
Inverting 43-step MD4 via Cube-and-Conquer

Oleg Zaikin
Swansea University

o.s.zaikin@swansea.ac.uk

Abstract
MD4 is a prominent cryptographic hash function
proposed in 1990. The full version consists of 48
steps and produces a hash of size 128 bits given
a message of an arbitrary finite size. In 2007, its
truncated 39-step version was inverted via reduc-
ing to SAT and applying a CDCL solver. Since that
time, several attempts have been made but the 40-
step version still remains unbroken. In this study,
40-, 41-, 42-, and 43-step versions of MD4 are
successfully inverted. The problems are reduced
to SAT and solved via the Cube-and-Conquer ap-
proach. Two algorithms are proposed for this pur-
pose. The first one generates inversion problems
for MD4 by adding special constraints. The second
one is aimed at finding a proper threshold for the
cubing phase of Cube-and-Conquer. While the first
algorithm is focused on inverting MD4 and simi-
lar cryptographic hash functions, the second one is
not area specific and so is applicable to a variety of
classes of hard SAT instances.

1 Introduction
A cryptographic hash function maps a message of arbitrary
finite size to a hash of a fixed size. Such a computation must
be very easy, but at the same time it should be computation-
ally infeasible to invert it, i.e. to find a message given its
hash. Cryptographic hash functions are really pervasive in
the modern digital world. Examples of their applications in-
clude verification of passwords and signatures.

The MD4 hash function was proposed back in
1990 [Rivest, 1990]. Thanks to an elegant yet efficient
design it has become one of the most influential cryp-
tographic functions with numerous notable successors,
such as MD5, SHA-1, and RIPEMD. MD4 consists of 48
steps. In [Dobbertin, 1998] the Dobbertin’s constraints on
intermediate states of MD4 registers were proposed, which
significantly simplify the inversion. This breakthrough
approach made it possible to invert the 32-bit truncated
version of MD4.

It is well-known that the resistance of a cryptographic hash
function can be studied by reduction to the Boolean satisfi-
ability problem (SAT). SAT is to determine whether a given

Boolean formula is satisfiable or not. Recently various sci-
entific and industrial problems have been successfully solved
via the SAT approach.

For the first time MD4 was analyzed by the SAT approach
in [Jovanovic and Janicic, 2005] to construct benchmarks
with adjustable hardness. In [Mironov and Zhang, 2006], col-
lisions for MD4 were generated via Conflict-Driven Clause
Learning (CDCL [Marques-Silva and Sakallah, 1999])
solvers. In 2007, SAT encodings of slightly modified Dob-
bertin’s constraints were constructed, and as a result the 39-
step truncated MD4 was inverted via a CDCL solver [De et
al., 2007].

Despite the found vulnerabilities, MD4 is still used to com-
pute password-derived digests in some operating systems of
the Windows family, including the modern ones. One of the
reason is that inversion of the full MD4 still remains a com-
putationally infeasible task. Since 2007, several unsuccessful
attempts have been made to invert the truncated versions with
40+ steps. This study is aimed at filling this gap by inverting
some of the truncated versions via Cube-and-Conquer.

Cube-and-Conquer is a SAT approach for solving ex-
tremely hard SAT problems [Heule et al., 2011]. On the cub-
ing phase, a given problem is split into subproblems via a
lookahead solver [Heule and van Maaren, 2009], then on the
conquer phase they are solved via a CDCL solver. Several
hard combinatorial problems have been solved via this ap-
proach recently, e.g. the Boolean Pythagorean Triples prob-
lem [Heule et al., 2016].

In this paper, two algorithms are proposed. The first one
gradually relaxes Dobbertin’s constraints until a preimage of
MD4 (or a truncated version of MD4) is found. The second
one is aimed at finding a good threshold for the cubing phase
of Cube-and-Conquer. The latter algorithm is a general one,
and can be applied to any hard SAT instance. With the help
of these algorithms, the 40-, 41-, 42-, and 43-step versions of
MD4 were inverted for two specified hashes.

The paper is organized as follows. Preliminaries on cryp-
tographic hash functions and MD4 are given in Section 2.
Section 3 proposes the algorithm for relaxing Dobbertin-like
constraints. The considered truncated versions of MD4, as
well as their SAT encodings, are described in Section 4. Sec-
tion 5 proposes the algorithm for adjusting the cubing phase.
Experimental results on inverting the truncated versions of
MD4 are given in Section 6. Finally, conclusions are drawn.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1894



2 Preliminaries
This section gives preliminaries on cryptographic hash func-
tions and discusses the current status of MD4.

2.1 Cryptographic Hash Functions
Hereinafter only unkeyed cryptographic hash functions are
considered, see [Menezes et al., 1996]. Inputs of crypto-
graphic hash functions are usually called messages, while
outputs are called hash values or just hashes.

A cryptographic hash function h ideally must have the fol-
lowing five properties.

1. Compression: h maps a message x of arbitrary finite size
to a hash h(x) of fixed size.

2. Ease of computation: for any given message x, h(x) is
easy to compute.

3. Preimage resistance: for any given hash y, it is compu-
tationally infeasible to find any of its preimages, i.e. any
such message x′ that h(x′) = y.

4. Second-preimage resistance: for any given message x,
it is computationally infeasible to find x′ such that x′ ̸=
x, h(x) = h(x′).

5. Collision resistance: it is computationally infeasible to
find any two messages x and x′ such that x ̸= x′, h(x) =
h(x′).

The first two properties are obligatory, while the remaining
three are potential and can be compromised. Usually at the
time of publishing a cryptographic hash function all the five
properties are valid. However, the subsequent publications
may propose methods for abolishing one (or even all) of the
three potential properties. These methods are called preim-
age attacks, second preimage attacks, and collision attacks,
respectively. As a rule, the collision resistance is the weak-
est among the potential ones. If an attack is computationally
feasible, then it is called practical.

2.2 MD4
The Message Digest 4 (MD4) cryptographic hash function
was proposed by Ronald Rivest in 1990 [Rivest, 1990]. Given
a message of an arbitrary size, padding is applied to obtain a
message that can be divided into 512-bit blocks. Then a 128-
bit hash is produced by iteratively applying the MD4 com-
pression function to 512-bit blocks.

Consider the compression function in more detail. Given
a 512-bit message block, it produces a 128-bit output.
The function consists of three rounds, sixteen steps each,
and operates by transforming data in four 32-bit registers
A,B,C,D. If a message block is the first one, then the regis-
ters are initialized with the constants specified in the standard.
Otherwise, registers are initialized with an output produced
by the compression function on the previous message block.
The message block is divided into sixteen 32-bit words. In
each step, one register’s value is updated by mixing one word
with values of all four registers. As a result, in each round
all sixteen words take part in such updates. Finally, registers
are incremented by the values they had after the current block
initialization, and the hash is produced as a concatenation of
A,B,C,D.

In 1995, a practical collision attack on MD4 was pro-
posed [Dobbertin, 1996]. In 2005, it was theoretically shown
that on a very small fraction of messages MD4 is not re-
sistant to the second preimage attack [Wang et al., 2005].
In 2008, a theoretical preimage attack on MD4 was pro-
posed [Leurent, 2008]. Despite these vulnerabilities, MD4
still remains preimage resistant in practice. That is why trun-
cated versions (with reduced number of steps) have been ac-
tively studied recently. In 1998, Hans Dobbertin showed
that by adding additional constraints (further they are called
Dobbertin’s constraints) the 32-step MD4 can be easily in-
verted [Dobbertin, 1998]. In 2007, a SAT-based implemen-
tation of the attack from [Dobbertin, 1998] made it possible
to invert the 39-step version [De et al., 2007]. Since 2007,
several unsuccessful attempts have been made to invert 40+
versions, see, e.g. [Legendre et al., 2012].

3 Inverting MD4 via Dobbertin-like
Constraints

This section describes the Dobbertin’s constraints and pro-
poses their generalization — Dobbertin-like constraints.
Finally it proposes an algorithm for inverting MD4 via
Dobbertin-like constraints.

3.1 Dobbertin-like Constraints
Hereinafter if a truncated version of MD4 is mentioned, at
least 32 (first) steps are assumed. The Dobbertin’s constraints
for MD4 or its truncated version are as follows: the registers
A, D, and C are equal to a constant 32-bit word K in steps
12, 16, 20, 24, steps 13, 17, 21, 25, and steps 14, 18, 22,
26, respectively (numbering from 0) [Dobbertin, 1998]. As a
result, for any given hash and randomly chosen K the number
of preimages (messages) is significantly reduced, maybe even
to 0. On the other hand, if at least one preimage exists, then
it is usually much simpler to find it.

Suppose that given a constant K all but one Dobbertin’s
constraints are applied as usual, while the remaining one
might be relaxed or even entirely omitted. By relaxing it is
meant that in the corresponding register only b, 0 ≤ b ≤ 32
most significant bits are equal to b most significant bits of
K, while the remaining 32 − b bits in the register may take
arbitrary values. Denote these constraints as Dobbertin-like
constraints. The Dobbertin’s constraints is a special case of
Dobbertin-like constraints when b = 32.

Denote an inversion problem with applied Dobbertin-like
constraints as MD4inversion(y, s,K, p, b), where y is a
given 128-bit hash, s is the number of MD4 steps, K is a 32-
bit constant word used in the Dobbertin’s constraints, p is the
partially constrained step, b is the number of constant most
significant bits in step p. Hereinafter 0128 and 1128 mean 16
words 0x00000000 and 0xffffffff respectfully.

Example 1 (MD4inversion(1128, 39, 0x00000000, 12, 0)).
This inversion problem was solved in [De et al., 2007]. In
this case the Dobbertin’s constraint in step 12 is not applied
at all while inverting the hash 1128 produced by the 39-step
truncated MD4. The remaining 11 Dobbertin’s constraints
are fully applied.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1895



Algorithm 1 Algorithm for inverting MD4 or its truncated
version via Dobbertin-like constraints
Input: Hash y, the number of MD4 steps s, constant K, step
p with partially constrained register, a complete algorithm A
Output: Preimages for hash y if they are found, ∅ otherwise.

1: preimages← ∅
2: b← 32
3: while b ≥ 0 and preimages = ∅ do
4: preimages← A(MD4inversion(y, s,K, p, b))
5: b← b− 1
6: return preimages

3.2 Inversion Algorithm
Dobbertin-like constraints applied to MD4 or its truncated
version can be used for finding preimages according to the
following idea. For a given hash and a random K first all 12
Dobbertin’s constraints are applied. The inversion problem
is solved and, if a preimage is found, nothing else should be
done. Otherwise, if it is proven that no preimages exist, then
one Dobbertin’s constraint is chosen and relaxed by letting
1 less significant bit in the corresponding register take any
value. The modified inversion problem is solved. If a solu-
tion still does not exist, then the constraint is further relaxed
by 1 more bit and so on. The intuition here is that the Dob-
bertin’s constraints lead to a system that is either consistent
(with very few solutions) or quite “close” to a consistent one.
In the latter case the proposed relaxing may help finding such
a consistent system.

Algorithm 1 follows the described idea. In the pseudocode
a complete algorithm A is used, which for a formed inver-
sion problem returns all possible preimages if they exist, and
∅ otherwise. Note that it is not guaranteed that Algorithm 1
finds preimages for a given hash. If it finishes with no found
preimages, then the constraint in step p can be excluded from
consideration, while one of the remaining 11 Dobbertin’s
constraints might be additionally relaxed in a similar way.

Complete algorithms of various types can be used to solve
inversion problems formed in Algorithm 1. In particular,
wide spectrum of integer programming and constraint pro-
gramming solvers are potential candidates. In the present
study, a complete SAT algorithm is used for this purpose.

4 Problems and Their SAT Encodings
This section describes the considered inversion problems and
their SAT encodings.

4.1 Considered Problems
Similarly to [De et al., 2007], the goal in fact is to find preim-
ages for the following two hashes: 0128 and 1128. While
in [De et al., 2007] only K = 0x00000000 was used in
the Dobbertin-like constraints, in the present study also K =
0xffffffff is tried. Step 12 is chosen for the relaxation (so
p = 12) since in [De et al., 2007] this step was entirely omit-
ted. Eight truncated versions of MD4, from 40 to 47 steps, as
well as the full MD4 are studied. Hence there are 36 inversion
problems in total.

Consider the 40-step truncated MD4. Algorithm 1 should
be run on four inputs because both y and K have two values.
According to the notation from Subsection 3.1, the following
four inversion problems are formed in the corresponding first
iterations of Algorithm 1:

• MD4inversion(0128, 40, 0x00000000, 12, 32);

• MD4inversion(0128, 40, 0xffffffff, 12, 32);

• MD4inversion(1128, 40, 0x00000000, 12, 32);

• MD4inversion(1128, 40, 0xffffffff, 12, 32).

Following all earlier attempts to invert truncated MD4 via
SAT (see, e.g. [De et al., 2007; Legendre et al., 2012]), the
goal in fact is to invert truncated MD4 compression function
(see Subsection 2.2), therefore the padding is omitted. The
final incrementing is also omitted since it should be done only
after all 48 steps.

4.2 SAT Encoding

The SAT encoding of MD4 was taken from [Semenov et al.,
2020], where it was constructed via the TRANSALG tool. In
the Conjunctive Normal Form (CNF), the first 512 variables
correspond to a message, the last 128 variables correspond
to a hash, while the remaining auxiliary variables encode
how the hash is produced given the message. The first 512
variables are further called message variables, while the last
128 ones — hash variables. The Tseitin transformations are
used in TRANSALG to introduce auxiliary variables [Tseitin,
1970].

The 40-step version is encoded by a CNF with 7 025 vari-
ables and 70 809 clauses. Then every step adds 186 vari-
ables and 2 349 clauses, so as a result a CNF that encodes
the full (48-step) MD4 compression function has 8 513 vari-
ables and 89 601 clauses. Note that these CNFs encode the
functions themselves, so all message and hash variables are
unassigned. To obtain a CNF that encodes an inversion prob-
lem for a given 128-bit hash, 128 corresponding one literal
clauses are to be added, so all hash variables become as-
signed. The problem is to find values of the message vari-
ables. The Dobbertin’s constraints can be added as another
384 one literal clauses (12 clauses for each constraint). As a
result a CNF that encodes the inversion of the 40-step MD4
with all 12 Dobbertin’s constraints has 7 025 variables and
71 321 clauses, while that for the full 48-step version consists
of 8 513 variables and 90 113 clauses.

Since SAT approach is used, the algorithm A in Algo-
rithm 1 might call a complete SAT solver on the correspond-
ing CNF. In preliminary experiments state-of-the art sequen-
tial (non-parallel) CDCL SAT solvers were tried to invert
the 40-step truncated version, but even on the first iterations
(where all 12 Dobbertin’s constraints are added) CNFs turned
out to be way too hard for them. That is why it was decided to
use Cube-and-Conquer SAT solvers, which are more suitable
for extremely hard SAT instances. The next section describes
how a given problem can be properly split into simpler sub-
problems on the cubing phase of Cube-and-Conquer.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1896



5 Finding Threshold in Cube-and-Conquer
This section first briefly describes Cube-and-Conquer, and
then proposes an algorithm for finding a threshold for the cub-
ing phase of Cube-and-Conquer.

5.1 Cube-and-Conquer
Cube-and-conquer [Heule et al., 2011] is a SAT solving ap-
proach that combines lookahead [Heule and van Maaren,
2009] with CDCL [Marques-Silva and Sakallah, 1999]. On
the cubing phase of Cube-and-Conquer, a lookahead solver
splits a given CNF into cubes. For each cube by joining it
with the CNF a subproblem is formed. On the conquer phase,
the subproblems are solved via a CDCL solver. Since cubes
can be processed independently, the conquer phase can be
easily parallelized.

Originally, lookahead is a complete algorithm. When used
in the cubing phase of Cube-and-Conquer, a lookahead solver
is forced to cut off some branches thus producing cubes.
Therefore, such a solver produces a binary search tree, where
leaves are either refuted ones (with no possible solutions), or
cubes. There are two main cutoff heuristics that decide when
a branch becomes a cube. In the first one, a branch is cut off
after a given number of decisions [Hyvärinen et al., 2010].
According to the second one, it happens when the number
of variables in the corresponding subproblem drops below a
given threshold [Heule et al., 2011]. In the present study the
second cutoff heuristic is used since it usually shows better
results on hard instances.

5.2 Algorithm for Finding Cutoff Threshold
It is crucial to properly choose a cutoff threshold n in the
cubing phase. If it is too high, then very few extremely hard
(for a CDCL solver) cubes will be produced; if it is too low,
then there will be too huge number of cubes, and also the
cubing phase will be extremely time consuming. To find a
good threshold, first it is needed to properly choose promising
values of n. On the one hand, the number of refuted leaves
should be quite significant since it indicates that subformulas
have become really simpler compared to the original CNF.
On the other hand, the total number of cubes should not be
too large.

When promising values of the threshold are chosen, then
it is needed to estimate for them the hardness of the conquer
phase. Such an estimation can be calculated by sampling: a
fixed number of cubes is randomly chosen among those pro-
duced by the lookahead solver. If all cubes from the sample
are solved by the CDCL solver in a reasonable time, then an
estimated total solving time for all cubes may be easily cal-
culated. Algorithm 2 follows the proposed idea.

5.3 Algorithm Features
The proposed algorithm has several features. First, it does
not estimate the runtime of the cubing phase because it is as-
sumed that this is negligible compared to the conquer phase.
In all further experiments it is really so. Second, a stack is
used for collecting promising thresholds on the first stage of
the algorithm in order to start the second stage with solving
the simplest subproblems (with lowest n). It allows obtaining

Algorithm 2 Finding a cutoff threshold with minimal esti-
mated runtime of the conquer phase
Input: CNF F , lookahead solver lookahead, CDCL
solver cdcl, decreasing step k, maximal number of
cubes max cubes, minimal number of refuted leaves
min refuted, sample size N , CDCL solver time limit
max t, the number of CPU cores cpu cores.
Output: A threshold nbest with estimation estbest and cubes
cubesbest.

1: n← varnum(F)− k
2: ⟨nbest, estbest, cubesbest⟩ ← ⟨n,+∞, ∅⟩
3: stack ← empty stack
4: while n > 0 do
5: ⟨cubes, refuted⟩ ← lookahead(F , n)
6: if size(cubes) > max cubes then
7: break
8: if refuted ≥ min refuted then
9: stack.push(⟨n, cubes⟩)

10: n← n− k
11: while stack is not empty do
12: ⟨n, cubes⟩ ← stack.pop()
13: sample← random sample(cubes,N)
14: runtimes← solve(cdcl,F , sample,max t)
15: if any time from runtimes > max t then
16: break
17: upd cubes← cubes \ sample
18: est← average(runtimes) · size(upd cubes)
19: est← est/cpu cores
20: if est < estbest then
21: ⟨nbest, estbest, cubesbest⟩ ← ⟨n, est, upd cubes⟩
22: return ⟨nbest, estbest, cubesbest⟩

some estimation quite fast and then improve it. Third, if on
the second stage for a current threshold a CDCL solver does
not solve any subproblem from the random sample in time
limit, the algorithm stops. This is done because in this case
it is impossible to calculate a meaningful estimation for the
threshold. Another reason is that subproblems from the next
thresholds will likely be even harder. Forth, it is possible that
satisfying assignments are found when solving subproblems
from random samples. Indeed, cubes which imply satisfying
assignments might be chosen to samples. In Section 6, such
cases are discussed. For the sake of simplicity this feature is
not reflected in the pseudocode. Note that the algorithm does
not stop upon finding a satisfying assignment.

Cubes produced by Algorithm 2 are processed on the con-
quer phase. Using these cubes and the original CNF, sub-
problems are created and solved by the same CDCL solver
that was used on the cubing phase. In the present study the
goal is to find all solutions of a considered problem. That is
why, given a subformula, the CDCL solver finds all its satis-
fying assignments. In opposite to the cubing phase, here the
runtime of the CDCL solver is not limited.

The proposed algorithm is a general one and may be ap-
plied to any hard SAT instances. The next section describes
its implementation, as well as its usage for solving some of
the considered inversion problems.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1897



6 Inverting 40-, 41-, 42-, and 42-step MD4
All truncated MD4 inversion problems described in Section 4
are studied experimentally by Algorithm 1. In this case a
complete algorithmA is Algorithm 2 followed by the conquer
phase, discussed in Subsection 5.3. This section describes the
experimental setup and obtained results.

6.1 Experimental Setup
Algorithms 1 and 2, as well as the conquer phase of Cube-
and-Conquer were implemented in C++ and Python1. All ex-
periments were held on a personal computer equipped with
the 12-core CPU AMD 3900X and 48 Gb of RAM. The im-
plementation is multithreaded, so all 12 CPU cores were em-
ployed in all runs for both cubing and conquer phases. In
case of Algorithm 2, values of n and then subproblems from
samples are processed in parallel.

Parameters of Algorithm 1 were discussed in Subsec-
tion 4.1. As for Algorithm 2, the following parameters were
used: the MARCH CU lookahead solver [Heule et al., 2011];
the KISSAT CDCL solver of version sc2021 [Biere et al.,
2021]; max t = 5 000 seconds; k = 10; max cubes =
1 000 000; min refuted = 500; N = 1 000; cpu cores =
12.

MARCH CU was chosen because it was recently success-
fully applied to several hard problems (see, e.g. [Heule et al.,
2016; Heule, 2018]), while KISSAT and its modifications won
SAT Competitions 2020 and 2021. The time limit of 5 000
seconds is a standard cutoff in SAT Competitions, so modern
CDCL solvers are designed to show all their power within this
time. The decreasing step k was chosen in preliminary exper-
iments. If it is equal to 1, then a better threshold usually can
be found, but at the same time Algorithm 2 requires too much
time. On the other hand, if k is quite large, e.g. 100, then usu-
ally almost all most promising thresholds are just skipped. On
the considered CNFs, MARCH CU reaches 1 000 000 cubes
in about 15 minutes, so that value of max cubes looks rea-
sonable. If min refuted is less then 500, then subproblems
are too hard because they are not simplified enough by looka-
head. At the same time, higher value of this parameter did
not allowed collecting enough amount of promising thresh-
olds. First N = 100 was tried, but it led to too optimistic
estimations, while N = 1 000 provided accurate ones.

It should be noted that in both phases of Cube-and-Conquer
subproblems were solved by KISSAT in the non-incremental
mode, i.e. it solved them independently from each other.

6.2 Experiments
First, inversion of 40-step MD4 was studied. Two parameters
were varied in this case: The first one is the value of the Dob-
bertin’s constant K (see Subsection 4.1): 0x00000000 and
0xffffffff. The second one is the CNF minimisation algo-
rithm. In this study, the following algorithms were tried: (1)
preprocessing by Unit Propagation (UP) [Dowling and Gal-
lier, 1984]; (2) preprocessing by SATELITE [Eén and Biere,
2005]; (3) inprocessing by CADICAL of version 1.4.1 [Biere
et al., 2021]. SATELITE was used in its default configuration,

1The implementation, as well as all the constructed CNFs are
available online at https://github.com/olegzaikin/MD4-CnC.

s y b m nbest estbest real time sol

40

0
32 S 3310 15h 25m 17h 48m 0
31 S 3330 23h 59m 38h 33m 0
30 C 2450 61h 18m 81h 10m 1

1
32 C 2490 41h 58m 53h 45m 0
31 C 2500 93h 18m 109h 39m 0
30 C 2510 213h 35m 244h 14m 1

41 0 32 S 3370 9h 16m 9h 40m 0
31 C 2460 18h 39m 21h 3m 1

1 32 U 3410 36h 22m 38h 49m 3

42
0 32 U 3400 20h 41m 21h 54m 3

1 32 C 2580 27h 19m 30h 51m 0
31 C 2580 50h 39m 67h 52m 1

43 0 32 S 3380 14h 2m 16h 7m 2
1 32 U 3410 37h 52m 39h 3m 1

Table 1: Estimated and real runtimes (on 12 CPU cores) for all
solved inversion problems with K = 0xffffffff. In the header, s
stands for the number of MD4 steps, y for hash, b for the number of
constant most significant bits in step 12, m for the best minimisation
algorithm, sol for the number of solutions. For the y column, val-
ues 0 and 1 mean 0128 and 1128 resp. In the m column,U stands for
UP, S for SATELITE, and C for CADICAL.

while in case of CADICAL, the limit of 1 million conflicts
was used that corresponds to about 80 seconds of runtime.

A motivation behind varying the second parameter is as
follows. First, it is crucial to minimise a CNF before launch-
ing a lookahead solver on it. Second, in preliminary experi-
ments it was found out that the minimisation algorithm’s type
might significantly influence the effectiveness of Cube-and-
Conquer on the considered problems.

Having two hashes to invert, in total 12 CNFs were con-
structed for the 40-step MD4. On each of them Algorithm 1
was run. It turned out, that on the first iteration (with b = 32),
Algorithm 2 could not find any estimations for all 6 CNFs
with K = 0x00000000. The reason was because in all these
cases the CDCL solver was interrupted due to the time limit
even for the simplest (lowest) values of the threshold n. On
the other hand, for K = 0xffffffff much more positive re-
sults were achieved. Namely, for the hash 1128, on the CADI-
CAL-based CNF estimations were successfully calculated for
several thresholds, while on both SATELITE-based and UP-
based CNFs no estimations were gained. For the hash 0128,
estimations were calculated successfully for all 3 CNFs, but
the best estimation was on the SATELITE-based CNF. Due to
these results, K = 0x00000000 was not tried anymore, so
K = 0xffffffff was used in all other inversion problems.

Using the found thresholds, the conquer phase was run on
two CNFs: the CADICAL-based one for 1128 and SATELITE-
based for 0128. All subproblems were solved successfully, but
no satisfying assignments were found for them. The found
thresholds, estimations, and the real runtime are presented in
Table 1. Runtimes of Algorithm 2 are not presented there, but
on average in all experiments it took about 2 hours on a CNF.

The next iteration of Algorithm 1 (with b = 31) was
executed for both hashes. Six CNFs were constructed,
and Algorithm 2 was run on them. On the best thresholds

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1898



s y preimages

40

0

0xe57d8668 0xa57d8668 0xa57d8668 0xbc8c857b
0xa57d8668 0xa57d8668 0xa57d8668 0xcb0a1178
0xa57d8668 0xa57d8668 0xa57d8668 0x307bc4e7
0xad02e703 0xe1516b23 0x981c2a75 0xc08ea9f7

1

0xe57d8668 0xa57d8668 0xa57d8668 0x1d236482
0xa57d8668 0xa57d8668 0xa57d8668 0x97a13204
0xa57d8668 0xa57d8668 0xa57d8668 0x991ede3
0x301e2ac3 0x5bed2a3d 0xe167a833 0x890d22f0

43

0

0xa57d8668 0xa57d8668 0xa57d8668 0xf48a97a3
0xa57d8668 0xa57d8668 0xa57d8668 0xd330e8ed
0xa57d8668 0xa57d8668 0xa57d8668 0x37c9ca21
0xe1df551f 0x7f49d66a 0x135a1c93 0x9e744bdb
0xa57d8668 0xa57d8668 0xa57d8668 0xb289afa0
0xa57d8668 0xa57d8668 0xa57d8668 0xaf2c850e
0xa57d8668 0xa57d8668 0xa57d8668 0x19c5ce09
0xcae6b29e 0xb2595b20 0xab3a433d 0xf6cdee42

1

0xa57d8668 0xa57d8668 0xa57d8668 0x82ef987a
0xa57d8668 0xa57d8668 0xa57d8668 0xe18fbc3b
0xa57d8668 0xa57d8668 0xa57d8668 0x558f3513
0xbf09004d 0x8fb490dd 0x502eca9 0xbd0e1a80

Table 2: Found preimages for 40- and 43-step MD4.

the conquer phase again did not find any solution, but
this time it was more time consuming. Finally, preim-
ages for both hashes were found on the third iteration
(b = 30). Recall that on the conquer phase all solutions
are found, so all possible preimages for the inversion
problems MD4inversion(0128, 40, 0xffffffff, 12, 30)
and MD4inversion(1128, 40, 0xffffffff, 12, 30) were
enumerated (see Subsection 3.1).

On the next stage, Algorithm 2 was run on all remain-
ing inversion problems with b = 32 (recall that only K =
0xffffffff was used). For 44+ steps, no estimations were
obtained. It seems that these problems are way too hard for
this approach. On the other hand, for 41, 42, and 43-steps
estimations were successfully calculated and they were quite
reasonable. Moreover, during the search for estimations, so-
lutions were found quite fast for two problems: 41 step and
the hash 1128; 42 steps and the hash 0128. Since the goal was
to find all solutions, the conquer phase was anyway run on the
best thresholds. The results are presented in Table 1. It can
be seen that these steps turned out to be easier to solve com-
pared to 40 step. This phenomenon is discussed in the next
subsection. For the sake of compactness, preimages only for
40- and 43-step MD4 are presented in Table 2.

6.3 Discussion
The correctness of the found preimages was verified by the
reference implementation mentioned in [Rivest, 1990]. This
verification might be easily reproduced since MD4 is hard
to invert, but the direct computation is extremely fast. First,
the additional actions (padding, incrementing, see Subsec-
tion 4.1), as well as the corresponding amount of final steps
should be deleted. Then the preimages from Table 2 should
be given as inputs to the compressing function.

The obtained estimations can be treated as accurate ones

since they are close to the real solving time (see Table 1). On
average the real time is 18 % higher than the estimated time,
while in the worst case (for s = 40, b = 31, y = 0128) the
real time is 61 % higher.

According to the results, on the simplest problems (with
b = 32) usually either SATELITE or UP gives the best esti-
mations, while on the hardest ones CADICAL is the winner.
Note, that if only one minimisation algorithm had been cho-
sen (any of three), then some of the problems would have
remained unsolved. In fact, either SATELITE or UP could
have been excluded, but not CADICAL. All in all, different
minimisation algorithms complement each other on the con-
sidered problems.

It might seem counterintuitive that the hardest inversion
problem is for 40 steps instead of 43. The same behavior
was seen when inverting 32-39 steps via a CDCL solver: the
39-step truncated version is not the hardest problem among
them. In short, the reason is that in MD4 with the Dobbertin-
like constraints the hardness of inversion is increased not in
all steps. Adding the 40th step gives a leap in hardness, and
the next such leap happens when adding the 44th step.

As for 44+ steps, more meticulous and time consuming
cubing phase might allow one to find estimations of the hard-
ness via Algorithm 2. For this purpose both min refuted
and max cubes should be significantly increased. It also
makes sense to try another branching strategies on the cub-
ing phase (see [Kullmann, 2009]).

7 Related Work
Truncated versions (up to 39 steps) of MD4 were inverted via
CDCL solvers in the following papers: [De et al., 2007; Leg-
endre et al., 2012; Lafitte et al., 2014; Gribanova et al., 2017;
Gribanova and Semenov, 2018]. CDCL solvers were also ap-
plied to invert truncated versions of the MD5, SHA-0, SHA-
1, SHA-256, and SHA-3 cryptographic hash functions [Nos-
sum, 2012; Legendre et al., 2012; Homsirikamol et al., 2012;
Nejati et al., 2017].

The following hard combinatorial problems have been
solved via Cube-and-Conquer: the Erdős discrepancy prob-
lem [Konev and Lisitsa, 2015]; the Boolean Pythagorean
Triples problem [Heule et al., 2016]; Schur number
five [Heule, 2018]; Lam’s problem [Bright et al., 2021].

8 Conclusion
This paper proposed two algorithms. The first one is aimed at
relaxing the Dobbertin’s constraints for MD4 until the inver-
sion problem is solved. The second algorithm finds a thresh-
old for the cubing phase of Cube-and-Conquer with the best
runtime estimation. The main result is a successful inversion
of the 40-, 41, 42, and 43-step versions of MD4. In other
words, a practical SAT-based preimage attack on these trun-
cated versions of MD4 was proposed.

Acknowledgments
The author thanks anonymous reviewers for valuable com-
ments. The author is grateful to Stepan Kochemazov, Oliver
Kullmann, and Alexander Semenov for fruitful discussions.
This research was supported by EPSRC grant EP/S015523/1.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1899



References
[Biere et al., 2021] Armin Biere, Mathias Fleury, and Max-

imillian Heisinger. CaDiCaL, Kissat, Paracooba entering
the SAT Competition 2021. In SAT Competition 2021 –
Solver and Benchmark Descriptions, pages 10–13. Uni-
versity of Helsinki, 2021.

[Bright et al., 2021] Curtis Bright, Kevin K. H. Cheung,
Brett Stevens, Ilias S. Kotsireas, and Vijay Ganesh. A
SAT-based resolution of Lam’s problem. In AAAI, pages
3669–3676, 2021.

[De et al., 2007] Debapratim De, Abishek Kumarasubrama-
nian, and Ramarathnam Venkatesan. Inversion attacks on
secure hash functions using SAT solvers. In SAT, pages
377–382, 2007.

[Dobbertin, 1996] Hans Dobbertin. Cryptanalysis of MD4.
In FSE, pages 53–69, 1996.

[Dobbertin, 1998] Hans Dobbertin. The first two rounds of
MD4 are not one-way. In FSE, pages 284–292, 1998.

[Dowling and Gallier, 1984] William F. Dowling and
Jean H. Gallier. Linear-time algorithms for testing the
satisfiability of propositional horn formulae. J. Log.
Program., 1(3):267–284, 1984.

[Eén and Biere, 2005] Niklas Eén and Armin Biere. Effec-
tive preprocessing in SAT through variable and clause
elimination. In SAT, pages 61–75. Springer, 2005.

[Gribanova and Semenov, 2018] Irina Gribanova and
Alexander A. Semenov. Using automatic generation of
relaxation constraints to improve the preimage attack on
39-step MD4. In MIPRO, pages 1174–1179, 2018.

[Gribanova et al., 2017] Irina Gribanova, Oleg Zaikin,
Stepan Kochemazov, Ilya Otpuschennikov, and Alexander
Semenov. The study of inversion problems of crypto-
graphic hash functions from MD family using algorithms
for solving Boolean satisfiability problem. In MIT, pages
98–113, 2017.

[Heule and van Maaren, 2009] Marijn Heule and Hans van
Maaren. Look-ahead based SAT solvers. In Handbook
of Satisfiability, pages 155–184. IOS Press, 2009.

[Heule et al., 2011] Marijn Heule, Oliver Kullmann, Siert
Wieringa, and Armin Biere. Cube and conquer: Guiding
CDCL SAT solvers by lookaheads. In HVC, pages 50–65,
2011.

[Heule et al., 2016] Marijn J. H. Heule, Oliver Kullmann,
and Victor W. Marek. Solving and verifying the Boolean
Pythagorean triples problem via Cube-and-Conquer. In
SAT, pages 228–245, 2016.

[Heule, 2018] Marijn J. H. Heule. Schur number five. In
AAAI, pages 6598–6606, 2018.

[Homsirikamol et al., 2012] Ekawat Homsirikamol, Pawel
Morawiecki, Marcin Rogawski, and Marian Srebrny.
Security margin evaluation of SHA-3 contest finalists
through SAT-based attacks. In CISIM, pages 56–67, 2012.

[Hyvärinen et al., 2010] Antti Eero Johannes Hyvärinen,
Tommi A. Junttila, and Ilkka Niemelä. Partitioning SAT

instances for distributed solving. In LPAR, pages 372–386,
2010.

[Jovanovic and Janicic, 2005] Dejan Jovanovic and Predrag
Janicic. Logical analysis of hash functions. In FroCoS,
pages 200–215, 2005.

[Konev and Lisitsa, 2015] Boris Konev and Alexei Lisitsa.
Computer-aided proof of Erdős discrepancy properties.
Artif. Intell., 224:103–118, 2015.

[Kullmann, 2009] Oliver Kullmann. Fundaments of branch-
ing heuristics. In Handbook of Satisfiability, pages 205–
244. IOS Press, 2009.

[Lafitte et al., 2014] Frédéric Lafitte, Jorge Nakahara Jr., and
Dirk Van Heule. Applications of SAT solvers in cryptanal-
ysis: Finding weak keys and preimages. J. Satisf. Boolean
Model. Comput., 9(1):1–25, 2014.

[Legendre et al., 2012] Florian Legendre, Gilles Dequen,
and Michaël Krajecki. Encoding hash functions as a SAT
problem. In ICTAI, pages 916–921, 2012.

[Leurent, 2008] Gaëtan Leurent. MD4 is not one-way. In
FSE, pages 412–428, 2008.

[Marques-Silva and Sakallah, 1999] João P. Marques-Silva
and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. Computers,
48(5):506–521, 1999.

[Menezes et al., 1996] Alfred Menezes, Paul C. van
Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[Mironov and Zhang, 2006] Ilya Mironov and Lintao Zhang.
Applications of SAT solvers to cryptanalysis of hash func-
tions. In SAT, pages 102–115, 2006.

[Nejati et al., 2017] Saeed Nejati, Jia Hui Liang, Cather-
ine H. Gebotys, Krzysztof Czarnecki, and Vijay Ganesh.
Adaptive restart and CEGAR-based solver for inverting
cryptographic hash functions. In VSTTE, pages 120–131,
2017.

[Nossum, 2012] Vegard Nossum. SAT-based preimage at-
tacks on SHA-1. Master’s thesis, University of Oslo, De-
partment of Informatics, 2012.

[Rivest, 1990] Ronald L. Rivest. The MD4 message digest
algorithm. In CRYPTO, pages 303–311, 1990.

[Semenov et al., 2020] Alexander A. Semenov, Ilya V. Ot-
puschennikov, Irina Gribanova, Oleg Zaikin, and Stepan
Kochemazov. Translation of algorithmic descriptions of
discrete functions to SAT with applications to cryptanaly-
sis problems. Log. Methods Comput. Sci., 16(1), 2020.

[Tseitin, 1970] Grigori S Tseitin. On the complexity of
derivation in propositional calculus. Studies in construc-
tive mathematics and mathematical logic, part II, Semi-
nars in mathematics, pages 115–125, 1970.

[Wang et al., 2005] Xiaoyun Wang, Xuejia Lai, Dengguo
Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the
hash functions MD4 and RIPEMD. In EUROCRYPT,
pages 1–18, 2005.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

1900


