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Abstract
We present Bayesian Team Imitation Learner
(BTIL), an imitation learning algorithm to model
the behavior of teams performing sequential tasks
in Markovian domains. In contrast to existing
multi-agent imitation learning techniques, BTIL
explicitly models and infers the time-varying men-
tal states of team members, thereby enabling learn-
ing of decentralized team policies from demon-
strations of suboptimal teamwork. Further, to al-
low for sample- and label-efficient policy learn-
ing from small datasets, BTIL employs a Bayesian
perspective and is capable of learning from semi-
supervised demonstrations. We demonstrate and
benchmark the performance of BTIL on syn-
thetic multi-agent tasks as well as a novel dataset
of human-agent teamwork. Our experiments
show that BTIL can successfully learn team poli-
cies from demonstrations despite the influence of
team members’ (time-varying and potentially mis-
aligned) mental states on their behavior.

1 Introduction
Teamwork is essential for the success of human enterprise.
As artificial agents increasingly become parts of human life,
thus, they too are expected to reason about and contribute to
human teams. At the same time, teamwork is highly chal-
lenging to perfect. Successful human teams employ a variety
of training techniques to improve coordination and teamwork
[Tannenbaum and Salas, 2020]. Analogously, spurred by the
need to enable and enhance human-agent collaboration, there
has been growing work on developing computational tech-
niques for training artificial agents to support human teams
[Thomaz et al., 2016]. These techniques build upon a variety
of AI paradigms, such as planning under uncertainty, rein-
forcement learning, and imitation learning.

In this work, we consider the paradigm of imitation learn-
ing [Argall et al., 2009; Osa et al., 2018], wherein an agent

An extended version of this paper, which includes supplemen-
tary material (appendices and video supplements) mentioned in the
text, is available at https://arxiv.org/abs/2205.02959

learns from demonstrations and (in contrast to reinforcement
learning) can thereby learn policies for teamwork without the
need of unsafe exploration. By providing novel multi-agent
imitation learning techniques that are inspired by real-world
teaming considerations, this work aims to enable agents to
model, assess, and improve both human-human and human-
AI teamwork in sequential tasks. Mathematically, imitation
learning techniques seek to learn a single-agent behavioral
policy (π), a stochastic function that encodes probability of
selecting an action (a) in a task-specific context (s), given
a dataset of (s, a)-tuples provided by a demonstrator. Typi-
cally, the context features (s) and actions (a) are assumed to
be fully observable and measured using sensors.

Imitation learning has been extended to model multi-agent
systems by seeking to learn a set of behavioral policies
{πi|i=1:n}, one corresponding to each member (i=1:n) of
the multi-agent system from demonstrations of teamwork [Le
et al., 2017; Bhattacharyya et al., 2019; Song et al., 2018;
Lin et al., 2019]. We provide a brief survey of related
multi-agent imitation learning (MAIL) techniques in Ap-
pendix A. MAIL is an emerging area of research, wherein
the existing works either focus on learning policies corre-
sponding to game-theoretic equilibria of multi-agent sys-
tems, assume homogeneity in agents’ capabilities, or as-
sume data of optimal teaming behavior as the training in-
put. However, in contrast to most settings considered in
prior art, teamwork observed in practice [Salas et al., 2018;
Seo et al., 2021] often differs in three key ways: (1) it may not
correspond to a game-theoretic equilibrium, (2) it can be sub-
optimal due to its dependence on latent performance-shaping
factors (such as team members’ mental models), and (3) it
can involve team members with different capabilities.

Informed by these three considerations of teamwork ob-
served in the real world, in Sec. 3.3, we provide an alternate
problem formulation of MAIL for collaborative tasks. In par-
ticular, we consider that the team members’ behavior (πi) de-
pends not only on the context features (s) but also on their
(time-varying) mental models (xi) pertaining to teamwork.
As the mental models cannot be readily sensed and manually
annotating them is resource-intensive, they are modeled as
partially observable to the imitation learner. Further, in team-
ing scenarios where the mental models are misaligned (i.e.,
the team members do not maintain a shared understanding),
the demonstrations available for learning can be suboptimal.
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Figure 1: Movers domain. The human-robot team needs to move the
boxes to the flag. Each box can be moved if and only if both agents
pick it up and move it along the same direction.

Thus, adding to the challenge, in our problem formulation the
imitation learner also needs to infer which segments of the
teaming demonstrations are (sub)-optimal and perform learn-
ing under partial observability of the dynamic state (s, x).

Summary of Contributions. Towards this problem setting,
we present Bayesian Team Imitation Learner (BTIL, pro-
nounced as “bee-tul”), an imitation learning algorithm that
can learn decentralized team policies from both optimal and
sub-optimal demonstrations. To effectively learn the team
policies, BTIL explicitly models the time-varying mental
states of each team member (xi) and jointly learns their tran-
sition model (Tx). To enable sample- and label-efficient pol-
icy learning, BTIL utilizes a Bayesian perspective and is ca-
pable of learning from partial supervision of the mental states.
We benchmark our solutions against two existing techniques
[Pomerleau, 1991; Song et al., 2018]. In our evaluations,
we emphasize the challenge of collecting teaming demonstra-
tions by collecting a novel dataset of human-agent teamwork
for settings where (a) the labels of mental models are only
partially available, and (b) the number of demonstrations is
small relative to the size of the task’s state space. Our exper-
iments show that BTIL can learn team policies from small
semi-supervised datasets of suboptimal teamwork and outper-
form the baselines across relevant metrics.

Running Example. To help describe our approach, we uti-
lize the collaboration scenario shown in Fig. 1 as a running
example. In this scenario, a two-member team composed of
Alice and Rob is tasked with moving all boxes together to the
flag in the least amount of time. At each time step, each agent
can choose to move in any one of four cardinal directions, at-
tempt to pick up or drop a box, or perform no operation. As
each box is heavy, it cannot be lifted by one agent alone. To
effectively move all boxes to the goal location, the team needs
to coordinate which box to pick next as well as the path along
which to move the box. Thus, in this scenario, the pertinent
latent state (x) corresponds to the team’s next target location
(i.e., one of the boxes or the flag), while the observable state
(s) corresponds to the locations of the agents and boxes.

During task execution, the team members’ mental mod-
els (x) can be misaligned. For example, Alice may target
the box at the top left while Rob targets the box at the bot-
tom left, thereby demonstrating suboptimal teamwork. Fur-
ther, to improve the collaboration, team members may or may
not choose to change their target at any point during the task
based on behavior of the other teammate. Thus, as motivated
earlier, the demonstrations of teamwork may not correspond
to a game-theoretic equilibrium and can be suboptimal due to
dependence on partially observable, dynamic mental models.
The goal of the imitation learner is to learn the mental model-
dependent policies of the team given these (potentially sub-
optimal) partially observable demonstrations of teamwork.

2 Related Work
Our work relates to the following three sub-areas of imita-
tion learning: multi-agent imitation learning, learning from
suboptimal demonstrations, and learning from partially ob-
servable demonstrations. Here, we summarize research from
these sub-areas and relate it to our approach. Please see Ap-
pendix A for a more detailed discussion of MAIL techniques.

Multi-agent Imitation Learning (MAIL). Although mul-
tiple MAIL algorithms exist, the problem setting consid-
ered in prior art differs from the one considered in this pa-
per. Reiterating from Sec. 1, prior MAIL techniques either
learn behavior corresponding to game-theoretic equilibria of
multi-agent systems [Song et al., 2018; Lin et al., 2019],
assume homogeneity in agents’ capabilities [Bhattacharyya
et al., 2019], or do not consider latent performance-shaping
factors (such as mental models or cognitive states). Ap-
proaches that do model latent states assume that the latent
state is either shared between members [Wang et al., 2021;
Ivanovic et al., 2018] or time-invariant [Le et al., 2017]. In
contrast, inspired by real world teaming considerations, we
seek to develop MAIL algorithms that both recognize the in-
dividual and dynamically changing latent states of each mem-
ber and are capable of learning multi-agent policies from dif-
ferent levels of supervision over the latent states.

Learning from Partially Observable Demonstrations.
Imitation learning with occlusions or missing features has
also received increasing attention in the last decade. These
techniques, while not directly valid for the multi-agent set-
ting considered in this work, inform our work. [Torabi et
al., 2018; Sun and Ma, 2019] consider learning an agent pol-
icy from demonstrations that may not include data of the
demonstrator’s actions. Similarly, [Choi and Kim, 2011;
Gangwani et al., 2020] allow incomplete specification of
states by utilizing a belief state. [Unhelkar and Shah, 2019]
explicitly model an agent’s latent decision factors (e.g., men-
tal states), which can change dynamically within an episode.
While related to our work, these techniques only consider
single-agent tasks and do not model the interaction between
multiple agents. [Bogert and Doshi, 2018] provide an ap-
proach for multi-robot inverse reinforcement learning from
partially observable demonstrations. In contrast to our ap-
proach, their work does not model agents’ mental states or
seek to learn from demonstrations of suboptimal teamwork.
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Learning from Suboptimal Demonstrations. While clas-
sical imitation learning assumes demonstrations are gener-
ated from experts who behave optimally, a few approaches
admit that demonstrations can be suboptimal in practice. For
example, with an assumption that the majority of demonstra-
tions are optimal, [Choi et al., 2019; Zheng et al., 2014] fo-
cus on imitation learning that is robust to suboptimal out-
liers. Meanwhile, [Brown et al., 2019; Chen et al., 2021;
Zhang et al., 2021] aim to incorporate demonstrations that
come from demonstrators whose level of expertise is un-
known in order to overcome the challenge of scarce expert
demonstrations. [Yang et al., 2021] utilize a latent action
representation while learning the optimal policy from poten-
tially suboptimal demonstrations. While related to our ap-
proach, these solutions for imitation learning from subopti-
mal demonstrations neither consider demonstrators’ mental
states nor multi-agent tasks. In contrast, our goal is to de-
velop an approach that can learn stochastic multi-agent poli-
cies from demonstrations that are both partially observable
and suboptimal.

3 Problem Formulation
To formalize the problem of learning team policies from sub-
optimal and partially observable demonstrations, we first pro-
vide models for the team task and team members’ behavior.

3.1 Task Model
Due to our focus on learning task-oriented team policies, we
require a model to represent team tasks. Borrowing from
prior research in multi-agent systems [Oliehoek and Amato,
2016], we build upon the framework of multi-agent Markov
decision processes (MMDP) to describe the tasks of interest.
An MMDP models sequential collaborative tasks and is spec-
ified by the tuple Mtask

.
= (n, S,A, T,R, γ), where

• n, is the number of agents i indexed 1 : n;
• s ∈ S, denotes the set of task states;
• ai ∈ Ai, is the set of actions ai available to the i-th agent;
• A=×iAi is the set of joint actions, where a=[a1, · · · , an]

denotes the joint action;
• Ts(s′|s, a) : S×A×S → [0, 1] denotes the state transition

probabilities, i.e., the probability of the next task state being
s′ after the team agents executed action a in state s

• R(s, a) : S × A → R is the joint reward that the team
receives after execution action a in state s.

• γ is the discount factor.
The MMDP model assumes that all agents have a shared

objective and each agent has full observability of the task
state and reward. The shared objective of the set of n agents,
whom we jointly refer to as the team, is to maximize their ex-
pected cumulative discounted reward, E[Σtγ

tR(st, at)]. In
this work, we focus on team tasks that can be modeled as
MMDP where the set of states S and the set of actions A are
finite. Several real-world tasks can be modeled using MMDP.
For instance, the scenario described in the running example
can be described as an MMDP with n=2, S modeling the
task-relevant features (namely, the agent and box locations),
and A modeling the actions available to the agent.

The solution to the MMDP is a set of n decentralized agent
policies π1:n, where πi is the policy of the i-th agent. In
the running example, this corresponds to policies of Alice
and Rob. Mathematically, πi(ai|s) is a probability distribu-
tion of the i-th agent’s actions ai conditioned on the MMDP
state. Since each agent has full state observability, in theory,
an MMDP can be solved optimally in a centralized manner
by the team using MDP solvers [Puterman, 1990] before the
task begins. If each team member follows this optimal pol-
icy faithfully, coordination between team members in MMDP
tasks is guaranteed during task execution.

3.2 Agent Model
In practice, however, one seldom observes perfect coordi-
nation among team members, including in tasks where the
agents have complete or near-complete observability of the
task state and complete knowledge of the team’s objective
(e.g., healthcare team in an operating room, or a team of bas-
ketball or soccer players). The potential causes of this imper-
fect coordination are varied. For instance, imperfect coordi-
nation can occur due to inability to compute a joint policy,
lack of prior coordination, imperfect execution, and different
individual preference. To design an imitation learning algo-
rithm that can effectively recover team policies, it is essential
to explicitly consider these imperfections and latent causes of
suboptimal teamwork.

Hence, to model teamwork observed in practice, we pro-
vide a latent variable model for each team member’s (poten-
tially suboptimal) behavior. Our model extends the Agent
Markov Model (AMM), which explicitly models latent states
of a single agent’s behavior [Unhelkar and Shah, 2019], to
model teamwork. In particular, we model each team mem-
ber’s behavior as the tuple (Xi, bxi , Txi , πi), where
• xi ∈ Xi denotes the latent states that influence the i-th

agent’s behavior during the task. These may include mental
models, methods to tie-break if multiple optimal policies
exist, or preferences over different task components.

• bxi
(xi) ∈ Xi → [0, 1] denotes the probability distribution

of the latent state at the start of the task.
• Txi(x

′
i|s, xi, a, s′) ∈ S×Xi×A×S×Xi → [0, 1] denotes

the transition model of the latent state.
• πi(ai|s, xi) ∈ S×Xi×Ai → [0, 1] denotes the team mem-

ber’s policy, a probability distribution of each member’s de-
cision ai conditioned on their decision factors (s, xi).

Referring to the running example, behavior of Alice and Rob
depends not only the task context (MMDP state) but also on
their latent preferences over the next target location. For each
team member, the agent model helps in modeling this latent
preference (as xi ∈ Xi), their latent state-dependent policy
(as πi), and the evolution of their latent preference (via bxi

and Txi
). While the above model is expressive and can rep-

resent a variety of team behaviors (e.g., suboptimal policies,
evolution of latent preferences based on past behavior), we
assume the transition dynamics Tx to be Markovian for com-
putational tractability. Notationally, we jointly refer to the be-
havioral models for the whole team as (X, bx, Tx, π), where
X= ×iXi, Tx={Tx1

, · · · , Txn
}, and π=[π1, · · · , πn]. The

latent state of whole team is denoted as x=[x1, · · · , xn].
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Figure 2: Dynamic Bayesian network for the behavior of a 2-agent
team with time-invariant latent states depicted using plate notation.

3.3 Problem Statement
In the classical MAIL setting, the goal is to learn the
team policy from a set of teamwork demonstrations1 τ

.
=

(s0:h, a0:h), where h denotes the demonstration length. In our
setting, however, team behavior is additionally influenced by
the trajectories of team members’ latent states χ .

= (x0:h),
which are partially observable and resource-intensive to an-
notate. Hence, we focus on semi-supervised learning of team
policies, where x-labels are available for only a subset of the
demonstrations.

Formally, our problem corresponds to learning the team
policy π, given the MMDP task model (n, S,A, T,R, γ),
a set of d observable demonstrations, τ1:d

.
= {τm}dm=1,

and labels of x for a subset l(≤ d) of the demonstrations,
χ1:l

.
= {χm}lm=1. For our running example, the problem

corresponds to recovering the behavioral policy of the two-
agent team (Alice and Rob), given d observable trajectories
of agent and box locations τ1:d and labels of each agents’
preferred target locations for a subset of the trajectories χ1:l.

4 Solution: Static Latent States
For ease of exposition, we first derive the policy learning al-
gorithm for the case wherein team members do not change
their latent mental model (x) during task execution; mathe-
matically, Tx

.
= 1(x=x′). In the next section, we build upon

the solution derived for this special case to solve the overall
problem of Sec. 3.3. We note that, despite the simplification
of static latent states, the learner needs to reason under partial
state observability to learn the team policy.

Generative Model. To enable policy learning from a small
number of demonstrations, we utilize a Bayesian approach
and provide a generative model of team behavior. The gener-
ative model, shown in Fig. 2 for a two-agent team, models the
process of generating team demonstrations. Each agent (in-
dicated by the subscript) selects its action, ati ∼ πi(·|st, xi),
at time step t, based on the current task state st, her mental

1Notation: We use superscript to denote the time step. The sub-
script is overloaded and, based on the context, is used to denote the
i-th agent, m-th demonstration, task state s, agent’s latent state x, or
action a. Finally, for notational convenience, we use 1abc(a

′, b′, c′)
to denote 1(a′=a, b′=b, c′=c).

state xi, and policy πi. In this special case, the latent state
xi does not change during task execution and, thus, is repre-
sented without a superscript. The dynamics of task state st+1

depend on the MMDP model Ts(·|st, at).
To complete the generative process, the model addition-

ally includes priors (not shown in Fig. 2) for the latent state
and policy. In absence of any additional domain knowledge,
we assume that the policy is given as a Categorical distri-
bution. Hence, we define the prior of a policy as its con-
jugate prior, Dirichlet distribution: πi,sx ∼ Dir(uπ), where
uπ=(uπ1 , · · · , uπ|A|) are hyperparameters. Similarly, we as-
sume that the latent state is drawn from the uniform distribu-
tion unless additional information is given: xi ∼ Uni(X).
Given the generative model and data of semi-supervised
demonstrations (τ1:d, χ1:l), the policy can be learned by max-
imizing the posterior: p(π|τ1:d, χ1:l).
Policy Learning with Supervision (l=d). For the case
when labels of x are available for the entire dataset, we can
directly compute the posterior distribution of the policy as:

p(πi,sx|τ1:d, χ1:l) = Dir(wi,sx) (1)

where, wi,sxa = uπa +
∑l
m=1

∑
(s′,a′)∈τm 1sxa(s′, xi,m, a

′
i).

Policy Learning with Semi-supervision (l < d). When
labels of the latent state are only partially available, the like-
lihood p(τ1:d, χ1:l|π) cannot be readily computed as it de-
pends on unknown variables, namely, the subset of the data
for which latent states x labels are unavailable: {xm}m>l.
Hence, to calculate the posterior distribution in a computa-
tional tractable manner, we explore paradigms for approxi-
mate Bayesian computation. We note the computing the pos-
terior through exact inference (i.e., brute-force) is intractable
due to the high-dimensional nature of our problem. In-
spired by prior work on single-agent modeling [Johnson and
Willsky, 2014; Unhelkar and Shah, 2019], we utilize mean-
field variational inference (MFVI) [Beal, 2003] and derive
an MFVI algorithm for modeling team policies. In MFVI,
the posterior of the team policy is approximated as the vari-
ational distribution q(π) that maximizes the evidence lower
bound (ELBO). For our problem, the ELBO corresponds to:

L(q)
.
= Eq

[
log

p(π, {xm}m>l, data)

q (π) q ({xm}m>l)

]
(2)

The solution for the optimization problem, arg maxq L(q),
corresponds to the iterative computation of the local q(x) and
global q(π) variational distributions until convergence:

q(πi,sx) = Dir
(
wπi,sx

)
(3)

q(xi,m = x) = (1/Z) exp
[∑

τk
ln π̃i,sxa

]
(4)

where, Z =
∑
x′∈X exp [

∑
τ ln π̃i,sx′a] is the partition func-

tion, the operator Ã denotes exp
(
Eq′(A) [lnA]

)
, and

wπi,sxa = uπa +

m∑
k=1

Eq′(xi,m)

∑
τm

1sxa(st, xi,m, a
t
i). (5)

Given the posterior q(π), the policy is simply estimated as the
maximum a posteriori (MAP) estimate: π̂ = arg maxπ q(π).
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Figure 3: Dynamic Bayesian network for the behavior of a 2-agent
team with time-varying latent states depicted using plate notation.

5 Solution: Dynamic Latent States
In contrast to the special case considered above, in practice,
each member’s task-specific mental model may evolve dur-
ing the task. Hence, next, we extend the solution presented
for static latent states to solve the general problem of Sec. 3.3.
Analogous to the previous section, we first provide a gener-
ative model of team behavior and provide a MFVI-based ap-
proach for computing the MAP estimate of policy.
Generative Model. For the general setting, the generative
process of team behavior additionally needs to model the tem-
poral evolution of the team members’ mental models. Thus,
as shown in Fig. 3, we augment the generative model of Fig. 2
to include each agent’s time-varying latent states xti and their
dynamics: Txi

.
= P (xt+1

i |st, xti, at, st+1). In general, how
the mental model evolves may not be known a priori and,
thus, requires specification of a prior distribution. Similarly
to the policy prior, we utilize Dirichlet distribution as the
prior for the latent state transition model, i.e, Txi,sxas′ ∼
Dir(uT1 , · · · , uT|X|), where uTx are hyperparameters. Both Tx
and π jointly influence the likelihood of the semi-supervised
demonstrations of team behavior, p(τ1:d, χ1:l|Tx, π), where
Tx specifies the distribution of the next latent state xt+1 and
π that of the action at. Due to this dependence, to recover the
team policy using MFVI, we need an approach to compute
their joint posterior p(Tx, π|τ1:d, χ1:l).
Bayesian Team Imitation Learner (BTIL). Similar to
Sec. 4, our solution to the overall problem – abbreviated as
BTIL– includes iterative computation of variational distribu-
tions. However, in contrast to the previous section, the varia-
tional distributions additionally include the posterior of latent
state dynamics Tx. The BTIL algorithm builds upon MFVI
and is derived by maximizing the following ELBO:

L(q) := Eq

[
log

p
(
π, Tx, {x0:hm }m>l, data

)
q (π) q (Tx) q ({x0:hm }m>l)

]
(6)

Algorithm 1 Bayesian Team Imitation Learner (BTIL)
Input: τ1:d, χ1:l

Parameters: uπ, uTx , N, Ts

1: Initialize wπi , w
Tx
i for i=1 : n

2: Initialize posterior of all unlabeled states q({x0:hm }m>l)
3: while L(q) converges do
4: Update the variational parameters wπ1:n, w

Tx
1:n

5: for all τm do
6: Compute forward F and backward B messages
7: Update posterior of all unlabeled states q({x0:hm }m>l)
8: end for
9: end while

10: Compute the policy posterior q(π) ∼ Dir(wπi )
11: return arg maxπ q(π)

Alg. 1 provides the pseudocode of BTIL, which ap-
proximates the posterior distribution p(Tx, π|τ1:d, χ1:l) as
independent variational distributions q(π)q(Tx), where
q(πi)=Dir(wπi ) and q(Txi

)=Dir(wTx
i ). The estimates of

posterior distributions are improved by iteratively updating
the variational parameters wπ, wTx (line 4). Similar to Eq. 5,
the variational parameters are updated as:

wTx

i,jkass′=u
Tx

k +

d∑
m=1

Eq(x)
[∑

t 1jkass′(x
t:t+1
i , at, st:t+1

i )
]

wπi,sxa = uπa+
d∑

m=1

Eq(x)
[∑

t 1sxa(st, xti,m, a
t
i)
]

(7)

An estimate of the posterior distribution of unlabeled states
q(x) is required to compute the expectations in Eq. 7. This
local variational distribution is given as follows:

q(x0:hi,m) ∝ exp (E [ln p(xi, data|Txi
, bxi

, πi, Ts])

= p(x0:hi,m, τi,m|T̃xi
, π̃i, Ts, bxi

)/Zi,m (8)

To compute Eq. 8 in a tractable manner, we define the fol-
lowing forward-backward messages. These messages are be
computed in a recursive manner (line 6) as follows:

F (t, j1, · · · , jn)
.
= P (xt1=j1, · · · , xtn=jn, s

0:t, a0:t)

=
∑

k1,··· ,kn

F (t− 1, k1, · · · , kn)Ts

n∏
i=1

(
T̃xi

π̃i

)
B(t, j1, · · · , jn)

.
= P (st+1:h, at+1:h|xt1=j1, · · · , xtn=jn, s

0:t, a0:t)

=
∑

l1,··· ,ln

B(t+ 1, l1, · · · , ln)Ts

n∏
i=1

(
T̃xi

π̃i

)
F (0, j1, · · · , jn) =

n∏
i=1

b̃xi
π̃i, B(h, j1, · · · , jn) = 1

For notational convenience, the subscriptm is omitted. Given
the forward F and backward messages B, BTIL computes
the required local probabilities (line 7) as follows:
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q(xt) ∝ F ·B

q(xti) =
∑
x−i

q(xt1, · · · , xtn)

q(xt, xt+1) ∝ F ·
∏
i

(
T̃xi π̃i

)
· Ts ·B

q(xti, x
t+1
i ) =

∑
x−i

q(xt, xt+1)

The time complexity of forward and backward messaging
passing subroutine isO(h|X|2n). Given the converged poste-
rior q(π) in line 10, the team policy is estimated as the MAP
estimate (line 11).

6 Experiments
We evaluate BTIL using two domains, Movers and Cleanup,
which include aforementioned features and challenges of real
world teamwork. These domains build upon the coopera-
tive box pushing task of [Oliehoek and Amato, 2016], include
unambiguous latent preferences, and allow for opportunities
of (mis)-alignment of team members’ mental models. Video
demonstrations of collaborative task execution in these do-
mains are included in the supplementary material.

Due to the latent nature of mental models, labels of human
team members’ latent state cannot be ascertained without sig-
nificant manual effort and annotation. Further, existing multi-
agent dataset, to our knowledge, have not recorded men-
tal models at each time step of collaborative tasks. Hence,
to conduct the proposed experiments and compute pertinent
metrics, we create two novel datasets for each domain: one
synthetically generated and the other collected via human
subject experimentation.

6.1 Domains
Movers. This domain realizes the running example of Sec. 1
in a 7 × 7 grid world. The two member team of Alice and
Rob is tasked with carrying boxes to the goal position (flag).
Boxes cannot be picked up by one agent alone; hence, to ef-
ficiently complete the task, the agents should coordinate on
their latent preference over which box to pick or drop next.
Each box can be either on its original location, held by both
agents, or on the goal location. As described in the running
example, agents can take one of the six actions at each step. In
this domain, there are 38988 observable states and five possi-
ble mental states (corresponding to the three box pickup loca-
tions and two drop off locations), resulting in around 200000
states affecting each team member’s decisions.
Cleanup. This domain has a similar configuration as
Movers, but the environment includes lighter trash bags are
placed instead of heavy boxes. Trash bags can only be picked
up by one agent; hence, to effectively complete this task, each
agent should carry different trash bags as much as possible.
Each trash bag can be either on its original location, held by
one of the agents, or be dropped at the goal location. In this
domain, there are in total over 450000 states affecting agent
decisions. The set of primitive actions and latent preferences
available to each agent are same as the Movers domain.

6.2 Baselines and Metrics
Due to the novel features of our problem setting, to the best
of our knowledge, existing algorithms do not readily apply
to the general version of our problem. Existing MAIL solu-
tions either do not model mental states, assume them to be
aligned across all team members, or model them as time in-
variant. Hence, we benchmark our approach against baselines
on special cases of our problem. In our design of experi-
ments, we divide our problem into four settings based on two
criteria: (a) whether the transition model of latent states Tx
is known a priori or not, and (b) whether the latent states are
completely labeled or not. We apply the behavioral cloning
(BC) and MAGAIL as baselines for the setting of complete
labels and the known transition model Tx [Pomerleau, 1991;
Song et al., 2018]. The implementation of BC and MA-
GAIL is similar to those used in [Ho and Ermon, 2016;
Song et al., 2018] respectively but adapted to handle discrete
states. For the settings where labels are only partially avail-
able, we cannot apply existing algorithms; instead, we com-
pare the performance of the supervised (BTIL-Sup) and the
semi-supervised (BTIL-Semi) version of our approach. Im-
plementation details of BTIL and the baselines are provided
in Appendix D.

We evaluate our approach’s ability to effectively learn team
policies using the weighted Jensen-Shannon divergence (JS
Div.) between the true and learned policies. Like [Unhelkar
and Shah, 2019], the policy divergence metric is weighted by
the relative counts of states (s, x) observed in the training set.
The policy learning performance can only be computed in ex-
periments with synthetic data, where the ground truth policy
is known. Hence, in addition, we compare the ability to de-
code the unlabeled latent states using learned policies. In par-
ticular, we utilize the normalized Hamming distance (Ham-
ming) between the decoded x̂0:hi,m and true x0:hi,m sequences of
latent states as the decoding metric. To decode the team mem-
ber’s latent states, as detailed in Appendix B, we extend the
algorithm presented by [Seo et al., 2021]. Lastly, to have a
better sense of the worst case values of these highly nonlinear
metrics, we utilize the Random baseline, which models the
team policy as a Uniform distribution.

6.3 Results on Synthetic Data
We first present results on the synthetic dataset, which are
summarized in Table 1. These experiments evaluate BTIL in
two settings: with and without prior knowledge of Tx. We
present additional results in Appendix E.

Data of Multi-agent Teamwork. The first dataset is syn-
thetically generated by simulating teamwork between two ar-
tificial agents. For each domain, we implement the Marko-
vian task model Ts, specify ground truth policies πi, and tran-
sitions of the team members Txi . To arrive at the agent poli-
cies, we specify rewards associated with each latent state, uti-
lize value iteration to compute Q-values, and derive stochas-
tic policies πi using the softmax operation overQ-values. Ex-
ecution sequences are created by first assigning initial latent
states xi to each team member and, then iteratively, (a) sam-
pling team members’ action ai ∼ π(·|s, xi), (b) sampling the
next state s′ ∼ T (·|s, a), and (c) sampling the next latent
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Movers Cleanup

Alice Rob Alice Rob

Setting Algorithm Hamming JS Div. Hamming JS Div. Hamming JS Div. Hamming JS Div.

with Tx

Random 0.29±0.00 0.14±0.00 0.29±0.00 0.14±0.00 0.18±0.00 0.32±0.00 0.18±0.00 0.36±0.00
BC 0.32±0.02 0.15±0.01 0.31±0.03 0.15±0.01 0.06±0.01 0.22±0.03 0.03±0.02 0.17±0.03
MAGAIL 0.30±0.03 0.21±0.02 0.31±0.03 0.24±0.01 0.16±0.03 0.29±0.02 0.17±0.05 0.38±0.04
BTIL-Sup 0.30±0.01 0.07±0.00 0.27±0.01 0.07±0.00 0.09±0.02 0.20±0.01 0.04±0.01 0.19±0.00

BTIL-Semi 0.15±0.02 0.05±0.00 0.16±0.02 0.05±0.00 0.09±0.02 0.07±0.01 0.04±0.01 0.04±0.00

w/o Tx

Random 0.72±0.00 0.14±0.00 0.77±0.00 0.14±0.00 0.78±0.00 0.32±0.00 0.82±0.00 0.36±0.00
BTIL-Sup 0.31±0.01 0.07±0.00 0.35±0.01 0.07±0.00 0.54±0.01 0.20±0.01 0.48±0.03 0.19±0.00

BTIL-Semi 0.30±0.01 0.04±0.00 0.33±0.01 0.04±0.00 0.42±0.01 0.05±0.00 0.36±0.01 0.04±0.00

Table 1: Results on the synthetic data of multi-agent teamwork averaged over five learning trials.

state x′i ∼ Txi(·|xi, s, a, s′) until the task termination criteria
or 200 time steps are reached. For each domain, we generate
200 demonstrations for training and 100 for evaluation. The
proportion of suboptimal training demonstrations (as defined
in Appendix C) is 49% and 7% for Movers and Cleanup, re-
spectively.

BTIL Outperforms Baselines in Fully Supervised Set-
tings. The first four rows of Table 1 provide results with
20 labeled demonstrations (d=l=20) and Tx as inputs. For
this setting in the Movers domain, we observe that the super-
vised version of our algorithm (BTIL-Sup) learns more ac-
curate team policies than the baselines. Other baselines (BC,
MAGAIL) performed no better than the Random baseline. In
Cleanup, our algorithm also outperformed other baselines in
the policy learning metric (JS Div.). Despite a small training
set, BTIL can learn the team policy with low JS-Divergence
by effectively leveraging the x-labels and knowledge of Tx.

In terms of the decoding metric (Hamming), BC showed
better results than BTIL in Cleanup domain. We posit that
this trend occurs due to a combination of two reasons. First,
the Movers domain requires tighter coordination relative to
the Cleanup domain. In Movers, teammates must agree on
which object to pick next to achieve coordination while in
Cleanup, they only need to ensure that they are not picking
the same object next. Second, the decoding metric (Ham-
ming) assesses learning performance only on a subset of the
state space (i.e., the states encountered in the test set); while
JS Div. assess learning performance for the entire state space
and, thus, is a better indicator of generalizability. This ex-
plains why, even in Cleanup, BC outperforms BTIL only on
the decoding metric. In the Movers domain, which requires
tighter coordination, BC performs poorly in both metrics.

BTIL Is Capable of Learning Team Policies Without
Prior Knowledge of Tx. As shown in the bottom section of
Table 1, BTIL can maintain its policy learning performance
(JS Div.) even when Tx is unknown. These results suggest
that BTIL is capable of learning Tx along with π and that
joint learning of (π, Tx) is essential to imitation learning of
team policies. Somewhat unsurprisingly, when the decoding
algorithm utilizes the learnt Tx, the latent state decoding per-
formance degrades relative to the known Tx case.

BTIL Effectively Utilizes Unsupervised Demonstrations
to Improve Team Policy Learning. Lastly, we compare
the performance of BTIL under semi-supervision, i.e., the
general setting of Sec. 3.3. For these trials (denoted as BTIL-
Sup), we provide the algorithm additional 180 demonstra-
tions without latent state labels (d=200, l=20). Comparing
performance of BTIL-Sup and BTIL-Semi, we observe im-
provement in policy learning performance, highlighting the
ability of BTIL to effectively leverage available unsupervised
data. This ability is particular critical in practice, where col-
lecting data of (s, a)-tuples can be significantly less resource
intensive than arriving at the labels of mental states. In ad-
ditional experiments reported in Appendix E, which further
investigate the effect of training set size and amount of semi-
supervision on the learning performance, we observe that the
decoding performance is enhanced with more labeled data
and semi-supervision provides the most benefit when the la-
beled training set is small.

6.4 Results on Data of Human-AI Teamwork
Synthetically generated data, while being useful in validating
policy learning performance, cannot capture the variability in
behavior demonstrated by humans and human-agent teams.
Hence, to benchmark our approach in more realistic settings,
we evaluate our algorithm on a novel dataset of human-agent
teamwork through an ethics board-approved human subject
experiment with 33 participants (16 female, 17 male, mean
age: 26.7±5.3 years), who were recruited at Rice University.

Data Collection Procedure. To collect this novel dataset
of human-AI teamwork, we designed a web-based interface
shown in Fig. 4. Through this web-based interface par-
ticipants completed tasks in the two domains (Movers and
Cleanup) with an AI teammate. The human participant
served the role of Alice, while the AI teammate served the
role of Rob depicted as a robot avatar.

When the experiment starts, participants are asked to com-
plete a short demographic survey. Further, before the partic-
ipants conduct any tasks, they were provided with an inter-
active tutorial to make them familiar with the task and the
interface. Upon completing the interactive tutorial, the exper-
iment consisted of 9 sessions: 4 sessions on the Movers do-
mains and 5 tasks for Cleanup. For each domain, the first two
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In this task,
* Your goal is to move all the boxes to the flag as soon as possible.
* You can only pick up the box circled in red.
* You cannot pick up the box alone.

Special instructions for the test session,
* You will be periodically prompted to select your destination

(red circle).
* Since you will be selecting the destination, you can use this added

flexibility to complete the task faster.

Please select your
current destination
among the circled
options. It can be the
same destination as
you had previously
selected.

Proceed to Survey

Pick Up

Drop

Select Destination

Time Taken: 20
(Your Best: -)

Figure 4: A still of the user interface designed and used for collect-
ing data of human-agent teamwork. Please also see the supplemen-
tary material for video demonstrations of the user interface.

sessions were used as practice sessions. These practice ses-
sions were designed for participants to gain further familiarity
with the user interface. Through the tutorials and practice ses-
sions, each participant was requested to complete tasks col-
laboratively with a robot avatar which behaves according to
an AI policy. The AI policy is generated similar to the syn-
thetic experiment, i.e, by specifying rewards associated with
each mental model, running value iteration, and taking the
softmax function over Q-values.

For each task, participants’ actions (clicking action but-
tons) are logged along with the task state (location of Al-
ice, Rob, and the boxes) and their chosen destination (mental
state corresponding to which box to pick up or drop next). In
general, collecting ground truth values of participants’ men-
tal states is challenging; in these experiments, we achieve
this through a destination-selection interface detailed in Ap-
pendix C. By encouraging them to complete the task as soon
as possible through the provided instructions and by show-
ing “Your Best” score, we gamify the collaborative task and
expect participants to take goal-oriented actions.

Through this experiment, we collect 66 trajectories for
Movers, and 99 trajectories for Cleanup, of which every time
step is labeled. The average lengths of trajectories (in terms
of time steps) are 68.1 in Movers and 40.1 in Cleanup. The
proportions of suboptimal demonstrations are 17% and 7% in
Movers and Cleanup, respectively. We use two thirds of the
collected trajectories for training and the rest for evaluation.

Algorith Supervision Movers Cleanup

Random N/A 0.72±0.00 0.77±0.03
BTIL-Sup 100% 0.14±0.02 0.30±0.02
BTIL-Semi 50% 0.16±0.02 0.35±0.03
BTIL-Semi 20% 0.20±0.02 0.42±0.02

Table 2: State decoding performance (Hamming distance) on the
data of human-agent teamwork averaged over five learning trials.

Performance of BTIL Observed with Data of Multi-agent
Teamwork Translates to Learning Policies of Human-
agent Teamwork. As we cannot ascertain the true policy of
a human, we utilize only the state decoding metric in these ex-
periments. Further, as would be the case in practice, the men-
tal model dynamics are also unavailable; hence, Tx needs to
be learned by our algorithm and the MAGAIL baseline cannot
be applied. Table 2 summarizes the decoding performance
computed using π and Tx learned by variants of BTIL. All
variants of BTIL are supplied with same amount of (s, a)-
demonstrations but varying amount of x-labels. BTIL, even
with a small amount of supervision, significantly outperform
the Random baseline. In conjunction with the results com-
puted with synthetic data, these experiments provide proof-
of-concept in the ability of BTIL to learn team policies from
small semi-supervised datasets of optimal and suboptimal
teamwork.

7 Concluding Remarks
We provide BTIL, a Bayesian approach to learn team poli-
cies from demonstrations of suboptimal teamwork. In most
collaboration scenarios, it is challenging to collect large la-
beled datasets of teamwork due to changes in team member-
ship, adaptations in team policies, and the need for labeling
latent states. Inspired by these and other aspects of team-
work observed in practice, BTIL includes multiple desirable
features, including (a) the ability to learn from small sets of
semi-supervised data, (b) explicit modeling of team mem-
bers’ mental models and model alignment and (c) the ability
to jointly infer team policy, latent state dynamics, and latent
states. We confirm the ability of our algorithm to learn team
policies on two novel datasets of teamwork, including one of
human-AI teamwork. Our work also offers several avenues
of future work, including the ability to consider collaborative
tasks where the task state s itself may be partially observable
and consideration of communicative actions.
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Xu, Li Fei-Fei, Karen Liu, and Silvio Savarese. Co-GAIL: Learn-
ing diverse strategies for human-robot collaboration. In 5th An-
nual Conference on Robot Learning, 2021.

[Yang et al., 2021] Mengjiao Yang, Sergey Levine, and Ofir
Nachum. TRAIL: Near-optimal imitation learning with subop-
timal data. arXiv preprint arXiv:2110.14770, 2021.

[Zhang et al., 2021] Songyuan Zhang, Zhangjie Cao, Dorsa
Sadigh, and Yanan Sui. Confidence-aware imitation learning
from demonstrations with varying optimality. Advances in
Neural Information Processing Systems, 34, 2021.

[Zheng et al., 2014] Jiangchuan Zheng, Siyuan Liu, and Lionel M
Ni. Robust Bayesian inverse reinforcement learning with sparse
behavior noise. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 28, 2014.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2500


	Introduction
	Related Work
	Problem Formulation
	Task Model
	Agent Model
	Problem Statement

	Solution: Static Latent States
	Solution: Dynamic Latent States
	Experiments
	Domains
	Baselines and Metrics
	Results on Synthetic Data
	Results on Data of Human-AI Teamwork

	Concluding Remarks

