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Abstract

The quality of a blastocyst directly determines the
embryo’s implantation potential, thus making it es-
sential to objectively and accurately identify the
blastocyst morphology. In this work, we propose
an automatic framework named I2CNet to perform
the blastocyst segmentation task in human embryo
images. The I2CNet contains two components:
IntrA-Class Context Module (IACCM) and InteR-
Class Context Module IRCCM). The IACCM ag-
gregates the representations of specific areas shar-
ing the same category for each pixel, where the cat-
egorized regions are learned under the supervision
of the groundtruth. This aggregation decomposes
a K-category recognition task into K recognition
tasks of two labels while maintaining the ability
of garnering intra-class features. In addition, the
IRCCM is designed based on the blastocyst mor-
phology to compensate for inter-class information
which is gradually gathered from inside out. Mean-
while, a weighted mapping function is applied to
facilitate edges of the inter classes and stimulate
some hard samples. Eventually, the learned intra-
and inter-class cues are integrated from coarse to
fine, rendering sufficient information interaction
and fusion between multi-scale features. Quanti-
tative and qualitative experiments demonstrate that
the superiority of our model compared with other
representative methods. The I2CNet achieves ac-
curacy of 94.14% and Jaccard of 85.25% on blas-
tocyst public dataset.

1 Introduction

Infertility is a disorder that characterized by failure to estab-
lish a clinical pregnancy following normal and unprotected
intercourse within twelve months [Zegers Hochschild et al.,
2009]. About 10%-15% of couples suffer from infertility
around the world [Tamrakar and Bastakoti, 2019].

In-Vitro Fertilization (IVF) is one of the most common in-
fertility treatments. During IVF process, the fertilized eggs
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Figure 1: The blastocyst images and labels. a) Original image; b)
inter-region of ICM; c) intra-region of ICM; d) labels of different
tissues for blastocyst; e) predicted map of U-Net; f) the difference
map between U-Net and label.

(embryos) are first need to be cultured under constant con-
ditions in vitro until they develop into blastocysts (about 5
days) and then high-quality embryos are selected for implan-
tation based on morphological characteristics. However, hu-
man participation in such quality assessments may result in
higher inter- and intra-observer variability. Furthermore, it
is a laborious and error-prone process that requires domain
knowledge and expertise. Therefore, it is necessary to explore
automatic segmentation methods for different tissue regions
in blastocysts.

In recent years, the development of deep learning has con-
tinuously improved the performance of medical image seg-
mentation tasks. The most commonly used network is U-
Net [Ronneberger er al., 2015] and its derivative variants.
There are some works that have attempted to segment blas-
tocyst tissue, but the segmentation performance still needs to
be improved. In blastocyst images, on the one hand, there are
large differences in intra-class characteristics and adhesion of
various tissues, as shown in the region of interest (ROI) of
Fig. 1 a), b), and ¢); on the other hand, the inter-class struc-
tural distinction is not obvious, especially the edge area, as
shown in Fig. 1 b). Since the blastocyst is a transparent ob-
ject, and the image is collected under low-light conditions,
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this exacerbates the intra-class blur and the indistinct features
at the edges. The results of traditional U-Net for blastocysts
segmentation show that intra-class is no clustering, such as
some areas of inner cell mass (ICM) cannot be recognized,
some areas of zona pellucida (ZP) are incorrectly recognized
as blastocoel, and the inter-class structures are unclear (the er-
rors are mainly concentrated on the boundary and some hard
samples’ pixels), as shown in Fig. 1 a), d), e), and f).

To address the aforementioned problems, we propose an
12C module, which contains an IntrA-Class Context Mod-
ule (IACCM) and an InteR-Class Context Module IRCCM).
IACCM adaptively enhances the same category and sup-
presses the feature weights of other categories, thereby the
degree of aggregation within the class is enhanced and the
segmentation results are more unified. The advantage of the
TACCM is to simplify and decompose a K -category recogni-
tion task into K recognition tasks of two labels. But this also
brings two problems: one is that the IACCM will be more
inclined to learn easy samples, a large number of easy sam-
ples dominate the gradient. How to make up for hard samples
to learn weights is particularly important, such as the pixels
in the edge area account for a small proportion of the entire
image and the characteristics are not sharp; the second is that
although the decomposition task reduces the complexity of
model learning, it lacks the structural relevance of inter-class
samples. Consequently, we introduce the IRCCM, through
a weighted mapping function to continuously focus on the
unsolved difficulties, and these are the boundary of the cate-
gory and hard samples. Meanwhile, the interaction of differ-
ent classes also makes up for the shortcomings of intra-class
modules.

The 12C module is equipped at each level of the network,
and top-to-down continuously introduces supervision infor-
mation in a coarse-to-fine manner, rendering sufficient infor-
mation interaction and fusion between multi-scale features.
At the high level of network, the topological structures of dif-
ferent categories are integrated based on semantic informa-
tion. At the bottom layer of network, the image edges are
processed in a more refined manner according to low-level
statistical features such as color, edge, and texture. Intra-
class and inter-class interactions enable the model to better
learn latent features of embryos.

In summary, the main contributions of this work can be
summarized as follows:

e A general architecture framework named I2CNet is pro-
posed in this work, which reveals how to leverage infor-
mation of intra-class and inter-class to consistently boost
the segmentation performance of blastocyst image.

e We design a simple and effective IACCM to enhance
the aggregation of the same class and a novel IRCCM
to capture the relation information of different class, re-
spectively. Experimental results demonstrate the effec-
tiveness of our method. Especially, the IRCCM contains
a weighted mapping function, which can promote the
represents of boundary and hard pixels.

e The top-to-down feature enhancement pathway which
couples the backbone encoder increases the representa-
tion power of feature maps with intra-class enhancement
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and inter-class enhancement in a coarse-to-fine manner.

2 Related Work

In recent years, there are many works that have attempted
to segment blastocyst image [Filho er al., 2010; Khan et al.,
2016], but mainly focus on the identification of ICM and tro-
phectoderm (TE).

The semi-automatic segmentation method includes the
level set idea [Filho er al., 2012]. By defining the initial
contour, the gradient information is applied to segment the
ICM and TE. However, in clinical practice, the zona pellu-
cida of the blastocyst is ruptured and the ICM will be outside
the zona pellucida. In this method, it is difficult to define
contour information and the recognition effect is not signifi-
cant. Moreover, it requires human intervention. On this ba-
sis, Singh er al. [Singh et al., 2014] applied level set com-
bined with the correction of Retinex to automatically iden-
tify blastocysts, mainly for TE segmentation. It achieved
an accuracy of 87.8% and a recall rate of 78.7%. Rad et
al. [Rad er al., 2017] utilized image texture features (Ga-
bor and DCT features) and combined level sets to determine
ICM boundaries, obtaining a Jaccard index of 70.3%. Saeedi
et al. [Saeedi er al., 2017] also applied texture features, but
combined k-means clustering and watershed to identify ICM
and TE, where ICM and TE achieved Jaccard index of 71.1%
and 63%, respectively. Kheradmand et al. [Kheradmand
et al., 2016] combined Discrete Cosine Transform (DCT)
and used a two-layers neural network for feedback propa-
gation to identify ZP, TE and ICM, but only obtained Jac-
card indices of 47.7%, 58.9% and 67.4%. Kheradmand et
al. [Kheradmand et al., 2017] used a Fully Convolutional
Neural (FCN) network to segment the ICM and achieved a
Jaccard Index of 76.5%. The ICM recognition methods that
FCN-based [Leahy er al., 2020] and U-Net based [Rad et al.,
2018] outperform [Kheradmand et al., 2016; Rad et al., 2017,
Saeedi et al., 2017; Kheradmand et al., 2017]. Yu and
Koltun [Yu and Koltun, 2015], Rad et al. [Rad et al., 2019]
proposed a U-Net variant by adding dilated convolution,
which only increases the perception field of a single pixel, but
not pay attention to the attribute relationship between pixels,
and Jaccard index is below 82%.

The above methods are either dedicated to the segmenta-
tion of a single tissue or identification of several tissues. It
is necessary to focus on the overall identification of a single
tissue and the structural associations of all tissues. There is
still a research gap of how to improve the segmentation per-
formance of blastocyst.

3 Method

An overview of the proposed framework is illustrated in Fig.
2. The I2CNet incorporates the intra-class contextual infor-
mation and inter-class contextual information for blastocyst
image segmentation.

3.1 Formulation of I2CNet

Given a set of images S, Let S = {(X,Ym),m =
1,---, M}, where X, denotes the original input embryo im-
age and Y,,, denotes the corresponding ground truth. Since
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Figure 2: Architecture of the proposed I2CNet.
supervision is applied for each level during the training.

each image X, is processed separately, the subscript m is
omitted for simplicity in the following sections.

We define the encoding block as E {En(),n =
1,2,--- N}, where N is the numbers of encoding blocks.
E,(+) contains two convolutional layers, which contains two
Batch Normalization (BN) layers, two ReLLU activation lay-
ers and a max pooling layer. We first use £ to project the
pixels in X into a non-linear embedding space so that we can
obtain the pixel representations R’

RE_{ En(RTEL_l)JL:?v"’aNa (1)

where R,
of R%.

We use F'(-) squeeze R}, to representations R} that with
K channel (K is the number of class), where F'(-) contains
two 1 x 1 convolutional layers. The process can be formulated
as follows

is a matrix of size C' x ﬁ X ﬁ, C'is the channel

n_ | Fu(Rp),n=N
Pl Fa(Bpae)in = 1,2,

where the R7, is the features representation that aggregate
the intra- and inter-class information from the whole image
in different scale by 12C module. 12C module F!29(-) con-
tains intra-class context model "% (-) and inter-class con-
text model Fi"%¢"(.), as shown in Fig. 3.

After squeezing the channel of representations by F ( ), we
use L(-) to get the supervised logit map R} of K x 4L x &
scale images

N-1, @

L* (Rn) _1,27"‘7N7 (3)

It is an encoder-decoder structure, which contains intra and inter class modules.

Deep

where L(-) contains a convolutional layer, BN and ReLU.
Following above expectation, as indicated in Fig. 2, before
gettinng the aggregate information of the intra- and inter-
module, we get the probability map from the lower level logit
map R7}.

To match the scale of high level representations, we use
upsampled function to get the probabilit‘;(l/ map P" with size
of (K x H x W', H" = 5~ oW =

on—T
P" = Upsampled(c(R})),n=1,2,--- | N, 4)
where o(-) is the sigmoid function. Then, I12C module

FI2(.) can use the P™ to enhance the Rl ' features (K x
H x W' H =2 W =

on— 1)

Ry = Fintre(REL Py n=1,2,--- ,N—1, (5
R?’ntc}r = anter(Rn ! Pn) = 172a T 7N - ]-7 (6)
RI?C - IzC(RZlntia’R?nt;r) n= 1’ 27 e ’N -1 (7)

Finally, the output predicted map in different scale is define
as O,,:

On=R}n=12--,N. (8)

3.2 Intra-Class Context Module

In I2C module, intra-class context module Fj,,., is designed
to capture the context information from the same class of the
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Figure 3: Details flow of the I2C module. The top diagram is the intra-class context module and the bottom denotes the inter-class context
module. These two modules share the same input, i.e. the results of corresponding encoding block and the upsampled probability map. The
final output of our [2C module is the information fusion of intra-class and inter-class context module.

whole image, as shown in the top of Fig. 3. There are fea-
ture enhancements both in the same scale and across different
scales. Before intra-scale enhancement, every level logit map
passes a supervised module before fusion. Then, these logit
maps are activated with neighboring high level features to fo-
cus on the context information from the same class.

To make the adjacent high-level features match the proba-
bility map of the K-class tissues, we orderly grouped RTE“1

into K groups, (R *)¥ is a matrix of size Cj, x 2 x 5
, where C; denotes the number of channels belonging to the

category k. In this way, the number of parameters can be

effectively reduced
_ \_%J7k:1a25"'aK_17
C’“_{C(KI)XLI(’;J,I@K. ©)

For the convenience of presentation, we define the (P™)*
the logit map belonging to category k. To aggregate contex-
tual information from the same class, we compute the region
representation for each class k as follows:

(Rlt)E = (R Dk (PM)Fi=1,2,--,C. (10)

Eventually, we orderly concatenate the all (R}’ )* and

zntra
use a 1 x 1 convolution to get the final R}, features.

The R?,! features contain the context information from the
same class of the whole image. By grouping, we decompose
a multi-category recognition task into multiple two-category
recognition tasks, thereby reducing the learning difficulty of

the model, allowing the model to focus on learning features of

the same category without interference from other categories.
Moreover, the amount of parameters is reduced to a certain
extent.

3.3 Inter-Class Context Module

Although TACCM effectively solves the problem of feature
representation and learning within the same class, it ignores
the inter-class interconnection. As shown in Fig. 1 f), it can
be seen that the predictive error between classes accounts for
a relatively large proportion, including some pixels with un-
obvious structural features. To address this problem, inter-
class context module Fj,,;., is designed to deal with the rela-
tion information of different class and some hard pixels , as
shown in the bottom of Fig. 3.

The inter-class and intra-class modules share the same
high-level features and follow the same grouping principle.
The intra-class grouping is equal to the number of tissues cat-
egories, but the inter-class grouping considers the correlation
between tissues, which is K — 1 group. And the tissues order
of the blastocyst from inside to outside is ICM, Blastocoel,
TE, ZP, and Background. So we only considered four organi-
zational relationships: 1,14+2,1+2+3,and 1 +2+ 3 +4,
where 1, 2, 3, 4 represent ICM, Blastocoel, TE, ZP, respec-
tively.

To aggregate the context information from the inter class,
we calculate the region representation as follows:

= BT (P,

7::1,2,"',C]€—1,

(Rinter)f

inter
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IACCM IRCCMw/oU(-) IRCCMwU(-) Accuracy(%) Precision(%) Recall(%) Dice(%) Jaccard(%)
91.67 88.52 89.09 88.53 80.28
v 93.88 90.23 91.91 91.26 84.68
v 93.04 90.47 90.79 90.19 83.28
v 93.58 91.17 91.97 91.30 84.77
v v 94.14 91.18 92.32 91.56 85.25

Table 1: The ablation study results of blastocyst segmentation. Both IACCM and IRCCM have greatly improved the performance. Moreover,

the weighted mapping function U (-) benefits the segmentation.

where U (-) is a weighted mapping function, which can en-
hance the represents of the border and hard pixels. Accord-
ing to Eq. 11, we can get the structural feature map of the
correlation between the inside-out (ICM to ZP) tissues.

In IRCCM, according to the characteristics of cross en-
tropy loss, as the probability approaches 0.5, the greater the
loss, which means that the sample is harder to recognize. For
embryo samples, the samples of the boundary between dif-
ferent tissues is small. Moreover, the blastocyst is a transpar-
ent object and the image is collected under low-light condi-
tions, resulting in unclear boundary features. Therefore, we
designed a weighted mapping function U(-) to redistribute
the probabilities weights of each category, that is, the weight
value of the sample pixels that are not easy to identify is close

tol+a(l-— e (3)" ), and the weight value of the sample pix-
els that are easy to identify is close to 1, which makes the
model more effective for learning and reasoning at edges and
hard pixels. The U (-) is defined as:

U() = afe~@ 2" —e=@)%) 41, (12)

where « and 3 are the activation factors, and set as 1 and 2 in
our experiment.

Finally we orderly concatenate the (R} )* and use con-

volution with kernel size 1 x 1 to get the final R]"".! features.

The R?,! features contain the context information from the

different class of the whole image.

3.4 Loss Function

In this work, we use cross entropy loss to supervise logit map,
it can be defined as Eq. 13:

on
Ln_HXW

KX x ¥
Z’L]E(/e((RSL)l*vlvj‘ ’ ’YS)7
n:1727"' 7N7

13)

where Y§ represents the one-hot label (K x H x W) scale to
the size of K x - x W and (RS7)K> 27X 27 is calculated

2’7l 2’71 b
as Eq. 14:
RS} = Softmax(R7}), (14)

L denotes the cross entropy loss and >, ;(-) denotes that
summation is calculated over all locations on the input image
X The total cross entropy loss define as:

1 N
[-:total = Nzn:1£"’n = 1727 e 7N- (15)
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Figure 4: Qualitative results of ablation study. With the help of
TACCM and IRCCM, our method can learn representations of same
classes and model the relationships of different classes, leading to
more accurate segmentation results.

4 Experiments

4.1 Experimental Setup

Dataset and Ground Truth. The dataset is introduced
in [Saeedi er al., 2017], which is the only public dataset on
human blastocyst. This benchmark consists of 249 blasto-
cyst images and their Ground Truth (GT) masks provided by
the Pacific Centre for Reproductive Medicine (PCRM). The
training set comprises 199 images (80%) and the testing set
contains 50 images (20%).

Training Details. In this work, the number of encoding
blocks is 5. The backbone and two integrated context mod-
ules are initialized randomly by kaiming. The model was
trained with 2000 epochs and the Adam was used as the op-
timizer. Initial learning rate and weight decay were set to
1 x 107* and 1 x 107°. Poly learning rate policy with fac-

tor (1 — %)0‘9 is performed for training. Syn-
chronized batch normalization implemented by PyTorch is
enabled during training. For data augmentation, we process
each sample with random scaling in the range of [0.5,2.0],
random rotating in the range of [—15, 15] degrees, random
cropping and left-right flipping in training stage. The input
image size is 256 x 256. By default, no tricks (e.g. multi-scale
and multi-rotation with flipping testing) are adopted during
the testing stage.

Reproducibility. The proposed framework is implemented
on PyTorch (version > 1.3) and trained on four NVIDIA
Tesla V100 GPUs with a 32 GB memory per-card. And all
the testing procedures are performed on a single NVIDIA
Tesla V100 GPU. To provide full details of our framework,
our code will be made publicly available.
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Type Methods Accuracy(%) Precision(%) Recall(%) Dice(%) Jaccard(%)
U-Net [Ronneberger et al., 2015] 93.15 90.62 90.99 90.49 83.65
Blast-Net [Rad et al., 2019] 93.11 90.65 91.23 90.66 83.74
AttUnet [Oktay et al., 2018] 93.22 90.87 91.22 90.79 84.05
CNN-based Unet++ [Zhou et al., 2018] 93.22 90.67 90.76 90.44 83.72
Deeplabv3+ (resnet101) [Chen et al., 2018] 93.35 91.09 91.15 90.88 84.17
Unet3+ [Huang et al., 2020] 93.06 90.36 91.50 90.62 83.70
Pranet (res3net50) [Fan et al., 2020] 93.28 90.73 91.45 90.83 84.04
nnUnet [Isensee et al., 2018] 93.41 90.94 91.63 91.00 84.28
SETR (ViT) [Zheng et al., 2021] 92.99 90.11 90.93 90.28 83.12
Transformer-based MedT [Valanarasu et al., 2021] 92.86 89.98 90.99 90.21 83.05
TransUnet [Chen et al., 2021] 93.21 90.78 91.20 90.73 83.86
Swin-Unet [Cao et al., 2021] 92.66 89.73 90.33 89.80 82.40
Ours I2CNet 94.14 91.18 92.32 91.56 85.25

Table 2: Comparison of performance with state-of-the-art methods. Compared with these CNN-based and transformer-based approaches, we

have achieved the best performance among five metrics.

Evaluation Metrics. In order to evaluate the performance
of the network, there are five commonly used indicators: Ac-
curacy, Precision, Recall, Dice Coefficient and Jaccard In-
dex [Csurka et al., 2004; Zhu et al., 2016; Thoma, 2016;
Taha and Hanbury, 2015].

4.2 Ablation Study

Effectiveness of IACCM. In embryo images, there is a
phenomenon of intra-class continuous aggregation, in which
the inner cell mass is the most core continuous region, while
other tissues are band-like regions but also continuous. It is
very important to ensure that the model can learn to under-
stand and recognize the features of the same category more
accurately during the training process. As shown in the third
column of Fig. 4, we can see that the proposed IACCM can
effectively focus on learning the features of the same cate-
gory and model the continuous dependencies of pixels in the
same category, making the intra-class tissues more clustered.
In Table 1, we can see that the addition of IACCM improves
the overall performance of the network, in which the Dice and
Jaccard indicators increase by 2.73% and 4.4% respectively.
The experimental results show that the IACCM is effective-
ness for increasing intra-class segmentation performance.

Effectiveness of IRCCM. In medical images, especially
for embryo images, focusing on the logical relationship be-
tween different tissues is also very helpful for accurate seg-
mentation of embryo tissues. Since the tissue types of em-
bryo cells from inside to outside are arranged according to
developmental law, such as the inner circle of the trophoblast
must be connected to the cyst and the outer circle must be
connected to the zona pellucida. Therefore, we designed an
IRCCM to make the model learn and express the features of
embryo images more efficiently by modeling inter-class re-
lationships progressively. In particular, we add a weighted
mapping function U (+) to increase the weights of boundaries
and hard samples. From Table 1, we observe that U(-) im-
proves the performance of IRCCM, increasing the Accuracy
from 93.04% to 93.58%, the Dice from 90.19% to 91.30%
and the Jaccard from 83.28% to 84.77%. The introduction
of IRCCM with U(-) improves the backbone performance,
which improves Dice by 2.77% and Jaccard by 4.49%. The
visualization results are shown in the fourth column of Fig. 4,

U-Net Blast-Net 12CNet Label

Image

Figure 5: Comparison of model performance of the proposed
method. Our model can recognize the difficult borders of embryo
tissues.

clearly showing that the IRCCM is effectiveness for improv-
ing the inter-class recognition error. These improvements
suggest that introducing IRCCM component can model the
relationship between classes well and increase the learning
ability of the model.

Effectiveness of IACCM & IRCCM. In this work, we in-
tegrate IACCM and IRCCM to get the I2C module. As il-
lustrated in Table 1, we can find that combining IACCM and
IRCCM outperforms the backbone by 4.97% in terms of Jac-
card. The improvement is much higher than applying sin-
gle TACCM (4.97% v.5.4.40%) or single IRCCM (4.97% v.s.
4.49%). Moreover, from the fifth column of Fig. 4, we can
see that after combining the IACCM and IRCCM modules,
not only the intra-class is more aggregated, but the inter-
class relationship is also more reasonable and the boundary
is clearer. These results indicate that IACCM and IRCCM
can complement and promote each other, which well demon-
strates the reliability of the basic motivation, and the effec-
tiveness of the designed framework in this paper.

4.3 Comparison with State-of-the-Art Methods

Table 2 lists the blastocyst segmentation performance com-
parison between the proposed framework and related meth-
ods in the literature. Among the compared methods, there
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Figure 6: Comparison of Parameters, FLOPs and Jaccard for differ-
ent methods. Note that parameters and FLOPs are calculated on a
256 x 256 input image.

are models including the classic CNNs and the more popu-
lar transformers. Deeplabv3+, SETR, and Pranet apply pre-
trained models, which are noted in the back brackets. Oth-
ers are trained from scratch and we have optimized their hy-
perparameters. It can be seen from the Table 2 that the pro-
posed I2CNet achieves the state-of-the-art performance com-
pared with other methods, among which Accuracy, Precision,
Recall, Dice and Jaccard achieve 94.14%, 91.18%, 92.32%,
91.56%, 85.25%, respectively. Fig. 5 shows some qualitative
results for U-Net, Blast-Net and we proposed I2CNet. As
seen, the results show that our proposed I2CNet achieves the
most similar results to the ground truth. These experimen-
tal results demonstrate that the effectiveness of the proposed
method.

In addition, Fig. 6 shows the parameters, FLOPs and Jac-
card for the comparison methods and our proposed method.
The size of the circle represents the parameter amount of the
model (the larger circle means a larger number of parame-
ters in the model). It can be intuitively seen that I2CNet has
achieved the best Jaccard index, meanwhile the parameters
and FLOPs are fewer, which further illustrates the superiority
of our proposed method.

5 Conclusions

In this work, we studied the intra-class and inter-class re-
lationship of embryo image, and proposed an IntrA-Class
Context Module and an InteR-Class Context Module. The
IACCM transforms a multi-class recognition task into mul-
tiple binary classification tasks, and employe the supervised
probability map to guide the learning of high-level features,
which not only reduces the complexity of the model but also
improves the continuity of intra-class tissues. The IRCCM
transmits the relationship probability map of different tissues
to the high-level to guide the learning of the model. Mean-
while, the probability map is remapped and assigned new
weights to enhance the weights of boundary and hard sam-
ples, so that the model can better focus on valuable sample
pixels instead of blindly learning simple samples. The pro-
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posed I2CNet integrates both IACCM and IRCCM to achieve
state-of-the-art performance. Finally, we qualitatively and
quantitatively verify the effectiveness of our proposed model
through ablation experiments and comparative experiments
with other state-of-the-art methods.

Acknowledgments

This work was supported in part by the Beijing Natural Sci-
ence Foundation under Grant Z200024; in part by Hefei
Innovation Research Institute, Beihang University; and in
part by the University Synergy Innovation Program of Anhui
Province under Grant GXXT-2019-044.

References

[Cao ef al., 2021] Hu Cao, Yueyue Wang, Joy Chen, Dong-
sheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning
Wang. Swin-unet: Unet-like pure transformer for medi-
cal image segmentation. arXiv preprint arXiv:2105.05537,
2021.

[Chen et al., 2018] Liang Chieh Chen, Yukun Zhu, George
Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In Proceedings of the Euro-

pean conference on computer vision (ECCV), pages 8§01—
818, 2018.

[Chen et al., 2021] Jieneng Chen, Yongyi Lu, Qihang Yu,
Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L
Yuille, and Yuyin Zhou. Transunet: Transformers make
strong encoders for medical image segmentation. arXiv
preprint arXiv:2102.04306, 2021.

[Csurka et al., 2004] Gabriela Csurka, Diane Larlus, Florent
Perronnin, and France Meylan. What is a good evaluation
measure for semantic segmentation? IEEE PAMI, 26(1),
2004.

[Fan et al., 2020] Deng Ping Fan, Ge Peng Ji, Tao Zhou,
Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao.
Pranet: Parallel reverse attention network for polyp seg-
mentation. In International conference on medical im-

age computing and computer-assisted intervention, pages
263-273. Springer, 2020.

[Filho et al., 2010] Efraim Santos Filho, Julia Alison Noble,
and Darren Wells. A review on automatic analysis of hu-
man embryo microscope images. The open biomedical en-
gineering journal, 4:170, 2010.

[Filho et al., 2012] Efraim Santos Filho, Julia Alison Noble,
Maurizio Poli, Tracey Griffiths, Gerri Emerson, and Dar-
ren Wells. A method for semi-automatic grading of hu-

man blastocyst microscope images. Human Reproduction,
27(9):2641-2648, 2012.

[Huang et al., 2020] Huimin Huang, Lanfen Lin, Ruofeng
Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xi-
anhua Han, Yen Wei Chen, and Jian Wu. Unet 3+: A
full-scale connected unet for medical image segmentation.
In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
1055-1059. IEEE, 2020.



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

[Isensee et al., 2018] Fabian Isensee, Jens Petersen, Andre
Klein, David Zimmerer, Paul F Jaeger, Simon Kohl, Jakob
Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian
Wirkert, et al. nnu-net: Self-adapting framework for u-
net-based medical image segmentation. arXiv preprint
arXiv:1809.10486, 2018.

[Khan et al., 2016] Aisha Khan, Stephen Gould, and Math-
ieu Salzmann. Segmentation of developing human embryo
in time-lapse microscopy. In 2016 IEEE 13th international
symposium on biomedical imaging (ISBI), pages 930-934.
IEEE, 2016.

[Kheradmand et al., 2016] Shakiba Kheradmand, Parvaneh
Saeedi, and Ivan Bajic. Human blastocyst segmentation
using neural network. In 2016 IEEE Canadian conference

on electrical and computer engineering (CCECE), pages
1-4. IEEE, 2016.

[Kheradmand er al., 2017] Shakiba Kheradmand, Amarjot
Singh, Parvaneh Saeedi, Jason Au, and Jon Havelock. In-
ner cell mass segmentation in human hme embryo images
using fully convolutional network. In 2017 IEEE Inter-

national Conference on Image Processing (ICIP), pages
1752-1756. IEEE, 2017.

[Leahy et al., 2020] Brian D Leahy, Won Dong Jang, He-
len Y Yang, Robbert Struyven, Donglai Wei, Zhe Sun,
Kylie R Lee, Charlotte Royston, Liz Cam, Yael Kalma,
et al. Automated measurements of key morphological
features of human embryos for ivf. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 25-35. Springer, 2020.

[Oktay et al., 2018] Ozan Oktay, Jo Schlemper, Loic Le Fol-
goc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla,
Bernhard Kainz, et al. Attention u-net: Learning where to
look for the pancreas. arXiv preprint arXiv:1804.03999,
2018.

[Rad et al., 2017] Reza Moradi Rad, Parvaneh Saeedi, Jason
Au, and Jon Havelock. Coarse-to-fine texture analysis
for inner cell mass identification in human blastocyst mi-
croscopic images. In 2017 Seventh International Confer-

ence on Image Processing Theory, Tools and Applications
(IPTA), pages 1-5. IEEE, 2017.

[Rad et al., 2018] Reza Moradi Rad, Parvaneh Saeedi, Ja-
son Au, and Jon Havelock. Multi-resolutional ensemble
of stacked dilated u-net for inner cell mass segmentation
in human embryonic images. In 2018 25th IEEE inter-
national conference on image processing (ICIP), pages
3518-3522. IEEE, 2018.

[Rad et al., 2019] Reza Moradi Rad, Parvaneh Saeedi, Jason
Au, and Jon Havelock. Blast-net: Semantic segmentation
of human blastocyst components via cascaded atrous pyra-
mid and dense progressive upsampling. In 2019 IEEFE In-
ternational Conference on Image Processing (ICIP), pages

1865-1869. IEEE, 2019.

[Ronneberger ef al., 2015] Olaf Ronneberger, Philipp Fis-
cher, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International

1422

Conference on Medical image computing and computer-
assisted intervention, pages 234-241. Springer, 2015.

[Saeedi et al., 2017] Parvaneh Saeedi, Dianna Yee, Jason
Au, and Jon Havelock. Automatic identification of human
blastocyst components via texture. IEEE Transactions on
Biomedical Engineering, 64(12):2968-2978, 2017.

[Singh et al., 2014] Amarjot Singh, Jason Au, Parvaneh
Saeedi, and Jon Havelock. Automatic segmentation of
trophectoderm in microscopic images of human blasto-
cysts. IEEE Transactions on Biomedical Engineering,
62(1):382-393, 2014.

[Taha and Hanbury, 2015] Abdel Aziz Taha and Allan Han-
bury. Metrics for evaluating 3d medical image segmenta-
tion: analysis, selection, and tool. BMC medical imaging,
15(1):1-28, 2015.

[Tamrakar and Bastakoti, 2019] Suman Raj Tamrakar and
Rashmi Bastakoti. Determinants of infertility in couples.
Journal of Nepal Health Research Council, 17(1):85-89,
2019.

[Thoma, 2016] Martin Thoma. A survey of semantic seg-
mentation. arXiv preprint arXiv:1602.06541, 2016.

[Valanarasu et al., 2021] Jeya Maria Jose Valanarasu, Poo-
jan Oza, Ilker Hacihaliloglu, and Vishal M Patel. Med-
ical transformer: Gated axial-attention for medical im-
age segmentation. In International Conference on Med-
ical Image Computing and Computer-Assisted Interven-
tion, pages 36-46. Springer, 2021.

[Yu and Koltun, 2015] Fisher Yu and Vladlen Koltun. Multi-
scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

[Zegers Hochschild et al., 2009] Fernando
Zegers Hochschild, Geoffrey David Adamson, Jacques
de Mouzon, Osamu Ishihara, Ragaa Mansour, Karl
Nygren, Elisabeth Sullivan, and Sher van der Poel. The
international committee for monitoring assisted reproduc-
tive technology (icmart) and the world health organization
(who) revised glossary on art terminology, 2009. Human
reproduction, 24(11):2683-2687, 20009.

[Zheng et al., 2021] Sixiao Zheng, Jiachen Lu, Hengshuang
Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al.
Rethinking semantic segmentation from a sequence-to-
sequence perspective with transformers. In Proceedings
of the IEEE/CVF conference on computer vision and pat-
tern recognition, pages 6881-6890, 2021.

[Zhou et al., 2018] Zongwei Zhou, Md Mahfuzur Rah-
man Siddiquee, Nima Tajbakhsh, and Jianming Liang.
Unet++: A nested u-net architecture for medical image
segmentation. In Deep learning in medical image analy-
sis and multimodal learning for clinical decision support,
pages 3—11. Springer, 2018.

[Zhu ef al., 2016] Hongyuan Zhu, Fanman Meng, Jianfei
Cai, and Shijian Lu. Beyond pixels: A comprehensive sur-
vey from bottom-up to semantic image segmentation and
cosegmentation. Journal of Visual Communication and
Image Representation, 34:12-27, 2016.



	Introduction
	Related Work
	Method
	Formulation of I2CNet
	Intra-Class Context Module
	Inter-Class Context Module
	Loss Function

	Experiments
	Experimental Setup
	Ablation Study
	Comparison with State-of-the-Art Methods

	Conclusions

