuting the images’ pixels to create random
noise samples. In the following, we refer to these two datasets
as Permuted and Scaled.

Neural Network Architectures. On CIFAR-10, we
trained a ResNet-18 [He et al., 2016], an EfficientNetB0 [Tan
and Le, 2019] and a simple convolutional neural network fol-
lowing Salem et al. [2019], referred to as SalemCNN. For the
Stanford Dogs dataset, we used a larger ResNet-50 architec-
ture pre-trained on ImageNet. ResNets and SalemCNN are
ReLU networks and can be interpreted as piecewise linear
functions [Arora et al., 2018]. EfficientNetB0 uses Swish ac-
tivation functions [Ramachandran et al., 2018], which are not
piecewise linear and, therefore, our theorem does not hold.
Nevertheless, we demonstrate that also non-ReLU networks
suffer from overconfidence, leading to weak MIAs.

Prediction Score-Based Attacks. We base our analysis on
three different MIAs [Salem et al., 2019] exploiting the top-3
values of the prediction score vector, the maximum value, and
the entropy. For the top-3 prediction score attack, we trained
a small neural network with a single hidden layer as an infer-
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ence model. It uses the three highest scores of Mtarget in de-
scending order as inputs. The maximum prediction score at-
tack relies only on the highest score, while the entropy attack
computes the entropy on the whole prediction score vector.
An input sample is classified as a member, if the maximum
value is higher or if the entropy is lower than a threshold.
We fit all attack models on the shadow models’ outputs, with
the thresholds chosen to maximize the true-positive rate while
minimizing the FPR.

4.2 Experimental Results
We investigate the following questions: (Q1) How robust
are prediction score-based MIAs? (Q2) Does overconfidence
negatively affect MIAs? (Q3) How does calibrating neural
networks influence the success of MIAs? (Q4) Are defenses
contrary to calibration?

(Q1) MIAs Are Not Robust. Tab. 1 summarize the test
accuracy and attack metrics of the CIFAR-10 target models.
The different attacks performed quite similarly while the re-
call is always significantly higher than the precision, indicat-
ing the problem of many false-positive predictions. A similar
picture emerges when looking at the results of the Standard
Stanford Dog model, stated in Tab. 2.

To examine the robustness of the attacks, we used the re-
maining datasets as non-member inputs and measured the
FPRs. Figs. 3b and 3d (transparent bars), show the FPR of the
attacks against the ResNet CIFAR-10 models, and Figs. 3a
and 3c do the same for the Stanford Dogs models.

The results demonstrate that the attacks not only tend to
falsely classify samples from the test data as members but
also samples from other distributions. For example, the at-
tacks against CIFAR-10 misclassified more than a third of
the STL-10 samples, which are similar in content and style,
as members. The same holds for AFHQ Dogs samples as
input for the Stanford Dogs model. The results on the re-
maining datasets, especially on the scaled samples, empiri-
cally confirm our theorem and demonstrate that neural net-
works are not able to recognize when they are operating on
unknown inputs, such as housing numbers, cats, or random
noise, and therefore still produce high FPRs. Even on gener-
ated Fake samples following the training distribution, the FPR
is comparably high and shows that there exists a potentially
infinite number of false-positive samples that are not out-of-
distribution. This behavior is not limited to ReLU networks.
The FPR of the EfficientNetB0 on the datasets is quite similar
to the FPR of the ResNet-18. This indicates that the problem
of high FPR in MIAs is affecting modern deep architectures
in general and underlines the fact that MIAs are not robust.

(Q2) High Prediction Scores Lower Privacy Risks. To
shed light on the connection between overconfidence and
high FPR of the MIAs, we analyzed the mean maximum pre-
diction scores (MMPS) of the target models’ predictions.

Tab. 3 shows the MMPS values measured on a standard
ResNet-50 and underlines our assumption that all score-based
MIAs against models trained with standard procedure mainly
rely on the maximum score since there is a clear difference
between the MMPS of false-positive and true-negative pre-
dictions. The results we have obtained for the CIFAR-10
models are similar to the Results on the ResNet-50.

Calibration Defenses
ResNet-50 Standard LS LA Temp L2
Train Accuracy 98.48% 99.62% 98.48% 98.48% 74.05%
Test Accuracy 59.69% 64.65% 59.62% 59.69% 48.15%
ECE 25.09% ↓↓↓5.80% 5.63% 51.03% 11.86%
OE 21.18% ↓↓↓0.32% 3.59% 0.0% 7.83%

Entropy Pre 68.22% 76.33% 65.39% 59.45% 60.50%
Entropy Rec 84.50% 82.56% 87.03% 47.38% 50.68%
Entropy FPR 39.36% ↓↓↓25.61% 46.06% 32.31% 33.09%
Entropy AUROC 78.22% ↑↑↑85.41% 77.96% ↓↓↓60.84% ↓↓↓61.40%
Max. Score Pre 68.30% 77.32% 68.44% 63.96% 59.13%
Max. Score Rec 83.97% 81.83% 83.87% 65.55% 56.66%
Max. Score FPR 38.97% ↓↓↓24.00% 38.68% 36.93% 39.16%
Max. Score AUROC 78.12% ↑↑↑85.63% 78.15% ↓↓↓69.80% ↓↓↓61.84%
Top-3 Scores Pre 67.48% 76.36% 67.88% 68.48% 59.41%
Top-3 Scores Rec 85.81% 85.71% 84.60% 85.08% 55.39%
Top-3 Scores FPR 41.35% ↓↓↓26.53% 40.04% 39.16% 37.85%
Top-3 Scores AUROC 78.29% ↑↑↑86.24% 78.38% 79.60% ↓↓↓61.86%

Table 2: Training and attack metrics for ResNet-50 target models
trained on Stanford Dogs. We compare the results for the standard
model to models trained with label smoothing (LS) and Laplace ap-
proximation (LA) as calibration techniques and temperature scaling
(Temp) and L2 regularization as defense techniques. Arrows indi-
cate the differences compared to the standard model.

It seems that the non-maximum scores are not providing
significant information on the membership status since the
MMPS values of the false-positive predicted samples using
the maximum score attack and the top-3 attack differ only
slightly. Modifying the top-3 attack to use a larger part of the
score vector for inferring membership of the samples did not
significantly improve the membership inference either.

So on one side, neural networks are overconfident in their
predictions, even on inputs without any known content. It
prevents a reasonable interpretation regarding a model’s prob-
ability of being correct in its predictions. During MIAs, on
the other side, this behavior implicitly protects the training
data since the information content of the prediction score
is rather low. Consequently, there is a trade-off between a
model’s ability to react to unknown inputs and its privacy
leakage. We explore this trade-off in Q3. We further argue
that any adversarial example maximizing the target model’s
scores in an arbitrary class would also be classified as a mem-
ber in almost all cases. So it is possible to hide members in a
larger dataset of non-members that are altered by adversarial
attacks to maximize the target model’s scores.

(Q3) Mitigating Overconfidence Increases Privacy
Risks. Ideally, neural networks are properly calibrated, and
their prediction scores represent the probabilities of correct
predictions. To calibrate the models and to reduce the over-
confidence, we retrained the ResNet-18 and ResNet-50 mod-
els with label smoothing. We performed the same calibration
method on both the target and the shadow models, which re-
flects a worst-case scenario, with an adversary knowing the
exact calibration method and hyperparameters.

Label smoothing not only calibrates a model but may also
improve its test accuracy, as shown in Tab. 2 for ResNet-50.

Both the expected calibration error (ECE) and overcon-
fidence error (OE) dropped significantly, demonstrating a
strong calibration effect when using label smoothing.

Previous works on MIAs suggested that minimizing the
accuracy gap between the training and test accuracy on the

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

3046



Dataset Attack FP MMPS TN MMPS

Stanford Dogs
Entropy 0.9984 0.7565
Max. Score 0.9985 0.7580
Top-3 Scores 0.9979 0.7486

Fake Dogs
Entropy 0.9977 0.7700
Max. Score 0.9979 0.7724
Top-3 Scores 0.9971 0.7648

AFHQ Cats
Entropy 0.9972 0.7205
Max. Score 0.9972 0.7208
Top-3 Scores 0.9959 0.7137

Table 3: MMPS for false-positive (FP) and true-negative (TN) pre-
dictions of different attacks on the standard ResNet-50 model on
selected datasets. A clear difference between false-positive and true-
negative mean maximum prediction scores for all attacks can be
seen. This indicates that all of the analyzed attacks heavily relied
on the maximum prediction score.

same architecture leads to weaker attacks and, therefore, to
lower privacy risks. However, as demonstrated by the re-
sults summarized in Tab. 2, label smoothing improves the
test accuracy and still yields higher attack precision values
for all three attacks on both architectures. Figs. 3a and 3b
further illustrate that label smoothing reduces the number of
false-positive membership predictions. Whereas the FPR on
the Permuted samples is drastically reduced for ResNet-18,
the FPR of the ResNet-50 on the Permuted samples even in-
creases when using label smoothing. We note that this ef-
fect does only occur in some training runs. In other cases,
the FPR for Permuted data drops similar to the ResNet-18
results. On all datasets, the reductions in the FPR are compa-
rable between the ResNet-18 and ResNet-50. The FPR also
decreases for inputs similar to the training data. For com-
parison, we also apply a Laplace approximation (LA) on the
weights of the final layers to mitigate overconfidence. As
shown in Figs. 3c and 3d, LA is better suited to avoid high
prediction scores on the Permuted and Scaled samples.

Our results demonstrate that if a model shows reduced pre-
diction scores on unseen inputs, the samples of the training
data are easier to identify. It reduces the protection induced
by overconfident predictions (on unseen inputs) and increases
vulnerability to MIAs. We applied a kernel density estimation
(KDE) to visualize the distribution of the maximum predic-
tion scores of the ResNet-50 target models on member and
non-member data. Figs. 4a and 4b show the estimated den-
sity functions. Without label smoothing, all three distribu-
tions have their mode around prediction scores of 1.0. This
leads to a large overlap of the distributions. Samples with
prediction scores this high are most likely classified as false-
positive members as the FP MMPS values in Tab. 3 suggest.
We also state the earth mover’s distance (EMD) in the KDE
plots to quantify the distance between the member and non-
member distributions. Label smoothing separates the three
distributions clearly and doubles both EMD values. The label
smoothing model tends to be less overconfident in its predic-
tions on unknown input data, and hence the member samples
are easier to separate from non-members. This increases the
potential privacy leakage of MIAs.
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Figure 3: False-positive rates (FPR) of MIAs against ResNet-18 and
ResNet-50. The transparent bars represent the FPR of the standard
models, whereas the solid bars represent the FPR of the models with
the respective modification given in parentheses - label smoothing
(LS) and Laplace approximation (LA). Both calibration methods re-
duce the FPR for almost all inputs.

As depicted in Fig. 5, we further used t-SNE [van der
Maaten and Hinton, 2008] to plot the penultimate layer ac-
tivations on samples from the same datasets as used for the
KDE plots. Whereas the standard model in Fig. 5a shows
an overlapping between the activations of the three datasets,
label smoothing in Fig. 5b creates tighter clusters of dog sam-
ples and separates the OOD cat images more clearly.

(Q4) A Trade-off Between Calibration and Defenses
Exists. Whereas calibration tries to maximize the informative
value of the prediction scores, many defenses against MIAs
aim to reduce the informative value and to align the score
distributions of members and non-members. In this section,
we want to investigate whether it is possible to defend cali-
brated models or a trade-off between calibration and defenses
against MIAs exists. Defenses reduce the generalization of
a model in terms of its ability to distinguish between sam-
ples from known and unknown inputs and express meaning-
ful scores. To test this, we first applied temperature scaling
with T = 10 to the trained ResNet-50 standard model with-
out calibration. Fig. 4c shows the estimated maximum pre-
diction score distributions. The score vectors converge to a
uniform distribution, and the distributions of the top scores
are much more similar. This can be seen by the significantly
lower EMD values. With an ECE of 51% using temperature
scaling, the information content of the actual prediction score
is greatly reduced, and the AUROC for the Entropy and Max-
imum Score attacks drop significantly, as shown in Tab. 2.
On the top-3 score attack, temperature scaling has no effect.
We suspect this is due to the added temperature term being a
monotone transformation, not removing information encoded
in the top-3 score patterns.

We also investigated L2 regularization as a stronger de-
fense applied during training on our ResNet models. L2
regularization effectively reduces the vulnerability to MIAs.
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Figure 4: Kernel density estimation applying Gaussian kernels on the top prediction scores values of ResNet-50 target models. We use
equally-sized member and non-member subsets of Stanford Dogs and AFHQ Cats. We further state the earth mover’s distance (EMD)
between each dataset and the member dataset. Label smoothing (LS) moves the non-member distributions further away, and consequently,
the members become easier to separate. Temperature scaling and L2 regularization show an inverse effect and increase the overlapping.
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Figure 5: T-SNE visualization of the penultimate ResNet-50 layer
activations on training samples (orange), test samples (blue), and
OOD samples (red). Label smoothing (LS) creates much tighter
clusters of training and OOD cat samples, which makes them easier
to separate, whereas L2 regularization has a reverse effect.

For all attacks, both precision and recall drop significantly
at the cost of reduced test accuracy, as Tab. 2 states. More-
over, the ECE and OE are significantly higher than for the
model trained with label smoothing. The distribution of the
highest prediction scores can be seen in Fig. 4d. Similar to
temperature scaling, L2 regularization aligns the distributions
of members and non-members but distributes the maximum
scores more equally instead of pushing it towards a single
value. Fig. 5c shows a similar effect of overlapping distribu-
tions in the penultimate layer activations, making it harder to
separate members from non-members and OOD data.

As shown in our experiments, defenses are contrary to cal-
ibration. Our results indicate that a trade-off exists between
defending models against MIAs and applying calibration to
increase the model’s informative value.

5 Discussion
In all our analyses, we followed the standard threat model
for MIAs in the literature and assumed a strong adversary
with full knowledge about the target model’s architecture and
training procedure and having access to data from the target’s
training distribution. Our experiments underline the known
fact that modern neural networks are not inherently able to
identify unseen and unknown inputs and cannot adapt their
behavior in terms of reducing the prediction scores. However,
we have shown that this is why the expressiveness of MIAs
in realistic scenarios is greatly reduced, and the associated
privacy risks are thus much lower than previously assumed.

Loosening the attack scenario assumptions and providing the
attacker with even less information during an attack, the ef-
fectiveness of MIAs will decrease even further.

One way to mitigate the problem of false-positive predic-
tions on unseen data is to first try to identify and remove
all OOD samples. This would indeed prevent some false-
positive predictions caused by completely different data dis-
tributions. However, we demonstrated that the problem of
high FPR also occurs on datasets similar to the training data.
In this case, the adversary has no means to tell whether a
given sample is in- or out-of-distribution if the images’ con-
tents are similar, which in turn makes it impossible for the
attacker to filter out OOD samples. Even if this were possi-
ble, by generating synthetic images, we have shown that there
is a potentially unlimited number of samples that follow the
training distribution and still lead to false-positive MIA pre-
dictions, questioning the overall informative value of MIAs.

We only considered prediction score-based MIAs, but we
expect our results to be similar for other kinds of attacks.
Doing so provides an interesting avenue for future work.
Also, future research should further investigate the trade-off
between MIA defenses and calibration of machine learning
models and how both aspects could be balanced. Further-
more, including techniques from open set recognition and
OOD detection into MIAs might improve their effectiveness.

6 Conclusion
We have shown that MIAs produce high false-positive rates
due to overconfident predictions of modern neural networks
for in- and out-of-distribution data. In stark contrast to pre-
vious works stating strong attack results on standard neural
networks, we demonstrate that MIAs are actually not reli-
able in realistic scenarios, and overconfidence can be seen
as a natural defense against these attacks. Our results suggest
that there is a trade-off between reducing a model’s overconfi-
dence and its susceptibility to MIAs. Therefore, the informa-
tive value of MIAs increases on calibrated models, increas-
ing the privacy risk. As a result, our analysis has shown that
MIAs are not as powerful as previously thought and are at
odds with the meaning of neural networks’ prediction scores.
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