Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

LTL on Weighted Finite Traces: Formal Foundations and Algorithms

Carmine Dodaro, Valeria Fionda* and Gianluigi Greco
Department of Mathematics and Computer Science, University of Calabria

{carmine.dodaro,valeria.fionda,gianluigi.greco } @unical.it

Abstract

LTL on finite traces (LTLy) is a logic that attracted
much attention in recent literature, due to its ability
to formalize the qualitative behavior of dynamical
systems in several application domains. However,
its practical usage is still rather limited, as LTLy
cannot deal with any quantitative aspect, such as
with the costs of realizing some desired behaviour.
The paper fills the gap by proposing a weight-
ing framework for LTL; encoding such quantita-
tive aspects in the traces over which it is evalu-
ated. The complexity of reasoning problems on
weighted traces is analyzed and compared to that
of standard LTL, by considering arbitrary formu-
las as well as classes of formulas defined in terms
of relevant syntactic restrictions. Moreover, a rea-
soner for LTL; on weighted traces is presented, and
its performance are assessed on benchmark data.

1 Introduction

Linear Temporal Logic over finite traces (short: LTLy) is a
logic formalism based on interpreting standard LTL formu-
las [Pnueli, 1977] over finite, yet unbounded, successions of
states (see, e.g., [De Giacomo and Vardi, 2013]). The formal-
ism has been recently attracting much attention in the Al lit-
erature, as it fits several scenarios where the traditional inter-
pretation over infinite traces is not appropriate. For instance,
LTL; has been exploited to formalize and validate the behav-
ior of dynamical systems (e.g., [De Giacomo et al., 2014b;
De Giacomo and Vardi, 2015]), to reason about planning do-
mains (e.g. [De Giacomo and Rubin, 2018; Zhu et al., 2020;
Xiao et al., 2021]), and to declaratively specify, analyze and
monitor business processes (e.g. [van der Aalst et al., 2009;
Montali et al., 2010; De Giacomo et al., 2014al).

As a matter of facts, however, the usage of LTL; in real-
world domains is still rather limited, despite a number of ef-
ficient reasoning engines have been already made available
(see [Li et al., 2020; Fionda and Greco, 2018]). Indeed, a ma-
jor limitation of LTL; is that it cannot go beyond reasoning
over qualitative properties of the environment, since it misses

*Contact Author

2606

the ability to address certain quantitative aspects that are cru-
cial in practical applications, such as time, probabilities, or
costs related to realizing some desired behavior.

Clearly enough, LTL; inherits this limitation from LTL. In
fact, the development of “quantitative” frameworks for LTL
has been an active area of research in the last two decades. In
particular, LTL extensions have been proposed within set-
tings where constants take values from some given lattice and
the semantics of Boolean and temporal operators has been
recast as operations defined on that lattice [Kupferman and
Lustig, 2007; Droste and Vogler, 2012]. Other works have in-
stead studied LTL over weighted transition systems [Faella et
al., 2008; de Alfaro et al., 2004; Droste and Rahonis, 2016;
Baier et al., 2014]. And, finally, a number of approaches
have been defined to introduce quantitative features suited—
for instance—to express a tolerance on the number of time
instants where a formula that is always required to hold
in the future actually does not hold [Kuperberg, 2014], to
specify eventualities with a bounded wait time [Kupferman
et al., 2009; Alur et al., 2001], to accommodate averag-
ing [Bouyer er al., 2014] or discounting [Mandrali, 2012;
de Alfaro et al., 2005] modalities, and to deal with propo-
sitional quality operators [Almagor et al., 2016].

Compared to the above body of literature for LTL, consid-
erably less attention has been paid to study LTL; in quanti-
tative settings. Indeed, even though we might adapt to LTL;
some of the extensions introduced for LTL (see, e.g., [Cama-
cho et al., 2018bl), the typical usage scenarios of LTLy call
for ad-hoc solutions and approaches, which were missing in
the literature so far. In the paper, we fill this gap by propos-
ing and studying a “weighting” framework that is specific for
LTL; and where quantitative aspects are encoded in the finite
traces over which formulas are evaluated, rather than on the
formulas themselves. Roughly, each variable is associated
with a weight, and the weight of a state is given as a function
of the weights of the variables evaluating true in it; the goal
is, then, to compute an optimal model, i.e., such that the over-
all weight obtained by suitably aggregating the weights of the
various (finitely many) states is minimized. In more details:

» We define the concept of valuation structures as mech-
anisms to flexibly equip each trace with a weight, and
we identify and exemplify certain monotonicity proper-
ties of that structures guaranteing that optimal models
always exist for satisfiable LTL; formulas (Section 2).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

» We depict a clear picture of the computational costs to be
paid for the rich expressiveness of the resulting frame-
work compared to standard LTL on finite traces, by con-
sidering arbitrary formulas as well as formulas belong-
ing to some relevant syntactic fragments (Section 3).

» We illustrate the architecture of WELTL, a system pro-
totype implemented to reason about LTL over weighted
traces exploiting our theoretical findings and a rewriting
in terms of Answer Set Programming (ASP) [Brewka et
al., 2011]; and, finally, we assess and discuss its perfor-
mance on some benchmark data (Section 4).!

2 Formal Framework

In this section, we introduce a framework for evaluating LTL
formulas on weighted finite traces, and we illustrate its salient
features by discussing some example applications.

2.1 Basic Notions and Results

LTL on finite traces. Let) be a universe of propositional
variables. An LTL; formula ¢ over V is an expression® built
according to the grammar ¢ ::= true | false | z | —z |
(eAe) | (pVe)| Xp) | Xule) | (¢ U o)l (pRo),
where: x € V; “A”, “V”, and “—" are the standard Boolean
connectives; and “X” (next), “X,,” (weak next), “U” (until),
and “R” (release) are temporal operators. A finite trace over
V is a sequence m = mq, 71, ..., Tp—1 such that m; C V), for
each i € {0,...,n — 1}. We say that the formula ¢ holds in
m at the instant i € {0,...,n — 1}, denoted by 7,7 = ¢, by
inductively considering subformulas as follows:
miEy iff y € m; ory = true;
T, E -y iff y & m; or y = false;
mi = (p1 Ap2) iff mi = 1 and 7,0 = o
T, (g1 Vp2) iff m,i = prorm,i o
1 = X(¢) iffi<n—1landm,i+1fE ¢
mi = Xu(e') iff mi EX(p)ori=n—1;
0 E (p1 Ugy) iff 35 > ¢ such that 7, j = 9 and Vk
with i < k < j we have 7, k |= ¢1;
mi = (p1 Rps) iff Vi < j < nitholds 7,5 E ¢2;
or 3j > i such that 7, j = o7 and
Vi < k < jwehave m, k = po;
Whenever 7, 0 = ¢ holds, then we say that 7 is a model of
© and we just write 7 = (.

Example 2.1 Consider the LTL; formula ¢ = (a V X(b)) A
(cU(d A Xy(a))) defined over the set V = {a,b,c,d} of
propositional variables. The finite trace 7 = {a, d} (consist-
ing of one time instant only) is a model of ; indeed, 7,0 =
aV X(b) holds because a € m, while 7,0 = cU (d A X, (a))
holds because d € 7y and there is no subsequent time instant
(hence, Xy, (a) holds too). Other models are 7’ = {c}, {b, d},
m" = {c}, {¢, 0}, {d}, and " = {c}, {c, b}, {d},{a}. In-

stead, note that the trace {b, ¢}, {a}, {d} is not amodel. <

Valuation structures. A valuation structure v onV is a tuple
v = (o,%,w), where w : V +— Z is a function mapping

'"WELTL, the benchmark data and details on the (theoreti-
cal/experimental) results are available as Supplementary Material.

2W.l.o.g., we consider formulas in negated normal form, i.e.,
negations are in front of propositional variables only.

each variable x € V to an integer w(x), and where o and =
are two binary operators defined over Z, which are moreover
commutative and associative. For any set {z1, ...,z } C V,
we define v({x1, ..., 2, }) as the value w(xq) o - - - o w(xp,).
Moreover, for a trace m = mg, Ty, ..., Tn—1, its V-weight is
defined as v(7) = v(mg) * -+ - % v(mp—_1).

Example 2.2 Consider again the setting of Example 2.1, and
the valuation structure v = (+, x,w) where w(a) = 6,
w(b) = 2, w(c) = 2, and w(d) = 1. Then, we have v(r) =

v({a,d}) = w(a) + w(d) = 7. Furthermore, we have that
v(r') = v(n}) x v(my) = 6, v(n”) = v(x{) x v(x]) x
v(mh) =8, and v(n"") = v(n") x w(a) = 48. <

Valuation structures are used to single out the “best” mod-
els by just looking for minimizing their associated weights.
More formally, any model 7* of ¢ is called v-optimal if there
is no model 7 of ¢ with v(7) < v(7*).

Example 2.3 In our running example, we have v(n’) <
v(m), v(r") < v(n"), and v(7") < v(n"") hold. In fact, 7’ is
an optimal model. In particular, note that the models where ¢
holds at the first time instant, while ¢ plus b hold at the second
time instant have v-weight at least 2 x 4 = 8. <

Monotone valuations. Perhaps not surprisingly, optimal
models are not guaranteed to exist, even ifad the LTL; for-
mula given to hand is satisfiable (that is, if admits a model).
For instance, consider the structure v .= (4, +, —1) where
—1 is the constant function mapping every propositional vari-
able x € V to —1. Then, for the formula ¢ = a and any
model 7 (of whatever length), the trace 7 obtained by append-
ing the state {a} to 7 is again a model and v(7) = v(7)—1 <
v(m).

Motivated by the above observation, we hereinafter restrict
ourselves to valuation structures v = (o, %, w), which we call
monotone, enjoying the following properties:

(P1) w(x) > 0, foreach z € V;

(P2) wy ows > max{w;,ws}, for each pair wq, ws > 0; and

(P3) wy * we > max{wi,ws}, for each pair wq, we > 0.
The following is a simple consequence of monotonicity.

Lemma 2.4 Assume that v = (o, ,w) is a monotone valua-
tion structure, and let 7, ..., mp—1 be a trace. Then, for each
pair0 < i < j <n-—1 itholdsv(m,...,m;) < v(mo, ..., 7;).

Theorem 2.5 [fv = (o, *,w) is a monotone valuation struc-
ture and is satisfiable, then p admits a v-optimal model.

Proof (Sketch). Let I be the set of irreducible models of ¢,
that is, none of their prefixes is a model too. Since ¢ is satis-
fiable, IT # (). Then, let 7* be a model of minimum v-weight
over all models in IT. We claim that 7* is v-optimal. Indeed,
assume by contradiction that 7 = mg, ..., T,—1 is a model
with v(7) < v(7*). By construction of 7*, m ¢ II; hence,
there is a time instant ¢ € {0, ...,n — 2} such that the prefix
70, --., T; belongs to I, which implies v(7*) < v(mg, ..., 7;).
However, by Lemma 2.4, we know that v(7) > v(ng, ..., 7;),
which entails v(7) > v(7*), which is impossible. O

2607

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

(+,+,¢) | (+,max,r) | (max,+,t) [(max, max,t)
{f1.a}, {f2, 3, fa, b, ¢, d}, {fs, fo, fr, e} {fs} 5 4 3 1
{f1,a}, {12, fs, fa, 0}, {f3, f, fs, ¢}, { fu, f5, fo, A}, { fs, fo. fr. €}, { fs} 5 2 5 1
{f1,a}, {f2, 3, fa, b, ¢}, {f4, f5, fo, A}, { f5, fo, frs €}, {fs} 5 2 4 1

Figure 1: The planning problem P, three models of ¢p, and their values under the valuations structures built over “+” and “max”.

2.2 Examples of Monotone Valuations

Noticeable monotone valuations can be defined over “+” and
“max”, e.g. to encode cost-related planning problems. Con-
sider for instance the planning problem P in Figure 1: a set
F ={f1,..., fs} of fluents is given and, by starting from the
scenario where f1 holds, our goal is to end up with fg, by
applying, possibly in parallel, some of the available actions
in A = {a,b,c,d,e}. An example solution is the plan where
we first execute a (“consuming” f; and “producing” fs, fs,
and f4); then, we execute in parallel actions b, ¢, and d; and,
finally, we execute e. It is well-known (see, e.g., [De Gi-
acomo and Vardi, 2013]) that planning problems P can be
easily encoded via LTL; formulas yp over propositional vari-
ables in .4 U F so that models for p one-to-one correspond
with plans for P—at each time instant, we just keep trace of
the fluents that hold and of the actions that are executed (see
again Figure 1, reporting the model corresponding to the plan
discussed above, plus two further models). We next enrich ¢p
with valuations suited to encode cost-related variants.

(4,+,c). Assume that each action z € A is associated
with a cost ¢(x), and consider the structure (+, +, ¢), where
¢(y) = 0 holds, for each fluent y € F. Then, (+,+,c¢)-
optimal models correspond to plans whose total cost is min-
imized over all the possible plans. For instance, by assum-
ing that all actions cost 1, every model of (p is also an opti-
mal one, since all plans reaching the goal have the same cost
(namely, 5)—for they need to execute all given actions.

(4, max,). Suppose that each action = € A is associated
with the number () of employees required for its execution.
If it is necessary, in time of a pandemic, to limit the number of
employees that are simultaneously in the office, then we can
consider the valuation structure (4, max,) (with r(y) = 0,
for each y € F). For instance, in the setting of Figure 1, by
assuming that all actions require 1 employee only, except d
requiring 2 employees, we get that (4, max, r)-optimal mod-
els of p correspond to plans where d is executed alone.
(max, +,t). Consider a setting where each action z € A
is associated with the time ¢(x) required for its execution. If
we are interested in minimizing the total time for plan execu-
tion, then we can consider the valuation structure (max, +, t)
(with t(y) = 0, for each y € JF)—in particular, note that
at each step, for the actions that are executed in parallel, we
just consider the maximum time over all of them. In our run-
ning example, by assuming that every action requires a unit of
time, the only (max, +, t)-optimal model of p corresponds
to the plan where b, ¢, and d are executed in parallel.

(max, max, t). Assume, finally, that we want to fix the du-
ration of the work shift, by computing the minimum amount

2608

of time needed to complete each step. This can be modeled
via the structure (max, max,t), so that the total cost is now
the maximum completion time over all the steps. For in-
stance, by assuming again that every action requires a unit
of time, every model is an optimal one and its cost is 1.

3 Complexity of LTL; on Weighted Traces

In this section, we study the computational complexity of rea-
soning about LTL; on weighted traces. Formally, we con-
sider the IMODEL problem that, given as input an integer
7 > 0, an LTL; formula ¢, and a structure v = (o, *, w),
asks whether there is a model 7 of ¢ such that v(7) < 7.

In the analysis, we assume a standard encoding for the in-
put; in particular, v is given by explicitly listing all elements
in its domain with their associated values, while o and * are
polynomial-time computable and produce outputs having size
polynomial w.r.t. the input size. Hereinafter, the size of ¢, i.e.,
the total number of temporal operators, Boolean connectives
and propositional variables it contains, is denoted by ||o]|.

3.1 Basic Results: Weighted Transition Graph

To prove our basic complexity results, we introduce the no-
tion of weighted transition graph, which we formalize in the
spirt of the transition system defined by [Li er al., 2020].

An LTL; formula is in neXt Normal Form (XNF) if all oc-
currences of the temporal operators R and U are nested within
the scope of some X or X,, operator. Note that there is a
linear-time conversion from any formula ¢ into an equivalent
XNF one, denoted as xnf(p); indeed, we can build xnf (¢)
from ¢ by just applying the following transformations:

* 1 U g is replaced by ¢a V (01 A X(p1 U 2));
* 1 R g isreplaced by w2 A (1 V X (1 R 2)).

Given xnf (), we then define Vx (i) (resp., Vx,, (¢)) as the
set of all its X-subformulas (resp., X,,-subformulas) that are
not nested within the scope of some other X or X,, operator;
moreover, let xnf(¢)? denote xnf(y) viewed as a proposi-
tional formula over V U Vx(¢) U Vx, ().

Example 3.1 For the formula ¢ of Example 2.1, we have

xnf (@) = (aVX(D))A((dAXw(a))V(eAX(cU (dAXy(a)))).
So, Vx()={X(),X(cU(d N Xy(a))} and Vx (p) =

{Xw(a)}. A model® of xnf(p)? is o={X(b),d, Xyw(a)}. <

Let o be a model of xnf(p)P. If o N Vx(¢) = 0, then
we define 0|, = end, where end is a special symbol not
occurring in V; otherwise, we define:

*Models of the propositional formula xnf (¢)? are sets of propo-
sitional variables (or, equivalently, traces with one time instant).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

o=xf(N\ vA A ¥

X(¢)eanVx(p) Xw (1) €TV, (¢)

Intuitively, 0|, is the XNF formula that is required to hold
in the next time instant (actually being end, if no further time
instant is required), when o holds at the present instant; in
fact, X,, subformulas are only considered if a subsequent time
instant is required to exist due to some X subformula. Then,
the weighted transition graph just unfolds the formula ¢, via
XNF transformations, by looking for convergence to end.

Definition 3.2 The weighted transition graph wtg(p,v) is
the tuple (N, E, Ag, vg) where: (N, E) is a directed multi-
graph over XNF formulas; A\g : F +— 2V.andvg : E — Z.
In particular: xnf(p) is in N; for each @ € N \ {end}
and minimal model o for @, o|, is in N and the edge e =
(p,0],) isin E, with Ag(e) = cNVandvg(e) = v(c NV);
no further node (resp., edge) is in IV (resp., E). O

As an example, consider Figure 2 and note that the
minimum-weighted path from ¢ to end corresponds to the
v-optimal model 7" in Example 2.3. This is not by chance.
Indeed, by letting 3; be the set of all minimal models of
o7, the following lemma derives by observing that ¢; can be

rewritten as \/ s (Aycony @ A f(oly)) , where f is such
that f(end) = true and f(¥) = X(¥), for each ¥ # end.

Lemma 3.3 Let wtg(p, v) be the weighted transition graph
associated with ¢ and v = (o, x, w). Then,

(1) If there is a path ¢q, 1, ..., pn With @, = end, then
AE(00,91)s -+ AE(Pn—1,) is a model of po;

(2) If ™" is a v-optimal model of o, then there is a simple
path oo, 1, ..., Pn, such that pg = @, @, = end, and

(261))\E(SD0> @1)7 cey)\E((pnfla Son) = 7T*,'
(2.b) vE(po,p1) * - *VE(Qn_1,n) = v(7*).

Now, it is routine that we can check in PSPACE whether
there is a path from ¢ to end corresponding to a model whose
v-weight is 7 at most: we can build the path nondeterminis-
tically (recall that NPSPACE = PSPACE), and we identify
a failure when either the weight of the current path exceeds
T, or its length exceeds the overall number of nodes (with
this number being at most exponential in ||¢|| and, therefore,
requiring polynomial space for its encoding).

Theorem 3.4 IMODEL is in PSPACE.

However, the bound can be improved if we impose syntac-
tic restrictions on the allowed operators. Formally, for any set
T C {X,Xw,U, R}, we define (T')-LTL; as the class of all
LTL; formulas where only operators in 7" can be used.

Theorem 3.5 IMODEL is in NP, if restricted on (I')-LTL;
formulas, with T € {{X, Xy}, {Xw, R} }.

Proof (Sketch). For a formula ¢ € ({X,X,,})-LTLy, it is
immediate to check that the length of the longest simple path
in wtg(yp,v) from ¢ to end is bounded by the maximum
number of nested X operators, which is clearly polynomial
in [|¢||. For ({Xw, R})-LTL; formulas, instead, just check

2609

{a,d}

¢'=(Na)
¢ = ([dAX(2)) V (€ AX(c U (d A Xy (2))))
¢ = b A (dAX(2) V (CAX(C U (d A Xy(2)))))

Figure 2: The weighted transition graph wtg(¢, v) built for the for-
mula p = (aV X (b)) A (cU (d A Xw(a))) and v = (o, ¥, w).

that all edges outgoing from ¢ are converging into end.
Therefore, on these fragments (and with monotone valuations
v), v-optimal models have polynomial length. Thus, we can
solve IMODEL by guessing a trace with a nondeterministic
Turing machine and by then checking in polynomial time
whether its v-value is below the given threshold. O

3.2 A Closer Look at LTL; Fragments

According to Theorem 3.4, it seems that the expressiveness
of the weighted framework comes at no cost (satisfiability for
LTL; is PSPACE-complete [De Giacomo and Vardi, 2013]).
We next embark on a finer-grained complexity analysis, and
we show that actually this is not the case. In particular, we
focus on valuation structures built over the operators “+”
and “max”, and we consider formulas with arbitrary Boolean
connectives as well as negation-free formulas. A summary of
our complexity results is depicted in Figure 3.

Theorem 3.6 All results in Figure 3 hold.

Proof (Idea). For the case of arbitrary formulas, all hardness
results that are known to hold for LTL; are clearly inherited
by our more expressive setting. The corresponding member-
ship results come from Theorem 3.4 and Theorem 3.5.

For negation-free formulas, we distinguish three cases. For
the polynomial-time results, we define V' = {x € V |
w(z) < 7}, and we can observe that IMODEL has a solu-
tion if, and only if, ¢ admits a model over V'—with this lat-
ter task being feasible in polynomial time after the results for
negation-free formulas (without valuation structures).

For the various NP-hardness results, we can exhibit (dif-
ferent kinds of) reductions from the well-known vertex cover
problem on undirected graphs G = (N, E). For instance, for
the case (+, x, w) (even without temporal operators), we can
view each node in N as a propositional variable with a uni-
tary v-weight, and define the formula o = A, \cp(z Vy).
Then, there is a vertex cover with cardinality &k at most if, and
only if, there is a model for ¢ whose v-weight is k at most.

Finally, PSPACE-hardness results can be shown by ex-
ploiting the valuation structures to simulate the possibility of
negating some variables. As an example, let ¢ be an arbitrary
(T)-LTLy formula, with {U} C T or {X,R} C T Consider
Y = N\ cy(zV Z), and the formula ¢ derived from ¢ by: (1)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

OPERATORS ARBITRARY FORMULAS NEGATION-FREE FORMULAS
PLAIN | o, % PLAIN | +,+ [+,max | max,+ [max,max
T C {X«,R} NP-c NP-c inP NP-c NP-c inP inP
{X} CT C {Xw, X} NP-c NP-c inP NP-c NP-c NP-c inP
{U}C T C {Xs,UR} || PSPACE< | PSPACE< || inP | PSPACE-< | PSPACE-c in P in P
{X,U} CTor{X,R} CT || PSPACE-c | PSPACE-c inP PSPACE-c | PSPACE-c | PSPACE-c inP

Figure 3: Summary of complexity results in Section 3 for weighted LTL;—the column PLAIN reports the results that were already known to

hold for LTL; without weights (see [Fionda and Greco, 2018]).

replacing every occurrence of —z, for each x € V, with z; and
(2) replacing every subformula ¢, with o5 A1. Consider then
the valuation v = (4, max, w) where w(z) = w(z) = 1, for
each x € V. It can be checked that ¢ is satisfiable if, and only
if, ¢ admits a model 7 such that v(7) < |V a

4 System Design and Implementation

The notion of weighted transition graph and its properties (cf.
Lemma 3.3) provided us with an immediate approach to im-
plement a prototype for LTL over weighted traces, which we
named WELTL. At a high level, it consists of two modules:

WELTLgs: The module builds in a depth-first manner the
weighted transition graph, by checking for a model/path
whose weight is below the desired threshold. Moreover,
as we deal with monotone structures, it avoids exploring
paths whose current weight exceeds that threshold.

WELTL,;: The module uses a complementary breadth-first
approach, which is better suited to be supported via a
mechanism for implicit navigation, that we implemented
in terms of a rewriting in Answer Set Programming.

In our experiments, we have found that WELTL4; is more
effective to identify unsatisfiable instances, while WELTLy
can be more practical to compute models of satisfiable formu-
las. With this observation to hand, we have coupled the two
approaches. Since the design of WELTL 4 poses no special
challenges (indeed, we adapted the reasoner presented by [Li
et al., 20201]), we next focus on the description of WELTL, s
by subsequently presenting results of experimental activity.

4.1 WELTL;; (and ASP in a Nutshell)

The architecture of WELTL is depicted in Figure 4. Given
a formula ¢, it starts by computing a model 7 of mini-
mum length, or immediately checks that the formula is not
satisfiable—this task is delegated to the model checker made
available by [Fionda and Greco, 2018]. If v(7) < 7, then we
are done. Otherwise, WELTL, starts its (implicit) breadth-
first exploration by looking for a model whose length ¢ co-
incides with the length of 7 and such that the corresponding
value is 7 at most. This is carried out by leveraging a rewrit-
ing* in terms of an Answer Set Program P(y, ¢, w).

For the sake of completeness, we recall that an ASP
program [Brewka et al., 2011] is made of (a combina-
tion of): (i) facts of the form “head.”; (ii) normal rules
of the form “head :— body.”; (iii) ch01ce rules of the form
“{head} :—body.”; (iv) constraints of the form “:—body.”,
where head is an atom and body is a set of (possibly negated)

“Details on the encoding are in the Supplementary Material.

2610

UNSAT 4y — (o %, w)

|
no
P—1p Compute Model yes

1 Z+1

P(p,(,T) *
4—(ASP Engme ASP EncodlnD

No Solutlon

,
|
Y

Evaluatlon

Figure 4: Conceptual architecture of WELTL ;.

atoms, also including aggregate functions, such as #sum or
#max [Faber et al., 2011]. Atoms can be made over variables
(strings starting with uppercase letter) or constants (non-
negative integers or strings starting with lowercase letters).
The semantics is given in terms of its answer sets, that is, sets
A of ground atoms such that: (i) head is in A; (ii) whenever
the body is true, head is in A; (iii) head can be in A whenever
the body is true; (iv) the body must be false.

The ASP rewriting P(i, ¢, T) uses the parse tree of : a
fact var(v;) is included, for each node v and instant i €
{0,...,£ —1}. Then, a choice rule ({selected(X)}:-var(X).)
is used to guess the subformulas of ¢ (represented by the
nodes in the parse tree) that hold at 4; and, to check that
such formulas actually hold, the definitions in Section 2 are
straightforwardly translated in terms of constraints. Eventu-
ally, the ASP paradigm supports cost constraints that can en-
code the binary operators used in the valuation structures (in
particular, they support “+” and “max”), so that the program
can also enforce that answer set programs are associated with
traces whose v-weight is 7 at most. This is next exemplified.

Example 4.1 For an illustration of the rewriting, consider the
formula p=a A X(b), and the structure v=(+, 4, w) where
w(a)=w(b)=3. Then, the ASP program P(¢, 2, 7) is shown
in Figure 5. The parse tree has 4 nodes, denoted as and, a,
x, and b. Then, rule (1) guesses the atoms corresponding to
these nodes and to the time instants 0 and 1. Rule (2) forces
that selected(andp) holds, i.e., the whole formula holds at
the initial time instant. Rules (3) and (4) define the semantics

{selected X)) va.r(X)A (1)} weight(ag,3).

2)! weight(ai,3).
P s weight(bg,3).
:-not selected (xo) selected(ando). weight(by,3).

-selected (ag), selected (xg), not selected(andy).

-not selected (ay), selected(and;). (4)
-not selected (x1), selected(and;).

-selected (ay), selected (x1), not selected(and;).
+-selected(by), not selected(xp). i
-not selected(bl) selected(xo)
i -selected (x;). (6)

-#sum{ W, X:weight(X,W) selected(X)}> 7
and
@ ®
®"

Figure 5: ASP encoding of Example 4.1.

var(andy).

var(and,).

] var(ag). var(a1).

[OH var(xg). var(xy).
: var(bg). var(by).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

—e50% o° | (@) (max, +,wy 5), WELTLy time vs size of ¢
- 90% o
@ —e—no weigths o
Q
2 92 .
o
£
=
=}
ERT) 1 !
3 3‘,.:‘.
A .
. .
. o oupde
olat hd
0 5 15 20 25
Size of the formula (thousands of symbols)
60 (b) (max, max, wy 5), WELTLy; time vs length of the trace ‘
§ 45 —e—groupedFollowsa5 ///
2 —e—OIR10k P
o —e—cb5k S
g IOR10k o
= 30| |- prCm6 =
g
]
5
o
5 15
%

. 6 8 10
Length of the trace

Figure 6: Execution times of over the benchmarks.

of the A connective. Rule (5) defines the semantics of the
X operator; in particular, note that when xq is selected, then
b; must be selected too. Finally, rule (6) prevents that x; is
selected, because we are considering ¢ = 2 (and, hence, there
is no subsequent time instant). The gray right box reports the
rules encoding cost constraints. An atom weight (o, w(«)) is
included, for each propositional variable o and time instant <.
A cost constraint states that the sum of the weights must not
exceeded 7. It is immediate to check that there is no answer
set (hence, trace) satisfying the above rules for 7<6. <

Finally, the ASP engine clingo [Gebser et al., 2018] is exe-
cuted on the rewriting P(ip, £, w) (see Figure 4). If no answer
set with the desired length ¢ and weight is found, then we
explore the successive level. The process ends if either we
actually find a solution, or if ¢ exceeds the theoretical length
thB(¢p) of the longest path in the weighted transition graph,
which is in general exponential w.r.t. ||¢||, and polynomially
bounded in some syntactic fragments (cf. Theorem 3.5).

4.2 Experimental Results

For the evaluation, we used a benchmark taken from the
business process domain, namely a dataset of 109 satisfi-
able DECLARE formulas [van der Aalst et al., 2009] ob-
tained by mining all DECLARE constraints that hold on a
number of logs made available by the IEEE Task-Force on
Process Mining (http://datacentrum.3tu.nl). The DECLARE
constraints are then translated into their corresponding LTLy
formulas [van der Aalst et al., 2009]. For each formula, we
randomly generated the variable weights in the intervals [1, 5]
and [1,10] and considered all combinations of max and +
operators, thus ending up with a dataset of 872 weighted set-
tings. Moreover, for each weighted setting, we considered
four different cost bounds obtained as follows: (i) we com-
pute an arbitrary model 7; (i) we build a trace ©’ whose
length n is the same as 7 and such that 7;=) for each
i € {0,...,n — 1}; (iii) we set the cost bounds to the 25%,
50%, 75% and 90% of v(n’). Clearly enough, for the reduced

Solved formulas

(0, %, w) 25% 50% 75% 90%
{max, max, wi_s) 24(0) 24(0) 240 33 (14)
{max, max, w1 10]) 24(0) 24(0) 2502) 2(25)

{max, +, wp o)) 2502 96 (87) | 109 (105) | 109 (105)
{max, -, Wi, 10]) 26 (3) 104 (94) | 109 (105) | 109 (107)
(F, max, wi 5)) 109 (106) | 109 (109) | 109 (109) | 109 (109)
{+F, max, wi1 10]) 109 (103) | 109 (109) | 109 (109) | 109 (109)
{F T wns) T09 (108) | 109 (109) | 109 (109) | 109 (109)
(. wha0) 109 (108) | 109 (109) | 109 (109) | 109 (109)

Table 1: Summary of results. Columns “Solved formulas” report the
number of formulas for which WELTL computes a solution. For the
remaining formulas, WELTL terminates in timeout.

weight bounds, formulas quickly became unsatisfiable. Ex-
periments have been carried out on a Intel CPU 2,4 GHz with
16GB RAM. Time and memory were limited to 600 seconds
and 15GB, respectively. In particular, we first run WELTL ¢
(with 300 seconds of timeout); and if no solution has been re-
turned, then we run WELTL g (again with the same timeout).

Table 1 reports a summary of the obtained results. For
each valuation structure and each cost bound we report the
number of formulas (out of 109) that are solved by WELTL
within the time limit of 600 seconds. Each cell of the table
reports inside the parenthesis the number of instances solved
by WELTL¢ during the first 300 seconds. All the instances
solved by WELTL, are satisfiable (i.e, a trace satisfying the
cost bound has been found), while all the instances solved by
WELTL g during the last 300 seconds are unsatisfiable.

To get further insights on WELTL ¢, we report in Figure 6
the running times obtained on some instances. In particular,
Figure 6.(a) reports the time to solve some satisfiable formu-
las when no weights are considered (i.e., standard satisfiabil-
ity) and according to the valuation structure (max, 4, wp; 5])
and the weight bounds 50% and 90%, respectively. The
22 formulas reported in the chart are those for which the
model found at 90% did not meet the weight requirement at
50% and required to search for additional models. It can be
noted that the time grows with the size of the formula and by
lowering the cost bound. Figure 6.(b) reports the time re-
quired by WELTL, to check the existence of models for
(max, max, wy; 5)) and the bound 25% for 5 formulas, and
by fixing different lengths ¢ in the encoding. The theoretical
exponential dependency is nicely handled by the ASP engine.

S Conclusion

A framework to express LTL; properties in quantitative set-
tings has been proposed and studied, based on the concept
of valuation structures as mechanisms to equip each trace
with a weight. While our approach departs from most of the
quantitative LTL (and LTL¢) extensions proposed in the liter-
ature, a perspective similar to ours has been taken previously
by [Lahijanian et al., 2015]—though in the specific context of
temporal planning with partial satisfaction (and without pro-
viding any complexity analysis and system prototype). In par-
ticular, a clear picture of the complexity issues arising when
reasoning over weighted finite traces has been depicted and
an efficient reasoning engine has been made available. On the
theoretical level, instead, it remains open to study LTL; over
valuation structures that are not monotone, by characterizing
its computational properties and by defining and implement-
ing computation algorithms.

2611

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

References

[Almagor er al., 2016] Shaull Almagor, Udi Boker, and Orna
Kupferman. Formally reasoning about quality. Journal of
the ACM, 63(3):24:1-24:56, 2016.

[Alur et al., 2001] Rajeev Alur, Kousha Etessami, Salva-
tore La Torre, and Doron A. Peled. Parametric temporal
logic for “model measuring”. ACM Trans. on Computional
Logics, 2(3):388-407, 2001.

[Baier et al., 2014] Christel Baier, Joachim Klein, Sascha
Kliippelholz, and Sascha Wunderlich. Weight monitoring
with linear temporal logic: complexity and decidability. In
Proc. of CSL-LICS, pages 11:1-11:10. ACM, 2014.

[Bouyer et al., 2014] Patricia Bouyer, Nicolas Markey, and
Raj Mohan Matteplackel. Averaging in LTL. In Proc. of
CONCUR, pages 266-280, 2014.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski. Answer set programming at a
glance. Commun. ACM, 54(12):92-103, 2011.

[Camacho et al., 2018b] Alberto Camacho, Meghyn Bien-
venu, and Sheila A. Mcllraith. Finite LTL synthesis with
environment assumptions and quality measures. In Proc.
of KR, pages 454-463, 2018.

[de Alfaro et al., 2004] Luca de Alfaro, Marco Faella, and
Mariélle Stoelinga. Linear and branching metrics for quan-
titative transition systems. In Proc. of ICALP, pages 97—
109, 2004.

[de Alfaro et al., 2005] Luca de Alfaro, Marco Faella,
Thomas A. Henzinger, Rupak Majumdar, and Mariélle
Stoelinga. Model checking discounted temporal proper-
ties. Theor. Comput. Sci., 345(1):139-170, 2005.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
M. Y. Vardi. Linear Temporal Logic and Linear Dynamic
Logic on Finite Traces. In Proc. of IJCAI, pages 854-860.

[De Giacomo er al., 2014a] Giuseppe De Giacomo, Ric-
cardo De Masellis, Marco Grasso, Fabrizio M. Maggi,
and Marco Montali. Monitoring Business Metaconstraints
Based on LTL and LDL for Finite Traces. In Proc. of BPM,
pages 1-14, 2014.

[De Giacomo et al., 2014b] Giuseppe De Giacomo, Riccardi
De Masellis, and Marco Montali. Reasoning on LTL on Fi-
nite Traces: Insensitivity to Infiniteness. In Proc. of AAAI,
pages 1027-1033, 2014.

[De Giacomo and Rubin, 2018] Giuseppe De Giacomo and
Sasha Rubin. Automata-theoretic foundations of FOND
planning for LTLf and LDLf goals. In Proc. of IJCAI,
pages 4729-4735, 2018.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In Proc. of IJCAI, pages 1558-1564, 2015.

[Droste and Rahonis, 2016] Manfred Droste and George Ra-
honis. Weighted linear dynamic logic. In Proc. of EPTCS,
volume 226, pages 149-163, 2016.

[Droste and Vogler, 2012] Manfred Droste and Heiko

Vogler. Weighted automata and multi-valued logics over
arbitrary bounded lattices. TCS, 418:14-36, 2012.

2612

[Faber er al., 2011] Wolfgang Faber, Gerald Pfeifer, and
Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell.,
175(1):278-298, 2011.

[Faella et al., 2008] Marco Faella, Axel Legay, and Mariélle
Stoelinga. Model checking quantitative linear time logic.
E. N. in Theor. Comput. Sci., 220(3):61-77, 2008.

[Fionda and Greco, 2018] Valeria Fionda and Gianluigi
Greco. LTL on finite and process traces: Complexity
results and a practical reasoner. J. Artif. Intell. Res.,
63:557-623, 2018.

[Gebser et al., 2018] Martin Gebser, Nicola Leone, Marco
Maratea, Simona Perri, Francesco Ricca, and Torsten
Schaub. Evaluation techniques and systems for answer
set programming: a survey. In Proc. of IJCAI'18, pages
5450-5456, 2018.

[Kuperberg, 2014] Denis Kuperberg. Linear temporal logic
for regular cost functions. Log. Methods Comput. Sci.,
10(1), 2014.

[Kupferman and Lustig, 2007] Orna Kupferman and Yoad
Lustig. Lattice automata. In Proc. of VM CAI, pages 199—
213, 2007.

[Kupferman et al., 2009] Orna Kupferman, Nir Piterman,
and Moshe Y. Vardi. From liveness to promptness. Formal
Methods in System Design, 34(2):83-103, 2009.

[Lahijanian et al., 2015] Morteza Lahijanian, Shaull Al-
magor, Dror Fried, Lydia E. Kavraki, and Moshe Y. Vardi.
This time the robot settles for a cost: A quantitative ap-
proach to temporal logic planning with partial satisfaction.
In Proc. of AAAI pages 3664-3671, 2015.

[Li et al., 2020] Jianwen Li, Geguang Pu, Yueling Zhang,
Moshe Y. Vardi, and Kristin Y. Rozier. Sat-based explicit
Itlf satisfiability checking. Artif. Intell., 289:103369, 2020.

[Mandrali, 2012] Eleni Mandrali. Weighted LTL with dis-
counting. In Proc. of CIIA’12, pages 353-360, 2012.

[Montali et al., 2010] Marco Montali, Maja Pesic, Wil M. P.
van der Aalst, Federico Chesani, Paola Mello, and Sergio
Storari. Declarative specification and verification of ser-
vice choreographiess. ACM Trans. on the Web, 4(1):3:1-
3:62, 2010.

[Pnueli, 1977] Amir Pnueli. The Temporal Logic of Pro-
grams. In Proc. of FOCS, pages 46-57, 1977.

[van der Aalst et al., 2009] W.M.P. van der Aalst, M. Pesic,
and H. Schonenberg. Declarative Workflows: Balancing
Between Flexibility and Support. Computer Science - Re-
search and Development, 23(2):99-113, 2009.

[Xiao et al., 2021] Shengping Xiao, Jianwen Li, Shufang
Zhu, Yingying Shi, Geguang Pu, and Moshe Y. Vardi. On-
the-fly synthesis for LTL over finite traces. In Proc. of
AAAI pages 6530-6537, 2021.

[Zhu et al., 2020] Shufang Zhu, Giuseppe De Giacomo,
Geguang Pu, and Moshe Y. Vardi. Ltlf synthesis with
fairness and stability assumptions. In Proc. of AAAI, pages
3088-3095, 2020.

	Introduction
	Formal Framework
	Basic Notions and Results
	Examples of Monotone Valuations

	Complexity of LTLf on Weighted Traces
	Basic Results: Weighted Transition Graph
	A Closer Look at LTLf Fragments

	System Design and Implementation
	WeLTLbf (and ASP in a Nutshell)
	Experimental Results

	Conclusion

