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Abstract
Rumor spreaders are increasingly taking advantage
of multimedia content to attract and mislead news
consumers on social media. Although recent multi-
media rumor detection models have exploited both
textual and visual features for classification, they
do not integrate the social structure features si-
multaneously, which have shown promising perfor-
mance for rumor identification. It is challenging
to combine the heterogeneous multi-modal data in
consideration of their complex relationships. In this
work, we propose a novel Multi-modal Feature-
enhanced Attention Networks (MFAN) for rumor
detection, which makes the first attempt to integrate
textual, visual, and social graph features in one uni-
fied framework. Specifically, it considers both the
complement and alignment relationships between
different modalities to achieve better fusion. More-
over, it takes into account the incomplete links in
the social network data due to data collection con-
straints and proposes to infer hidden links to learn
better social graph features. The experimental re-
sults show that MFAN can detect rumors effectively
and outperform state-of-the-art methods.

1 Introduction
With the rapid development of social media such as Twitter
and Weibo, rumors can quickly spread over these platforms,
which can lead to significant negative impacts on society. For
example, the rumor blaming 5G for the coronavirus pandemic
had led to arson attacks on more than 70 cell phone towers in
the UK in 20201. Due to the large amounts of user-generated
content every day, it is desirable to automatically identify ru-
mors to minimize the harmful impacts.

Traditional rumor detection models mainly rely on ex-
tracting textual features as source post representations for
classification, either with traditional learning models such
as decision trees [Castillo et al., 2011] or deep neural net-
works (DNN) based models such as recurrent neural networks

∗Corresponding author
1https://www.cnet.com/health/5g-coronavirus-conspiracy-

theory-sees-77-mobile-towers-burned-report-says/

(RNN) and convolutional neural networks (CNN) [Ma et al.,
2016; Yu et al., 2017]. With the prevalent of multimedia
posts on social media, rumor spreaders tend to utilize visual
content together with textual content to attract more atten-
tion and get rapid dissemination. To address this issue, a line
of multimedia rumor detectors have been proposed to fuse
textual and visual features based on DNN to produce multi-
modal post representations, which have shown better perfor-
mance than solely using the textual data [Khattar et al., 2019;
Wang et al., 2018; Zhou et al., 2020]. However, one com-
mon limitation of these studies is that they didn’t consider
the graphical social contexts simultaneously, which have been
proved to be beneficial to improve the detection performance
[Yuan et al., 2019].

The social context of a source post commonly involves its
forwarding users and the corresponding comments. Based
on these entities and their connections, a heterogeneous
graph can be constructed to model the structure informa-
tion. Then graphical models such as graph attention net-
works (GAT) [Veličković et al., 2017] and graph convolu-
tional networks (GCN) [Kipf and Welling, 2016] can be uti-
lized to aggregate adjacent node information to obtain better
node representations for rumor detection [Yuan et al., 2019;
Yang et al., 2021]. With the help of graphical models, con-
nected instances can exchange information and facilitate each
other’s learning. However, the existing graph-based detectors
suffer from several limitations: (1) the quality of node rep-
resentation learning depends highly on reliable links among
entities. Due to the privacy issue or data crawling constraint,
the available social graph data is very likely to lack some
important links among entities. Therefore, it is necessary
to complement latent links on the social graph to achieve a
more accurate detection; (2) there may be various latent rela-
tions between adjacent nodes on a graph, while the conven-
tional neighborhood aggregation procedure of graph neural
networks (GNN) may not be able to differentiate their effects
on the representation of a target node, leading to inferior per-
formance; (3) how to effectively integrate the learned social
graph features with other modality features (e.g., visual fea-
tures) is less explored in existing studies.

To address the above challenges, we propose a novel
Multi-modal Feature-enhanced Attention Network (MFAN)
for multimedia rumor detection. We make the first attempt to
jointly model textual, visual, and social graph features in one
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framework. Given the multimedia post features and the so-
cial graph features, a straightforward solution is to adopt the
attention mechanism between the two groups of features and
effectively aggregate them to produce distinctive features for
rumor detection. In this work, we improve the multi-modal
fusing mechanism by considering the cross-modal semantic
alignment. Specifically, a self-supervised loss is introduced
to align the source post representations learned from two dis-
tinct views, i.e., the textual-visual view and the social graph
view, aiming to improve the representation learning in each
view. In addition, to obtain better social graph structures,
we improve the graph representation learning from two per-
spectives. On the one hand, we propose to infer potential
links between nodes in the social graph to alleviate the in-
complete link issue. On the other hand, we utilize a signed
attention mechanism to capture both positive and negative
neighborhood correlations to achieve better node representa-
tions. Through the above enhanced cross-modal fusion and
social graph representation learning, we can promote the per-
formance of multimedia rumor detection.

The main contributions can be summarized as follows:

• We propose a multi-modal feature-enhanced attention
network for multimedia rumor detection, which can ef-
fectively combine textual, visual, and social graph fea-
tures in one unified framework.

• We introduce a self-supervised loss to align the source
post representations in different views to achieve better
multi-modal fusion.

• We improve the social graph feature learning by enhanc-
ing both the graph topology and neighborhood aggrega-
tion procedure.

• We empirically show that the proposed model can effec-
tively identify rumors and outperform the state-of-the-
art baselines on two large-scale real-world datasets.

2 Related Work
Early rumor detection methods usually manually extract fea-
tures from text content for classification [Castillo et al., 2011;
Popat, 2017], which requires massive human efforts. More
recently, DNN-based methods [Ma et al., 2016; Karimi et al.,
2018; Ma et al., 2018] have been proposed to learn the post
representations to promote the detection performance. How-
ever, these studies don’t consider the visual features and so-
cial context features that would be beneficial.

Multi-modal data have been exploited by a set of stud-
ies to facilitate the detection. [Khattar et al., 2019] uses bi-
directional long short-term memory (Bi-LSTM) to extract
textual and visual representations. [Wang et al., 2018] jointly
considers textual and visual information and removes the
event-specific features. [Yuan et al., 2019] combines text and
heterogeneous graph structures for rumor detection. How-
ever, they adopt simple fusion methods and may not be able to
capture the complex relationships among multi-modal data.

To explore the rich correlations between different modali-
ties, [Qian et al., 2021] jointly models the multi-modal con-
text information and the hierarchical semantics of text in a
unified model. [Lu and Li, 2020] learns the representations

TF VF SF PR PN MI MA AL
[Wang et al., 2018] ✓ ✓

[Khattar et al., 2019] ✓ ✓

[Tian et al., 2020] ✓ ✓

[Zhou et al., 2020] ✓ ✓ ✓

[Wei et al., 2021] ✓ ✓ ✓

[Yuan et al., 2019] ✓ ✓

Our Work ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: A comparison of related studies. Column notations: Tex-
tual Feature (TF), Visual Feature (VF), Social Graph Feature (SF),
Potential Relationship in Social Networks (PR), Positive and Nega-
tive Relationship (PN), Multi-modal Interaction (MI), Multi-modal
Alignment (MA), Adversarial Learning (AL).

of user interactions, retweet propagation, and their correla-
tion with source tweets. [Wu et al., 2021] stacks multiple co-
attention layers to fuse the multi-modal features. [Jin et al.,
2017] jointly considers the fusion of text, image, and social
context information but ignores the social graph structure.

Graph-based rumor detectors have been proposed to ex-
ploit the social graph to enhance the post representa-
tions [Yuan et al., 2019; Yang et al., 2021]. However, they
ignore the incomplete link issue in the dataset. Although
[Wei et al., 2021] has considered the propagation uncertainty
between different nodes, it doesn’t complement the missing
links on the social graph nor conduct the multi-modal fusion
to promote the representation learning.

A comparison between our work and the related studies
is shown in Table 1. The uniqueness of our work lies in:
jointly using textual, visual, and social graph features, involv-
ing multi-modal alignment for better fusion, and utilizing po-
tential relationships to enhance the graph features.

3 Problem Definition

Let P = {p1, p2, · · · , pn} be a set of multimedia posts on so-
cial media with both texts and images. For each post pi ∈ P ,
pi = {ti, vi, ui, ci}, where ti, vi and ui denote the text, image
and user who have published the post. ci = {c1i , c2i , · · · , c

j
i}

represents the set of comments of pi. Moreover, each com-
ment cji is posted by a corresponding user uj

i .
In order to represent user behaviors on social media, we

establish a graph G = {V,A,E}, where V is a set of
nodes, including user nodes, comment nodes, and post nodes.
A ∈ {0, 1}|V |∗|V | is an adjacency matrix between nodes to
describe the relationships between nodes, including posting,
commenting, and forwarding. E is the set of edges.

We define rumor detection as a binary classification task.
y ∈ {0, 1} denotes class labels, where y = 1 indicates ru-
mor, and y = 0 otherwise. Our goal is to learn the function
F (pi) = y to predict the label of a given post pi.
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Figure 1: The proposed framework MFAN. We first obtain the three modal features of textual, visual, and graphical for a post on social
media through feature extractors. Then we use the visual feature to enhance the textual feature and utilize the potential relationship in social
networks to enhance the graphical feature. We perform the modal alignment between the above two enhanced features. The cross-modal
co-attention mechanism is used to obtain the enhanced features between every two modalities. Then we integrate all the enhanced modal
features for rumor detection.

4 Methodology
The focus of our proposal is to effectively combine textual,
visual, and social graph features to improve the rumor detec-
tion. To this end, we first extract the three types of features.
In order to produce better social graph features, we propose
enhancing both the graph topology and aggregation proce-
dure based on GAT. We then capture cross-modal interaction
and alignment to achieve better multi-modal fusion. Finally,
we concatenate the enhanced multi-modal features for clas-
sification. We also apply adversarial training to promote the
robustness. The overall architecture is illustrated in Figure 1.

4.1 Textual and Visual Feature Extractor
Textual Representations
We employ CNN with pooling to extract the semantic feature
of sentences. Firstly, for each post pi, its text ti is padded or
truncated to have the same number of tokens, i.e., L, which is
represented as

Oi
1:L =

{
oi1, o

i
2, · · · , oiL

}
(1)

where o ∈ Rd, d is the dimension of word embeddings and
oij denotes the word embedding of the j-th word of ti.

Then, we apply convolution layer on the word embed-
ding matrix Oi

j:j+k−1 to get the feature map sij , where
k is the size of the receptive field. We denote si ={
si1, si2, · · · , si(L−k+1)

}
. Then, we use max pooling over

si to obtain ŝi = max(si). We use d/3 filters with varying
receptive filed k ∈ {3, 4, 5} to obtain semantic features of
different granularities.

Finally, we concatenate all filters’ outputs to form the over-
all textual feature of ti:

Ri
t = concat( ˆsik=3,

ˆsik=4,
ˆsik=5) (2)

Visual Representations
We use the pre-trained model ResNet50 [He et al., 2016]
trained over the ImageNet database to extract image vi’s fea-
ture. Firstly, we extract the output of the second last layer
of ResNet50 and denote it as V i

r . Then, we pass it through
a fully connected layer to obtain the final visual feature with
the same dimension as the textual feature, that is,

Ri
v = σ(Wv ∗ V i

r ). (3)

where Wv is the weight matrix of the fully connected layer
and σ(·) is an active function such as sigmoid.

4.2 Enhanced Social Graph Feature Learning
Inferring Hidden Links
To alleviate the missing link issue, we propose to infer the
hidden links between nodes in social networks. According
to network homophily, similar nodes may be more likely to
attach to each other than dissimilar ones. We thus calculate
the feature similarity between different nodes and infer links
between nodes with high similarity. Specifically, we define
the node embedding matrix as X ∈ R|V |×d, where d is the
dimension size. There are three types of nodes in X , we use
the sentence vectors as the initial embeddings of the post and
comment nodes, and use the average value of the post node
embeddings posted by the user as the initial user embedding.
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Then we calculate the correlation βij between node ni and nj

based on their cosine similarity as

βij =
xi · xj

∥xi∥∥xj∥
(4)

where xi and xj are node embeddings of ni and nj . We then
infer there exists a potential edge between them if the simi-
larity is above 0.5, that is,

eij =

{
0 , if βij<0.5

1 , otherwise
(5)

Then we enhance the original adjacency matrix A ∈
R|V |×|V | with the inferred potential edges. aij denotes the
element of A, where aij = 1 indicates there is an edge be-
tween ni and nj and aij = 0 otherwise. Then the element a′ij
of the enhanced adjacency matrix A

′
is defined as

a
′

ij =

{
0 , if eij = 0 and aij = 0

1 , otherwise
(6)

Capturing Multi-aspect Neighborhood Relations
Here we aim to capture the social graph structure informa-
tion with GAT. Different from conventional GAT, we in-
troduce the signed attention mechanism to capture the pos-
itive and negative correlations between neighboring nodes
to obtain better graph features. We start from the vanilla
GAT [Veličković et al., 2017] and then propose our signed
attention based GAT to capture the multi-aspect correlations.

The key of GAT is the aggregation of the neighborhood
information. For node ni and its neighbor node set Ni ={
n

′

1, n
′

2, · · · , n
′

|Ni|

}
, we first calculate the set of attention

weights Ei =
{
e
′

i1, e
′

i2, · · · , e
′

i|Ni|

}
between ni and each

node in Ni by

e
′

ij = LeakyReLU(â
[
Wxi∥Wx

′

j

]
) (7)

where ∥ means concatenation operation, â and W are learn-
able parameters, xi and x

′

j denote the node embeddings of
node ni and n

′

j , j ∈ {1, 2, · · · , | Ni |} and n
′

j ∈ Ni.
Then, we use the softmax function to perform the weight

normalization operation on the attention weights. The atten-
tion weight e

′

ij between ni and n
′

j may be a negative value,
which will become extremely small after softmax function.
In fact, the attention weight between nodes contains a po-
tential positive and negative relationship, which will be ig-
nored by directly using the softmax function. For example,
for a specific node nt, we obtain its weights with the neigh-
bor nodes as Et = {0.7, 0.3,−0.1,−0.9}. After normal-
ization by the softmax function, the weights become E ′

t =
{0.43, 0.29, 0.20, 0.09}. It can be seen that the node cor-
responding to the value “-0.9” in the weight vector has the
smallest contribution to the output. However, “-0.9” may in-
dicate that the two node vectors are in opposite directions.
This kind of large negative relations may also be beneficial
for rumor detection. For instance, it may reflect camouflage
behaviors such as a rumor spreader buying some honest users

as fans or a comment opposing a source post [Yang et al.,
2021], and their node vectors can be intrinsically negatively
correlated. Unfortunately, existing GATs ignore such nega-
tive correlations.

To address this issue, inspired by QSAN [Tian et al., 2020],
we design a signed attention based GAT, namely Signed GAT,
which uses signed attention to involve both the positive and
negative relationships between nodes. Specifically, for node
ni, we denote the inversion of the attention weights Ei of its
neighbor nodes as Ẽi = −Ei. We then calculate the normal-
ized weights for both Ei and Ẽi with the softmax function,

E
′

i = softmax(Ei)

Ẽ ′
i = softmax(Ẽi)

(8)

In order to capture both positive and negative relations be-
tween nodes, we utilize E ′

i and −Ẽ ′
i respectively to obtain the

weighted sum of the neighbor nodes’ features. Then we con-
catenate the two vectors together and pass it through a full
connected layer to obtain the final node feature. For instance,
the node feature of ni can be obtained by

x̂i = σ(Wn ∗ (E
′

i ∗Xj∥ − Ẽ ′
i ∗Xj)) (9)

where Wn is the weight matrix of the fully connected layer,
σ(·) is an active function and Xj is the feature matrix of Ni.

Graph Feature Extractor
We then introduce how to obtain the social graph feature
based on the enhanced social graph and the signed GAT.
Firstly, we enhance the original social graph by augmenting
the inferred potential edges, and initialize three types of nodes
in the graph. For post and comment nodes, we use their tex-
tual features as the initial embeddings. For user nodes, we
use the average of their post and comment embeddings as the
initial embeddings to reflect the user characteristics.

Then we use Signed GAT to extract graph structure fea-
tures from the enhanced social graph. For each node, we up-
date its embedding according to Eqn. (9) and obtain the up-
dated node embedding matrix X̂ ∈ R|V |×d, where |V | is the
number of nodes and d is the dimension size. Then a multi-
head attention mechanism [Vaswani et al., 2017] is adopted
to capture features from different perspectives. We concate-
nate the updated node embeddings of each head together as
the overall graph feature:

Ĝ =
H

∥
h=1

σ(X̂h) (10)

where H denotes the number of heads. Then the graph feature
Ri

g of the i-th post pi corresponds to the i-th column of Ĝ.

4.3 Multi-modal Feature Fusing
In this work, as there are three types of modalities, we adopt a
hierarchical fusion schema with the co-attention method [Lu
et al., 2019]. In order to capture different aspects of cross-
modal relationships and enhance the multi-modal features,
we propose to enforce the cross-modal alignment with a self-
supervised loss.
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Cross-modal Co-attention Mechanism
We use the co-attention mechanism to capture the mutual in-
formation between different modalities. It learns the atten-
tion weights between different modal features to enhance the
cross-modal feature.

Specifically, for each modal, we first use multi-head self-
attention [Vaswani et al., 2017] to enhance the intra-modal
feature representation. For example, for the text feature Ri

t,
we use Qi

t = Ri
tW

Q
t , Ki

t = Ri
tW

K
t , and V i

t = Ri
tW

V
t to

calculate its query matrix, key matrix and value matrix re-
spectively, where WQ

t ,WK
t ,WV

t ∈ Rd× d
H are linear trans-

formations and H is the number of heads. We then produce
the multi-head self-attention feature of the text modal as

Zi
t = (

H

∥
h=1

softmax(
Qi

tK
i
t
T

√
d

)V i
t )W

O
t (11)

where h denotes the h-th head, and WO
t ∈ Rd×d is the output

linear transformations. We perform the same operations on
Ri

v and Ri
g to obtain the corresponding features Zi

v and Zi
g .

Then we use the co-attention mechanism to produce the
enhanced multi-modal features. Specifically, in order to per-
form the textual-visual co-attention for pi, we first perform a
similar operation as the above self-attention, but replace Ri

t
with Zi

v to get the query matrix Qi
v , and replace Ri

t with Zi
t

to get the key matrix Ki
t and value matrix V i

t . Then we obtain
the cross-modal enhanced feature Zi

vt as

Zi
vt = (

H

∥
h=1

softmax(
Qi

vK
i
t
T

√
d

)V i
t )W

O
vt (12)

where WO
vt ∈ Rd×d is the output linear transformations.

Note that Zi
vt represents the enhanced textual feature with

the visual feature based on their correlations. Based on the
same co-attention procedure, we can obtain the enhanced vi-
sual feature Zi

tv with the textual feature by exchanging the
roles of the two modalities in Eqn. (12).

Multi-modal Alignment
Based on the co-attention mechanism, we can obtain the en-
hanced textual feature with the visual feature and vice versa.
However, for the source post, its representations in different
modalities should be intrinsically related. Such inter-modal
correspondences are not covered by the co-attention mech-
anism. We thus introduce the modal alignment via enforc-
ing the enhanced textual feature of the post close to its en-
hanced graphical features in order to refine the representa-
tions learned in each modality.

Specifically, for a post pi, its enhanced graph feature Zi
g

and enhanced textual feature Zi
vt are transformed into the

same modal feature space, that is,

Zi
g

′
= Wg

′Zi
g

Zi
t

′
= Wt

′Zi
vt

(13)

where Wg
′ and Wt

′ are learnable parameters. Then we nar-
row the distance between Zi

g
′ and Zi

t
′ with the MSE loss for

modal alignment:

Lalign =
1

n

n∑
i=1

(Zi
g

′ − Zi
t

′
)2 (14)

Statistic Non-rumors False Rumors Images Users Comments

PHEME 1428 590 2018 894 7388
Weibo 877 590 1467 985 4534

Table 2: The statistics of two datasets.

where n is the total number of posts. We then get the
alignment-refined textual feature Z̃i

t and graphical feature Z̃i
g ,

which is used for the following multi-modal fusion.

Fusing the Above Multi-modal Features
We again perform the aforementioned cross-modal co-
attention mechanism among each pair of the three modal fea-
tures, i.e., Z̃i

t , Z̃i
g and Zi

v , and finally get six cross-modal en-

hanced features: Z̃i
tv , Z̃i

vt, Z̃i
gt, Z̃i

tg , Z̃i
gv , and Z̃i

vg . We then
concatenate them as the final multi-modal feature:

Zi = concat(Z̃i
tv, Z̃

i
vt, Z̃

i
gt, Z̃

i
tg, Z̃

i
gv, Z̃

i
vg) (15)

4.4 Classification with Adversarial Training
We feed the final multi-modal feature Zi of post pi into the
fully connected layer to predict whether pi is a rumor or not,

ŷi = softmax(WcZ
i + b) (16)

where ŷi denotes the predicted probability of pi being a ru-
mor. Then we use the cross-entropy loss function as

Lclassify = −y log(ŷi)− (1− y) log(1− ŷi) (17)
The final loss can be written as follows:

L = λcLclassify + λaLalign (18)
where λc and λa are used to balance the two losses.

As the text contents in social media may not follow the
strict grammar rules, in order to adapt to such grammatical
irregularity, we add adversarial perturbations at the text em-
bedding level to enhance the robustness of the model. We use
PGD [Madry et al., 2017], a widely used adversarial training
method. Specifically, we calculate the gradient for the textual
feature in each training iteration and use it to calculate the ad-
versarial perturbation, which is added to the textual feature.
We then recalculate the gradient on the updated textual fea-
ture. We repeat this process k times and use a spherical space
to limit the extent of the perturbation. Finally, the above ad-
versarial gradients are accumulated to the original gradient,
which is then used for parameter updating. More details can
refer to [Madry et al., 2017].

5 Experiments
5.1 Datasets
We evaluate our model on two real-world datasets: Weibo
[Song et al., 2019] and PHEME [Zubiaga et al., 2017]. The
Weibo dataset is collected from the most popular social media
in China. PHEME is constituted by tweets on the Twitter plat-
form and based on five breaking news. Each dataset contains
texts, the attached images, and comments. In this work, we
focus on detecting rumors with three modal features, i.e., the
textual, visual, and social graph features. Thus, we remove
the data instances without any text or image. Table 2 shows
the statistics of the resulting two datasets after removal.
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PHEME Weibo

Method Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

EANN 77.13±0.96 71.39±1.07 70.07±2.19 70.44±1.69 80.96±2.26 80.19±2.37 79.68±2.46 79.87±2.40
MVAE 77.62±0.64 73.49±0.81 72.25±0.90 72.77±0.81 71.67±0.89 70.52±0.95 70.21±1.01 70.34±0.98
QSAN 75.13±1.19 69.97±2.03 65.80±1.72 66.87±1.70 71.01±1.81 71.02±0.95 67.54±3.27 67.58±3.59
SAFE 81.49±0.84 79.88±1.22 79.50±0.81 79.68±0.70 84.95±0.85 84.98±0.82 84.95±0.91 84.96±0.86

EBGCN 82.99±0.65 81.31±0.73 79.29±0.71 79.82±0.64 83.14±2.01 85.46±2.12 81.76±1.54 81.45±1.74
GLAN 83.32±1.64 81.25±2.06 77.13±3.26 78.51±2.68 82.44±2.02 82.45±2.26 80.86±1.71 81.26±1.93
MFAN 88.73±0.83 87.07±1.41 85.61±1.65 86.16±1.04 88.95±1.43 88.91±1.60 88.13±1.68 88.33±1.53

Table 3: Results of comparison among different models on PHEME and Weibo datasets.

5.2 Baselines
We compare our model with the following strong baselines:

• EANN [Wang et al., 2018] is a GAN-based model ex-
ploiting both text and image data. It derives event-
invariant features and benefits newly arrived events.

• MVAE [Khattar et al., 2019] uses a bimodal variational
autoencoder coupled with a binary classifier for multi-
modal fake news detection.

• QSAN [Tian et al., 2020] integrates the quantum-driven
text encoding and a novel signed attention mechanism
for false information detection.

• SAFE [Zhou et al., 2020] jointly exploits multi-modal
features and cross-modal similarity to learn the repre-
sentation of news articles.

• EBGCN [Wei et al., 2021] rethinks the reliability of la-
tent relations in the propagation structure by adopting a
Bayesian approach.

• GLAN [Yuan et al., 2019] jointly encodes the local se-
mantic and global structural information and applies a
global-local attention network for rumor detection.

Among them, EANN, MVAE and SAFE exploit both tex-
tual and visual data. QSAN only exploits the textual data. So-
cial graphical features are considered by EBGCN and GLAN.
None of them consider data from all three modalities like our
proposed model.

5.3 Implementation Details
We split the datasets for training, validation, and testing with
a ratio of 7:1:2. The evaluation metrics include Accuracy,
Precision, Recall, and F1. We use word vectors provided in
[Yuan et al., 2019] as initialized word embeddings. The num-
ber of heads H is set to 8. λc and λa are set to 2.15 and 1.55.
We choose the best parameter configuration based on the per-
formance of the proposed model. We use Adam [Kingma and
Ba, 2014] to optimize our objective function. The learning
rate used in the training process is 0.002. We perform 5 runs
throughout all experiments and report the average results and
standard deviation results.

5.4 Results and Discussion
Table 3 shows the performance of the comparison meth-
ods. On both datasets, our model MFAN significantly out-
performs all the other approaches in all the metrics. GLAN

Method -w/o V -w/o G -w/o P -w/o A MFAN

PHEME
Acc. 85.66 86.29 86.91 87.12 88.73
F1. 82.47 82.15 83.93 84.41 86.16

Weibo
Acc. 84.14 85.08 86.17 86.98 88.95
F1. 83.88 84.48 85.44 86.42 88.33

Table 4: Experimental results of the variations of MFAN.

and EBGCN outperform most other methods, indicating that
the social graph information is beneficial for rumor detection.
For methods that consider both textual and visual informa-
tion, SAFE outperforms other methods, indicating the im-
portance of considering interactions between modalities. Our
MFAN outperforms GLAN and EBGCN, demonstrating that
considering visual data, latent links, and modal alignment can
further improve detection performance.

5.5 Performance of the Variations
To show the effectiveness of different components in MFAN,
we compare it with the sub-models “-w/o V”, “-w/o G”, “-w/o
P”, and “-w/o A”. They denote the variant of MFAN without
considering the visual information, social graph information,
potential links, and modal alignment, respectively. The com-
parison results are shown in Table 4. We can observe that
all ablation variants perform worse than the complete MFAN
model on both datasets. The results indicate that: (i) visual
modal and graph features are both important for rumor detec-
tion; (ii) the modal alignment can facilitate the multi-modal
fusion; (iii) considering latent links can significantly improve
the social graph feature representations.

6 Conclusions
In this paper, we propose a multi-modal rumor detection
framework that, for the first time, incorporates three types
of modalities, i.e., text, image, and social graph. To improve
the social graph feature learning, both the graph topology and
neighborhood aggregation procedure are enhanced based on
GAT. Our framework enables more effective multi-modal fu-
sion by introducing cross-modal alignment. Evaluations and
comparisons on both Chinese and English datasets demon-
strate that our model can outperform the state-of-the-art base-
lines for multimedia rumor detection.
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