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Abstract

Existing learning-based dehazing methods do not
fully use non-local information, which makes the
restoration of seriously degraded region very tough.
We propose a novel dehazing network by defining
the Feature Dense Relevance module (FDR) and
the Shallow Feature Mapping module (SFM). The
FDR is defined based on multi-head attention to
construct the dense relationship between different
local features in the whole image. It enables the
network to restore the degraded local regions by
non-local information in complex scenes. In ad-
dition, the raw distant skip-connection easily lead-
s to artifacts while it cannot deal with the shallow
features effectively. Therefore, we define the SFM
by combining the atmospheric scattering model and
the distant skip-connection to effectively deal with
the shallow features in different scales. It not on-
ly maps the degraded textures into clear textures
by distant dependence, but also reduces artifact-
s and color distortions effectively. We introduce
contrastive loss and focal frequency loss in the net-
work to obtain a realistic and clear image. The ex-
tensive experiments on several synthetic and real
world datasets demonstrate that our network sur-
passes most of the state-of-the-art methods.

1 Introduction

Haze is a traditional atmospheric phenomenon where sus-
pended particles obscure the clarity and reduce the contrast in
the subject. Haze might cause problems for high-level visual
tasks such as object detection, object recognition, etc. There-
fore, image dehazing is a hot topic in computer vision. It aims
to restore clear images from hazy images. The mathematical
relation between the hazy image I and the clear image J is
usually described as the atmosphere scattering model by

I(z) = J(x)T(x) + A(1 — T(x)), ¢))

where T', A, x denote transmission maps, global atmospheric
light and pixel position, respectively. Because of the indefini-
tion of T and A, image dehazing is ill-posed.
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(d) Ours

Figure 1: Comparisons of different methods in non-homogeneous
hazy scene. The present methods easily cause color loss (such as the
missing red color of the slide in (b)) and under dehazing as (c). Our
result restores the color and fine texture (such as the distant wall).

(c) GridDehazeNet

Early dehazing methods rely on some assumptions [Zhang
et al., 2019]. They use statistics and other techniques to esti-
mate transmission maps and atmospheric light. However, the
assumptions do not always hold in real scenes. Thus, these
methods easily lead to distortions and halo.

With the development of deep learning, many neural net-
work approaches have been proposed to predict clear images
or the transmission maps and atmospheric light to compute
dehazed images. Without assumptions, the present learning-
based methods remove haze better. But they have two prob-
lems: 1) cannot use distant similar features fully [Zhou et
al., 2020] which are very important for dehazing [Nie et al.,
2021]. This problem often leads to under dehazing especial-
ly in non-homogeneous hazy scenes. 2) cannot handle the
shallow features effectively which deviate greatly from clear
images [Li et al., 2017b]. This problem leads to artifacts eas-
ily in dehazed images and limits the restoration of the fine
textures with serious degradation.

To cope with the above problems, we propose a feature
dense relevance network by defining the Feature Dense Rel-
evance module (FDR) and Shallow Feature Mapping mod-
ule (SFM). The FDR boosts the local feature by global in-
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Figure 2: Overview of feature dense relevance dehazing network. The left box is network structure and the right box represents the optimiza-
tion. In left box, the encoding module includes left dark blue blocks and yellow blocks. The decoding module includes right dark blue blocks
and orange blocks. The light blue block is FDR. Our SFM includes the formula and the lines linking the formula with the network. In the
right box, the dashed box above represents the focal frequency loss and the below one explains the principle of contrastive learning.

formation to enhance the feature from encoding module. At
the same time, the shallow feature from encoding module
is mapped to obtain clear texture feature by the SFM. At
last, decoding module constructs the dehazed image based on
clear texture features and the enhanced feature from the FDR.
To optimize the network, we introduce contrastive loss [Wu
et al., 2021] to provide more reference for the network, and
the focal frequency loss [Jiang et al., 2021] to improve color
accuracy in dehazing as Figure 1. Overall, our contributions
are as follows:

e We propose a feature dense relevance network based on
FDR and SFM for dehazing as Figure 2. The FDR with
global receptive field aims to construct the dense rela-
tionship between different local features. It has the a-
bility to recover non-homogeneous degraded local areas
using non-local information.

e Our SFM is defined based on skip-connection and physi-
cal model to achieve shallow features mapping. It makes
dehazed images much more realistic while the seriously
degraded fine textures are mapped into clear textures.

o Contrastive learning is introduced in our dehazing net-
work to learn the difference between hazy images and
clear images for efficiently dehazing. Besides, we u-
tilize the focal frequency loss in the network to obtain
dehazed images with more accurate color and details.

2 Related Work

Current single image dehazing methods can be divided into
prior-based methods and learning-based methods.

Prior-based dehazing methods. Many such methods cal-
culate transmission maps and atmospheric light based on
some prior assumptions [Raanan and Fattal, 2014; Berman
et al., 2016; Tan, 2008; Zhang ef al., 2019]. He et al. [He et
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al., 2011] define the dark channel in clear images to estimate
the transmission maps. On the basis of dark channel prior, Hu
et al. [Hu et al., 2019] assume that the atmospheric light in
global and local is equal and define the equation to compute
the transmission maps. Despite sometimes prior-based meth-
ods remove haze well, they rely on assumptions and easily
cause halo and distortions when assumptions cannot hold.

Learning-based dehazing methods. With the develop-
ment of deep learning, a number of methods apply CNNs
for dehazing. Without essential assumptions, these methods
break down the limitation of prior. Generally, learning-based
methods are classified into the methods to predict the trans-
mission maps or atmospheric light and end-to-end methods.
Deep neural network is firstly used in predicting the trans-
mission maps or atmospheric light [Ren ez al., 2016]. Cai et
al. [Cai et al., 2016] begin to use CNN to estimate the trans-
mission maps. Zhang et al. [Zhang and Patel, 2018] define a
densely connected pyramid network to predict the transmis-
sion maps and atmospheric light. However, such methods
always cause distortions because they ignore the relationship
between the atmospheric light and transmission maps.

In order to reduce the dependence of physical model, end-
to-end methods [Chen et al, 2019; Shyam et al., 2021;
Qin et al., 2019] are designed to estimate clear images di-
rectly. Li et al. [Li et al, 2017a] robustly estimate clear
image directly by predicting the joint parameter of the trans-
mission maps and atmospheric light. Dong et al. [Dong et
al., 2020a] propose a multi-scale boosted dehazing network
using error-feedback strategy to restore the texture. Although
end-to-end methods have better robustness, they often have
under dehazing in complex scenes for lacking flexibility. To
solve this problem, attention is applied in end-to-end meth-
ods. Liu et al. [Liu et al., 2019] propose a GridDehazeNet by
using channel attention which treats different channels with



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

/ M roid
4 y
) Multi Head
J Attention B unfold
RelLU

Conv (Ker=3)

B conv (Ker=1)

Figure 3: The structure of FDR. Multi-head attention consists of
SAs. SA represents self-attention and % is the number of heads.
FDR first uses convolution to extract features and expands three-
dimensional features into two-dimensional sequences, then uses
multi-head attention to construct the dense relevance of features.

different importance. Channel attention enriches the channel
information to increase the robustness in complex scenes. By
fusing channel attention and pixel attention, Wu et al. [Wu
et al., 2021] design a AECR-Net to treat different areas dis-
tinctively to improve the dehazing. However, the convolution
operations can not take advantage of the information outside
local region. Therefore, the present end-to-end methods of-
ten bring artifacts and distortions. Thus, it is important for
dehazing to establish the relationship between different local
features in the global.

At present, transformer is widely applied in many visu-
al tasks [Liu et al., 2021; Zheng et al., 2021]. Multi-head
attention in transformer is able to establish dense relevance
in feature space [Liang ef al., 2021]. Tt can enhance the lo-
cal feature by effectively utilizing non-local information. In-
spired by transformer, we propose a feature dense relevance
network for image dehazing. The network aims to establish
dense relationship between different local features globally. It
also includes a module based on atmospheric scattering mod-
el to successfully map shallow features. Our method breaks
the bottleneck of the current dehazing network and produces
more realistic and clearer dehazed images.

3 Method

Our feature dense relevance network is constructed by defin-
ing the FDR, the SFM, encoding module and decoding mod-
ule. Additionally, we introduce focal frequency loss and con-
trastive loss to bring more references for the optimization
of network which finally produce more realistic dehazed im-
ages. The network is shown in Figure 2.

3.1 Feature Dense Relevance

The existing learning-based methods often treat the local fea-
tures as the processing unit. Actually, according to the imag-
ing principle, a large number of similar local features can
be extracted in the global scope of an image. These simi-
lar features provide valuable reference for each other in de-
hazing. For example, the local features describing light-
degraded regions provide important clues for restoring the
heavy-degraded regions with similar features. Therefore, the
similarity relationship and the mutual support among local
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Figure 4: Overview of self-attention (SA). @, K, V are qgenerated
by linear function according to input sequence £. QQK~ enables
each element in sequence E to affect each other.

features is important for dehazing. This paper proposes a Fea-
ture Dense Relevance module (FDR) via multi-head attention
as shown in Figure 3. It efficiently constructs similarity re-
lationship and supports to adjust local features by non-local
information for the generation of natural and clear images.

Our multi-head attention with global receptive field is able
to establish the dense relationship between different local
features. The multi-head attention is constructed by self-
attentions and one self-attention supports the calculation of
one head shown as Figure 4. One head is formulated as:

QE)K(E)"
Vi

where FE is the input sequence. (), K, V denote the linear
operations to generate query, key and value. d is the di-
mension of K. By multiplying the matrix of self-attention
with the query and the key, we construct the dense relevance
between each element in sequence E. V(E) represents the
mapping of each element itself when it can not be associated
with other elements. This mapping can enhance the element
by itself. In multi-head attention, different heads learn sup-
ports between different local features in the global range to
make the dehazing network more expressive.

We propose the FDR according to the above multi-head at-
tention. As shown in Figue 3, the principle of FDR is as fol-
lows: firstly, we use convolution to extract feature maps and
apply n x m sliding window to obtain a sequence from them.
The features in a window are expanded as a 1 X n x m ele-
ment of the sequence. Significantly, the sequence contains all
information in the feature space and different element repre-
sent different local features. Secondly, we use the multi-head
attention (as the SAs in Figure 3) to construct the similarity
relationship between each element and all elements in the se-
quence to obtain the dense relevance of local features in the
global range. To make up for the loss of spatial information
caused by serialization, we design a learnable embedding en-
coder to generate location embeddings as the Embedding in
Figure 3. Finally, the output of the multi-head attention is
handled by Linear and then reshaped to the feature maps as
the output of FDR.

We design a sub-network using eight FDRs shown as the
light blue block in Figure 2 to achieve the dense relevance

Atten(E) = Softmax( W(E), ()
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inside the features. In the sub-network, the eight FDRs are
connected one by one and the output feature maps of previous
FDR are used as the input of the next one. This deep structure
enhances the feature maps gradually which leads to excellent
robustness. For each FDR owning one multi-head attention,
the sub-network has eight multi-head attentions. The head
numbers of them are respectively set to [1, 2, 8, 16, 16, 8, 2,
1]. The embedding encoder of FDR is defined by convolu-
tion, average pooling and unfold operation.

3.2 Shallow Feature Mapping

The shallow feature is seriously degraded by haze. Existing
methods often use distant skip-connection to preserve the tex-
ture of an image (such as edges and corners). However, they
usually bring artifacts because the shallow features deviate
greatly from clear images. Hence, the mapping from degrad-
ed shallow feature to clear feature is crucial for detail recon-
struction in dehazing. This paper proposes a Shallow Feature
Mapping module (SFM) which introduces physical model in-
to distant skip-connection. It maps fine textures with heavy
degradation to clear textures and deal with shallow features
effectively to obtain a clear image without artifacts.

The SFM is defined by the physical model for dehazing
from AOD-Net [Li et al., 2017al. The physical model is:

J(z) = K(z)I(z) — K(z) +, 3)

where K, I, J respectively denote the joint parameters of at-
mospheric light and transmission map, hazy image and clear
image. b is the constant deviation and x is the pixel position.
Different from the direct skip-connection, the SFM first learn-
s the joint parameter K in the feature space. Then the shallow
features are mapped according to formula (3) and will be used
to restore the texture details.

There are three scales of features in our network: the s-
mall scale, the medium scale and the large scale. We obtain
the joint parameter K on the smaller scale features and apply
it to the mapping of larger scale features in turn. We calcu-
late the joint parameter as follows. First we define the small-
scale/medium-scale feature obtained by the encoding module
as F,. Second, we define the feature of the same scale in the
decoding module as Fy. Finally, we define equation (4) to
calculate K according to formula (3). The reason is, in the
same scale, F¢ is the feature closest to the hazy image and Fy
is the feature closest to the clear image.

_Fy—b
T F -1

“

We set b = 1. To prevent gradient explosion, we use convo-
lution and sigmoid to approximate the result of Fﬁil. After
obtaining K, we upsample K and apply it to map the adjacent
larger-scale shallow feature using formula (3).

As shown in Figure 2, we use two SFMs in the network.
Each of them is defined by a formula and the lines linking the
formula with the network. We take the outermost SFM as an
example. First, we use the output of the first downsampling
as F, (the output of the leftmost yellow block). Second, we
set the input of the latest upsample as Fy (the input of the
rightmost red block). Finally, we use F, and Fy to obtain K
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which will be upsampled next. With the K, we map the out-
ermost shallow feature (the output of the leftmost grey block)
by formula (3) into the decoding module to generate a clear
image with more fine textures.

3.3 Loss Function

We use the following four loss functions to construct the over-
all loss: L1 loss, perception loss, contrastive loss and focal
frequency loss.

L1 Loss. L1 loss constructs the L1 distance between the
GroundTruth (GT) and the dehazed image to describe the loss
of the network. It makes the output of our network closer to
the GT in the raw space to generate a clear image.

Perception Loss. We compare the feature difference be-
tween the GT and dehazed image using pre-trained VGG lay-
er by layer. This loss ensures the features of dehazed images
closer to the features of the GT in multi-dimension space. It
enables the network to restore the structure of clear images.

Contrastive Loss.

|Vi(Iye) = Vi(D(Inaze))||2
Z [1Vi( Ihaze = Vi(D(Inaze))l|2

where V; denotes VGG feature extractor on the i*" layer. D
refers to the dehazing network and 6 is the parameters. Ij ..
is the hazy image and I is the clear image. We set the I as
positive sample and the I, .. as negative sample. Contrastive
loss can make the dehazed image close to the positive sample
and away from the negative sample. The use of negative sam-
ples provides more references for the network to improve the
training efficiency and dehazing performance.

Contrastive loss is expressed as:

&)

Focal Frequency Loss. Focal frequency loss constrains the
network in frequency domain. It not only improves the accu-
racy in frequency, but also pays more attention to recover the
seriously degraded areas. It is expressed as:

Li(0) = = plT () = T(D(a), ©)

where a, b represent the height and the width of an image
respectively. T is the function to obtain complex frequency
value which separates the real part and imag part by fourier
transform (DFT) and Euler’s formula [Jiang er al., 2021]. p
denotes the weight by:

p= |T(Igt) = T(D(Ihaze))|", (7N

where « is the scaling factor for flexibility (we set a=1). p
adjusts the weight dynamically depending on different degra-
dation to improve the performance in the severely degraded
areas. p is normalized into the range [0, 1].

Our total loss function is: L = Ly +~y1 Ly, +v2 L. +v3Ly,
where L1 and Lp mean L1 loss and perceived loss. The
denotes the weight. According to [Li et al., 2019], we train
the network with the settings: v1=0.03, 72=0.03, v3=0.02.

4 Experiments

The initial learning rate is set as 0.0001 and we adopt the co-
sine annealing strategy [Qin et al., 2019] to adjust the learn-
ing rate. The Adam optimizer is used whose betas parameter
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Figure 5: Qualitative comparisons of SOTS indoor dataset. The plural row is the area in the red box of the singular row. In the indoor
synthetic scenes, our method dehazes the image better than most of the others which usually bring artifacts.

DataSet H DCP AODNet GCA GDN FD-GAN MSBDN FFANet ACER-Net  Ours

SOTS 16.61/0.83 19.82/0.81 30.23/0.89 32.16/0.95 22.15/0.89 33.79/0.98 36.39/0.98 37.17/0.99 37.35/0.98
O-Haze 16.55/0.68 15.13/0.60 16.55/0.68 20.97/0.70 21.68/0.73 17.15/0.33 21.37/0.74 - 24.52/0.82
Dense-Haze || 12.20/0.39 12.63/0.39 10.99/0.39 13.67/0.39 14.94/0.45 14.72/0.37 14.60/0.49 15.80/0.46 15.31/0.55
NH-Haze 11.63/0.48 11.54/0.47 12.31/0.50 15.69/0.64 19.87/0.73 16.28/0.48 17.89/0.70 19.88/0.71 20.19/0.77

Table 1: Quantitative comparisons (PSNR/SSIM) of our network and other methods. The best and second best are shown by red and green.

is remained default. Besides, for data augmentation, we use
240 x 240 window to randomly cut the training images and
rotate them randomly. Our network is trained by RTX 3090.

4.1 Datasets

RESIDE. RESIDE [Li ef al., 2018] includes synthetic and
real-world hazy/clear images which are collected indoor and
outdoor. Its Indoor Training Set (ITS) contains 1,399 clean
images and 13,990 hazy images generated by different atmo-
sphere light and transmission maps. Its Synthetic Objective
Testing Set (SOTS) contains 500 indoor and 500 outdoor test
images. In this paper, we train the dehazing networks on all
the images of ITS and test them on all the images of SOTS.

NTIRE2018/2019/2020. The O-Haze [Ancuti et al., 2018],
Dense-Haze [Ancuti et al., 2019] and NH-Haze [Ancuti et
al., 2020] are from NTIRE 2018, 2019 and 2020 respectively.
Each of them has its own training set and test set. We sepa-
rately use their training sets to train the networks and use the
corresponding test sets to evaluate the dehazing performance.
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4.2 Comparison with State-of-the-art Methods

Quantitative comparisons. We compare our method with
eight dehazing methods, including AODNet [Li et al., 2017al,
DCP [He et al., 2011], GCANet [Chen et al., 2019], GDN
[Liu et al., 2019], MSBDN [Dong et al., 2020al, FD-GAN
[Dong et al., 2020b], FFANet [Qin et al., 2019] and ACER-
Net [Wu er al., 2021]. Except ACER-Net, the compared
methods are trained by our experiment enviroment and the
optical model. The quantitative comparisons are shown in
Table 1. Our network performs better than most of others on
the SOTS indoor dataset with PSNR of 37.35 db and SSIM of
0.98. For the other datasets, our method outperforms most of
the top algorithms. Compared with the eight dehazing meth-
ods, our method is always ranked as the first or the second.
Indoor qualitative comparisons. Figure 5 shows the qual-
itative comparisons on the indoor dataset. Our method main-
tains the color consistency of objects when other methods cre-
ate artifacts (see the wall in the row 4). Besides, our dehazed
image is realistic while the others lead to distortions (see the
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Figure 6: Qualitative comparisons of O-Haze. In the real-world out-
door scenes, our method obtains a more realistic image than others.

ceiling in the row 6). Overall, the results of our method are
visually closer to the GT than other methods.

QOutdoor qualitative comparisons. As shown in Figure 6,
in outdoor complex scenes, our network removes haze best
while others lead to under dehazing (see the statue). We re-
store the details well while the others are unsatisfactory (see
the trees in the top left of the woods), because we establish
mutual support between different local features. The outdoor
comparison shows that our method has great robustness.
Generalization. We train the methods on ITS, and test
them on the real-world dataset and the SOTS outdoor dataset
to verify the generalization. As Figure 7, the top row shows
our method produces more realistic than the others in gener-
alizing to real-world dataset. The down row shows that our
method performs best in generalizing to outdoor dataset.

4.3 Ablation Study

We define a baseline consisting of decoding module, encod-
ing module and FDRs. We add different modules to the base-
line for ablation study: (1) Baseline+SC: Skip connection-
s is added between encoding module and decoding module.
(2) Baseline+SFM: SFM is added into baseline. (3) Base-
line+SFM+CL: Contrastive loss is used for training the net-
work of (2). (4) Baseline+SFM+CL+FL (Ours): focal fre-
quency loss is added on (3). (5) FANet: We replace the FDR
in Ours with FAblock [Qin et al., 2019] which also contains
attention mechanism to explore the effect of FDR.

Effectiveness of SFM. The SFM effectively enhances the
shallow features of the network. As shown in Table 2, adding
SEFM can improve the performance with an increase of PSNR
0.33db from the baseline to the baseline+SFM. In order to
further explore whether the physical model works, we replace
the SFM with SC to do comparison. SEM improve the perfor-
mance with an increase of PSNR 0.95db from baseline+SC to
baseline+SFM.
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Figure 7: Experiments about the generalization. Qualitative com-
parisons of real-world is shown on the top row and the quantitative
analysis on outdoor dataset is shown on the down row.

Model [ CL FL [ PSNR SSIM
Baseline - - 3492  0.97
Baseline+SC - - 34.30 0.97
Baseline+SFM - - 35.25 0.97
Baseline+SFM | v - 36.89 0.98
FANet Ve v | 35778 0.97
Baseline+SFM | v v | 37.35 098

Table 2: Result of ablation study in SOTS dataset. CL means con-
trastive loss and FL means focal frequency loss.

Effectiveness of focal frequency loss. The focal frequency
loss effectively reduces the distortion of the dehazed image.
by comparing from Baseline+SFM+CL to ours, the PSNR is
0.46db higher than without focal frequency loss.

Effectiveness of FDR. FAblock can also achieve the three
dimensional attention mechanism, but it is based on convolu-
tion and can not build the correlation between local features
in the global range. The PSNR of using FDR is 1.57db high-
er than that of FAblock. Experiments show that the FDR is
effective, and necessary to establish dense feature relevance.

5 Conclusion

This paper proposes a feature dense relevance network for
image dehazing. This network is defined by the FDR and
the SFM. The FDR aims to construct the dense relationship
between each local feature in the global range. It enables
different local regions to support each other to efficiently re-
store the seriously degraded regions in complex scenes. At
the same time, the SFM is proposed based on physical model
and distant skip-connection to effectively recover the fine tex-
tures by preserving and mapping the shallow features. A large
number of experiments in real-world and synthetic datasets
show that, our method produces more realistic and clearer im-
ages than most of the state-of-the-art dehazing methods based
on the quantitative and qualitative evaluations.
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