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Abstract
Accurate and real-time LiDAR semantic segmen-
tation is necessary for advanced autonomous driv-
ing systems. To guarantee a fast inference speed,
previous methods utilize the highly optimized 2D
convolutions to extract features on the range view
(RV), which is the most compact representation of
the LiDAR point clouds. However, these methods
often suffer from lower accuracy for two reasons:
1) the information loss during the projection from
3D points to the RV, 2) the semantic ambiguity
when 3D points labels are assigned according to the
RV predictions. In this work, we introduce an end-
to-end point-range fusion network (PRNet) that ex-
tracts semantic features mainly on the RV and iter-
atively fuses the RV features back to the 3D points
for the final prediction. Besides, a novel range view
projection (RVP) operation is designed to allevi-
ate the information loss during the projection to
the RV, and a point-range convolution (PRConv)
is proposed to automatically mitigate the seman-
tic ambiguity during transmitting features from the
RV back to 3D points. Experiments on the Se-
manticKITTI and nuScenes benchmarks demon-
strate that the PRNet pushes the range-based meth-
ods to a new state-of-the-art, and achieves a better
speed-accuracy trade-off.

1 Introduction
LiDAR semantic segmentation provides a crucial point-level
perception of the surrounding environments for applications,
e.g. autonomous driving and moving robots. Such applica-
tions require the LiDAR semantic segmentation model to run
in real-time to support timely downstream object detection
and planning. However, the LiDAR point clouds come in an
unstructured and sparse format, which brings challenges for
efficient and effective processing. Different data representa-
tions (the 3D point, voxel, and range view) have been used to
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Figure 1: mIoU vs. runtime on the validation set of both Se-
manticKITTI and nuScenes. All methods are trained and evaluated
based on the official code. The experiments are conducted with Py-
Torch FP32 on NVIDIA RTX 2080Ti GPU. Note that PRNet-2C has
twice as many RV feature channels as PRNet-1C. The definition of
mean Intersection over Union (mIoU) is given in the Section 4.1.

accomplish this task, which further results in differences in
efficiency and accuracy as shown in Figure 1.

The point-based methods [Qi et al., 2017a; Qi et al., 2017b;
Thomas et al., 2019; Hu et al., 2020] directly consume the
unstructured 3D point clouds, which are the most complete
sources of 3D information. However, as shown in Figure 1,
point-based methods run slowly, since it has to adopt inef-
ficient components for searching neighbors and aggregating
features within unstructured points.

The latter voxel-based methods [Choy et al., 2019; Tang
et al., 2020; Cheng et al., 2021; Zhang et al., 2020; Zhu et
al., 2021] discretize the point clouds into voxel cells and uti-
lize the 2D or 3D convolution networks for feature extraction.
These methods achieve relatively higher performance than
point-based methods, but their efficiency (speed) still acts as
a significant bottleneck for real-world applications.

The range-based methods adopt the most compact repre-
sentation of the LiDAR point clouds, namely the RV rep-
resentation, to ensure their efficiency. The previous range-
based methods [Cortinhal et al., 2020; Milioto et al., 2019;
Xu et al., 2020; Razani et al., 2021] first project 3D points
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Figure 2: The information loss during the projection from 3D points
to the RV: for the points of traffic-sign and vegetation in the same RV
pixel, existing range-based methods only keep the nearest traffic-
sign point. The semantic ambiguity from the RV predictions back
to 3D points labels: the occluded vegetation points are assigned by
the label of traffic-sign. The results are acquired by the official Sal-
saNext with kNN as post-processing.

to the RV, and then perform the 2D semantic segmentation
on the RV with the well-optimized 2D convolution networks,
and finally transmit the 2D RV labels back to 3D points. De-
spite their efficiency, their performance is much poorer than
the voxel-based counterparts. We analyze two major reasons
in Figure 2 and propose to solve these issues as the following.

First, the information loss during the projection from 3D
points to the RV is nonnegligible. As shown in Figure 2, mul-
tiple LiDAR points may be projected to the same RV pixel,
but existing methods only keep the nearest point. For ex-
ample, SalsaNext [Cortinhal et al., 2020] drops a significant
proportion of 22% points on the SemanticKITTI dataset. To
better encode the RV features, a novel range view projec-
tion (RVP) operation is proposed to aggregate features of the
points in the same RV pixel through max-pooling. Moreover,
the features of the RV and points are fused for the final per-
point prediction to further minimize the information loss.

Second, the semantic ambiguity results in the wrong pre-
dictions, when the RV labels are transmitted back to the 3D
points. The RV squeezes the distance r dimension and the
3D points far away in the 3D space may correspond to adja-
cent or even the same pixel in the RV space, which implies
that these 3D points would be probably assigned to the same
label. To ameliorate this problem, existing methods adopt k-
Nearest-Neighbor (kNN) as post-processing, voting for the
final prediction. But sometimes the kNN also fails, as shown
in Figure 2, the occluded vegetation regions are assigned by
the label of traffic-sign. To address this issue fundamentally,
we propose to transmit the RV features instead of labels back
to 3D points and introduce a novel point-range convolution
(PRConv), which transmits the RV features with dynamic
per-point hyper-parameters and allows distinct 3D point fea-
tures although they are corresponding to the same RV pixel.

In summary, we propose an end-to-end point-range fusion
network (PRNet) for real-time LiDAR semantic segmenta-
tion. Different from the previous range-based methods that
predict 2D RV semantic labels, the proposed method first
projects the features from 3D points to the RV for the lat-
ter feature extraction and then fuses the RV features back to

3D points for the final per-point prediction. In this frame-
work, the RVP operation aims to alleviate the information
loss during the projection from 3D points to the RV, while
the PRConv is proposed to mitigate the semantic ambigu-
ity during the feature transmission from the RV back to 3D
points. Experiments on the SemanticKITTI and nuScenes
benchmarks show that the proposed PRNet outperforms ex-
isting range-based methods by a large margin. Compared
with the top-ranking methods, the PRNet achieves a better
speed-accuracy trade-off.

2 Related Work
Point-based Methods. The point-based methods directly
consume raw point clouds without any quantization, but their
performance and efficiency are relatively worse. The pioneer-
ing work, PointNet [Qi et al., 2017a], adopts the shared multi-
layer perception (MLP) to extract per-point features and the
global max-pooling to integrate global features. To learn
richer local structures, many subsequent works have been in-
troduced. PointNet++ [Qi et al., 2017b] proposes the stacked
set abstraction layers to learn hierarchical point features. KP-
Conv [Thomas et al., 2019] proposes a novel spatial kernel-
based point convolution to extract local structure. However,
since the farthest point sampling (FPS) widely used in these
networks is inefficient in both computation and memory cost,
these methods are limited to indoor scenes and cannot be di-
rectly extended to autonomous driving with a large number
of 3D points. RandLA-Net [Hu et al., 2020] replaces the FPS
with random sampling to improve efficiency, but it is still far
away from real-time processing.
Voxel-based Methods. The voxel-based methods quantize
the 3D points into structured voxels, where the mature 2D
or 3D convolution networks are applied. To reduce the com-
putation and memory cost, sparse convolution [Choy et al.,
2019] is applied only on these non-empty voxels. Consid-
ering that the voxelization brings quantization errors, the
following works [Tang et al., 2020; Cheng et al., 2021;
Xu et al., 2021] fuse the voxel features with the fine-grained
point features. SPVNAS [Tang et al., 2020] further adopts
neural architecture search and achieves better results with
lower computation cost. AF2S3Net [Cheng et al., 2021] de-
signs the attentive feature fusion module (AF2M) and adap-
tive feature selection module (AFSM) to efficiently extract lo-
cal and global structures simultaneously. Recent RPVNet [Xu
et al., 2021] fuses the features from the points, voxel, and
RV in a single framework to alleviate quantization errors, and
achieves the best results on the SemanticKITTI and nuScenes
benchmarks. Besides, different 3D space partition strate-
gies are proposed. PolarNet [Zhang et al., 2020] uses the
polar grid representation and Cylinder3D [Zhu et al., 2021]
follows the cylindrical partition. Although the voxel-based
methods dominate the LiDAR semantic segmentation bench-
marks, they cannot run in real-time on mobile platforms.
Range-based Methods. The range-based methods are
more attractive because they are fast and easy-deployed by
utilizing highly optimized 2D convolutions. These methods
first project 3D points to the RV space and then perform
semantic segmentation on the RV. RangeNet++ [Milioto et
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Figure 3: The point-range fusion network (PRNet). It takes the 3D point features as input and extracts semantic features mainly on the RV.
The output point features are acquired by fusing the RV features back to the 3D points. The PRNet can be stacked for multiple times to
increase its representation capacity.

al., 2019] proposes an accelerated kNN as post-processing
to deal with the semantic ambiguity from the RV predictions
back to 3D points labels. SqueezeSegV3 [Xu et al., 2020]
proposes the spatially adaptive convolution to apply differ-
ent convolution parameters for different locations on the RV.
SalsaNext [Cortinhal et al., 2020] designs a novel encoder-
decoder network and adopts Lovász-Softmax loss that can
directly optimize the mean Intersection over Union (mIoU)
metric. More recently, Lite-HDSeg [Razani et al., 2021] de-
signs lightweight harmonic dense convolutions for both effi-
ciency and effectiveness.

3 Methodology
To achieve accurate and real-time LiDAR semantic segmenta-
tion, the method needs to extract semantic features efficiently
while keeping the LiDAR point clouds information as much
as possible. Inspired by the recent range-based methods that
extract features at a fast speed and the point-based methods
that can preserve point information, we propose a novel end-
to-end point-range fusion network (PRNet). The proposed
method extracts semantic features mainly on the RV, and then
fuses the features with 3D point features for enhancement,
as shown in Figure 3. The PRNet consists of four steps: 1)
the range view projection (RVP) projects the input point fea-
tures to the RV feature maps; 2) a 2D FCN is applied to the
2D RV feature maps to efficiently extract semantic features;
3) the point-range convolution (PRConv) transmits features
from the RV back to 3D points; 4) the point fusion (PF) mod-
ule fuses the features from the RV and the 3D points to en-
sure complete information. Additionally, the PRNet can be
stacked M times to get stronger features. Finally, the features
are fed to a single fully connected layer for the final per-point
semantic prediction.

In the following subsections, we first illustrate the four

components of the proposed PRNet in Section 3.1, 3.2, 3.3
and 3.4. Then, the loss function is shown in Section 3.5.

3.1 Range View Projection
In the range-based methods, the 3D point features are needed
to be projected to the 2D RV feature maps. Unlike the previ-
ous methods that directly ignore the occluded points, the RVP
is proposed to aggregate all point features projected to the
same RV pixels by max-pooling. In detail, it first transforms
the kth 3D point from the cartesian space p3D

k = (xk, yk, zk)

to the spherical space psph
k = (rk, θk, ϕk) by applying,

rk

θk

ϕk

 =


√
xk

2 + yk2 + zk2

arcsin ( zk√
xk

2+yk
2+zk2

)

arctan (yk, xk)

 , (1)

where rk, θk, ϕk denote the distance, zenith and azimuth an-
gle respectively. Then, it acquires the corresponding 2D RV
coordinates pRV

k = (uk, vk) by discretizing θk and ϕk and
ignoring rk, as the following,(

uk

vk

)
=

 1
2 [1− ϕkπ

−1]W

[1− (θk + fup)f
−1]H

 , (2)

where f = fup + fdown is the LiDAR vertical field-of-view.
W , H are the predefined width and height of the RV feature
maps.

After grabbing the coordinates on the RV, the 3D features
can be transposed to the corresponding 2D position. How-
ever, there may be more than one points that fall in the same
RV pixel (h,w), and an aggregation manner needs to be de-
termined. The traditional range-based methods only select
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the feature from the nearest 3D point, which leads to the
above-mentioned information loss. To tackle this problem,
the RVP gathers the features F3D

k,c of the 3D points that fall
in the pixel (h,w) by max-pooling to form the RV features
FRV

h,w,c,

FRV
h,w,c = max

∀k s.t. ⌊uk⌋=h,⌊vk⌋=w
F3D

k,c . (3)

Theoretically, the complete 3D points information can be re-
tained within the RV features FRV by passing information
from different points through different feature channels.

3.2 2D Fully Convolutional Network
The 2D FCN is applied to the RV features for semantic fea-
ture extraction. Its architecture follows the conventional en-
coder and decoder structure. The encoder network has multi-
ple down-sampling stages and does not apply down-sampling
along the height dimension. The decoder network conducts
up-sampling while fusing high-level and low-level feature
maps. The detailed architecture is shown in the supplemen-
tary material.

3.3 Point-Range Convolution
To avoid semantic ambiguity, unlike the previous range-based
methods that directly predict semantic labels on the RV, the
proposed method transmits the RV features back to the 3D
points and then performs per-point prediction. Considering
that different 3D points may correspond to the same 2D pixel,
the transmission module must be able to produce dynamic
features according to its 3D and 2D positions to avoid ambi-
guity. Therefore, the PRConv is proposed to fulfill this func-
tion by first predicting a set of offsets and weights, and then
doing a 3× 3 convolution on the displaced positions accord-
ing to the predicted offsets and weights. Intuitively, as shown
in Figure 2, to aggregate features for the occluded vegetation
points, the kernel position should be adjusted to the nearby
non-occluded vegetation regions, and the kernel amplitude
should be reduced if the corresponding kernel position falls
on the traffic-sign.

Formally, for the kth 3D point, its features F3D
k are ac-

quired by aggregating the RV features FRV within a 3 × 3
window as the following,

F3D
k =

9∑
n=1

wn ·FRV (pRV
k + pn +∆pk,n) ·∆mk,n, (4)

where pn ∈ {(−1,−1), (−1, 0), ..., (1, 1)} defines a 3 × 3
window, and wn denotes the convolution parameters applied
on the nth location. To enable the PRConv to alleviate the
semantic ambiguity, the kernel offset ∆pk,n is used to adjust
kernel position, and the kernel weight ∆mk,n is introduced
for modulating the kernel amplitude.

As illustrated in Figure 3, both ∆pk,n and ∆mk,n are pre-
dicted dynamically according to features from both the RV
and the 3D points. Specifically, they are estimated following
a three-step manner: 1) a 2D convolution layer is applied on
the 2D feature maps FRV to get FRV ′

; 2) the 3D features

F3D←RV ′

k for the kth point is obtained by bilinear sampling
among the 2 × 2 2D neighbours of the corresponding RV
position pRV

k on the feature map FRV ′
; 3) a MLP takes a

concatenation of the original 3D point features F3D
k and the

interpolated features F3D←RV ′
as its input and outputs 27-

channel (3 × 3 × 3) vector per 3D point, where the first 18
channels denote the kernel offset ∆pk,n and the remaining
9 channels are activated by a sigmoid function to obtain the
kernel weight ∆mk,n.

3.4 Point Fusion
The point fusion (PF) module fuses the features from the RV
and the 3D points to enhance per-point features. For effi-
ciency, it consists of a feature concatenation and two MLP
layers. The output point features can serve as the input of
the next stacked PRNet or the input of the prediction header.
If more than one PRNets are stacked, we impose supervision
on each to facilitate the training process. For inference, the
output of the last PRNet is used for the final prediction.

3.5 Loss Function
The amounts of data for different categories are highly un-
balanced in the LiDAR semantic segmentation dataset (e.g.
SemanticKITTI, nuScenes). For example, the proportions of
road, building, and car are hundreds times than those of mo-
torcyclist and traffic-sign. Therefore, we apply the weighted
cross entropy (WCE) Lwce that emphasizes the rare cate-
gories as the following,

αc =
1

Fc + 0.001

Lwce =− 1

N

N∑
n=1

C∑
c=1

αcy
c
n log(ŷ

c
n), (5)

where ycn (ycn ∈ {0, 1}) and ŷcn (ŷcn ∈ [0, 1]) are the ground-
truth and the predicted probability of the cth class on the
nth point. Fc is the frequency, and αc is the weight of the
cth class. We also adopt the Lovász-Softmax loss [Berman
et al., 2018] Lls to directly optimize the mean Intersection
over Union (mIoU) metric. According to [Aksoy et al., 2020;
Cortinhal et al., 2020], it can improve the mIoU performance
of the LiDAR semantic segmentation task. The total loss
Ltotal is the sum of the two loss terms and is defined as

Ltotal = Lwce + 3Lls. (6)

4 Experiments
We evaluate the effectiveness and efficiency of the proposed
PRNet on the public nuScenes [Caesar et al., 2020] and Se-
manticKITTI [Behley et al., 2019] single-scan LiDAR se-
mantic segmentation benchmarks.

4.1 Experimental Setup
Datasets. nuScenes for the LiDAR semantic segmentation
is a newly released benchmark with 1,000 scenes collected
in Boston and Singapore. Each LiDAR scan is collected by a
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RangeNet++ [Milioto et al., 2019] 65.5 78.6 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
SalsaNext [Cortinhal et al., 2020] 72.2 26.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
PolarNet [Zhang et al., 2020] 71.0 67.5 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
AMVNet [Liong et al., 2020] 77.2 - - - - - - - - - - - - - - - - -
Cylinder3D [Zhu et al., 2021] 76.1 75.7 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNet [Xu et al., 2021] 77.6 - 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9
PRNet-1C [ours] 75.3 20 76.9 38.6 90.9 92.1 44.8 79.8 76.6 62.5 60.1 79.8 97.0 74.4 76.2 75.7 89.5 87.9
PRNet-2C [ours] 78.0 43 78.0 40.9 92.5 93.4 54.1 85.4 80.6 63.2 69.8 84.7 97.3 75.1 77.7 76.1 91.0 89.3

Table 1: Class-wise and mean IoU of the proposed PRNet and its competitors on the nuScenes validation set. Runtime measurements are
taken on a single NVIDIA RTX 2080Ti GPU.

Velodyne HDL-32E 360◦ rotating LiDAR with 32 beams ver-
tically. It splits 28,130 samples for training, 6,019 for valida-
tion, and 6,008 for testing. After merging similar categories
and removing rare categories, 16 categories are used for the
official evaluation.

SemanticKITTI contains 43,552 LiDAR scans from 22 se-
quences collected in Germany. Each LiDAR scan is collected
by a Velodyne HDL-64E 360◦ rotating LiDAR with 64 beams
vertically. The training set (19,130 scans) consists of se-
quences from 00 to 10 except 08, and the sequence 08 (4,071
scans) is used for validation. The rest sequences (20,351
scans) from 11 to 21 are only provided with LiDAR point
clouds and are used for the online leaderboards. The dataset
is annotated with 28 categories, but it merges categories with
different motion states to acquire 19 valid categories for the
single-scan LiDAR semantic segmentation benchmark.

Evaluation Metric. To evaluate the proposed PRNet and
its competitors, we follow the official metric, namely mean
Intersection over Union (mIoU), as the following,

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
, (7)

where TPc, FPc, FNc are the true positive, false positive and
false negative of the cth category, respectively. C is the total
number of classes.

Network Setup. In the experiments, we adopt two stacked
PRNets, and each has a similar network architecture but dif-
ferent parameters. The dimensions of the input point features
for these two nets are 5, and 64, respectively. The first 5 fea-
ture channels contain x, y, z, intensity and r. As shown in
Figure 3, the first MLP layer of each PRNet outputs 64 fea-
ture channels. The details of the 2D FCN can be seen in the
supplementary material. The two stacked PRNets output 64,
96 point feature channels, respectively. Finally, the segmenta-
tion results are acquired by applying an FC layer to the output
of the last stacked PRNet. Note that PRNet-2C just doubles
the RV feature channels of PRNet-1C.

For SemanticKITTI, the parameters of LiDAR vertical
field-of-view are set as fup = 3◦ and fdown = −25◦. The
input size of the RV branch is 64 × 2048. For nuScenes,
we adopt the same configuration except fup = 20◦ and
fdown = −40◦.

Training Details. All experiments are conducted with Py-
Torch FP32 on NVIDIA RTX 2080Ti GPU. The proposed
PRNet is trained from scratch for 48 epochs with a batch size
of 16 on 8 GPUs. Stochastic gradient descent (SGD) serves
as the optimizer with a weight decay of 0.001, a momentum
of 0.9, and an initial learning rate of 0.02, which is decayed
by 0.1 every 10 epochs. Following the convention, the data
augmentation strategies include random flipping along the x
and y axes, random global scale sampled from [0.95, 1.05],
random rotation around the z axis, random Gaussian noise
N (0, 0.02), and instance CutMix [Xu et al., 2021].

4.2 Comparisons With the State-of-the-Arts
Results on nuScenes. We report the performance of the
proposed PRNet on the newly released nuScenes validation
set. As shown in Table 1, our PRNet-2C achieves the best
performance among all competing methods, and even out-
performs the most competitive RPVNet for most categories.
In terms of running time, the PRNet-2C is much faster com-
pared with all methods except the SalsaNext, but SalsaNext is
slower and has poorer mIoU performance than the PRNet-1C.

Results on SemanticKITTI. The proposed PRNet is com-
pared with the state-of-the-arts on the SemanticKITTI test
set. As shown in Table 2, the methods are grouped as point-
based, voxel-based, and range-based methods from top to
bottom. We find that PRNet-2C outperforms all point-based
and range-based methods by a large margin, and it can be
comparable with the top-ranking voxel-based methods, while
it runs much faster. Though the proposed PRNet-2C performs
poorer compared with the top-ranking RPVNet on some hard
categories, it runs 4 times faster with performance compara-
ble with RPVNet on most categories.

Limitation Discussion. For the categories that have fewer
training samples and are easily confused with other cate-
gories, the proposed method performs worse than the voxel-
based RPVNet, e.g. motorcyclist that is easily confused with
bicyclist and motorcycle. The reason is that the proposed
range-based method mainly encodes context on the 2D RV,
but this can be remedied by introducing images.

4.3 Ablation Studies
We make ablative analyses on the SemanticKITTI validation
set to figure out the effectiveness of the proposed components.
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Point-based Methods
PointNet [Qi et al., 2017a] 14.6 - 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7
PointNet++ [Qi et al., 2017b] 20.1 - 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9
RandLA-Net [Hu et al., 2020] 53.9 521.8 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7
KPConv [Thomas et al., 2019] 58.8 - 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4
Voxel-based Methods
PolarNet [Zhang et al., 2020] 54.3 74.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5
AMVNet [Liong et al., 2020] 65.3 - 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2
SPVCNN [Tang et al., 2020] 63.8 187 - - - - - - - - - - - - - - - - - - -
SPVNAS [Tang et al., 2020] 67.0 - 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3
Cylinder3D [Zhu et al., 2021] 67.8 178 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6
DRINet [Ye et al., 2021] 67.5 62 96.9 57.0 56.0 43.3 54.5 69.4 75.1 58.9 90.7 65.0 75.2 26.2 91.5 67.3 85.2 72.6 68.8 63.5 66.0
AF2S3Net [Cheng et al., 2021] 69.7 - 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
RPVNet [Xu et al., 2021] 70.3 168∗ 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
Ranged-based Methods
RangeNet++ [Milioto et al., 2019] 52.2 82.3 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
SqueezeSegv3 [Xu et al., 2020] 55.9 124.3 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
SalsaNext [Cortinhal et al., 2020] 59.5 27.4 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
Lite-HDSeg [Razani et al., 2021] 63.8 - 92.3 40.0 55.4 37.7 39.6 59.2 71.6 54.1 93.0 68.2 78.3 29.3 91.5 65.0 78.2 65.8 65.1 59.5 67.7
PRNet-1C [ours] 65.2 30/24.3

∗ 95.5 59.7 58.2 53.8 47.3 66.3 72.3 25.1 92.3 67.4 77.1 21.6 91.5 67.0 82.6 67.4 69.4 59.4 64.6
PRNet-2C [ours] 67.2 63/43.5∗ 95.7 62.1 60.0 56.3 48.4 71.0 75.0 28.6 92.4 66.3 75.9 21.8 92.9 72.2 84.4 70.4 68.6 63.5 71.0

Table 2: Class-wise and mean IoU of the proposed PRNet and its competitors on the SemanticKITTI test set. Runtime measurements are
taken on a single NVIDIA RTX 2080Ti GPU, while ∗ means that it uses NVIDIA Tesla V100 GPU.

Framework Backbone RVP PRConv PF M mIoU RT(ms)
a Baseline SalsaNext 1 59.0 27.4
b

PRNet-1C

SalsaNext ✓ 1 60.2 29.2
c SalsaNext ✓ ✓ 1 61.2 29.6
d SalsaNext ✓ ✓ ✓ 1 62.1 30.8
e Ours ✓ ✓ ✓ 1 61.8 14.6
f Ours ✓ ✓ ✓ 2 63.7 30

Table 3: The proposed framework analysis on the SemanticKITTI
validation set. M is the number of the stacked PRNets. RT is the
abbreviation of running time.

Effects of the Framework. This analysis is very important
to illustrate the insight of our motivation. It starts with the
baseline model, SalsaNext [Cortinhal et al., 2020], which is
an open-sourced and top-ranking range-based method. As
shown in Table 3, we progressively add the proposed com-
ponents to the SalsaNext until it becomes the same as the
proposed PRNet. It can be discovered that: 1) it achieves
+1.2 mIoU gains when the post-processing kNN is replaced
by the proposed PRConv (a, b); 2) the RVP outperforms the
traditional range projection strategy that only keeps the near-
est point within an RV pixel, by +1.0 mIoU (b, c). Based on
the official code of SalsaNext, we find that only 78% of the
whole 3D points are kept during projection to the RV, while
the RVP keeps as much 3D points information as possible;
3) the feature fusion of the RV and the 3D points further im-
proves the mIoU by +0.9 (c, d); 4) our 2D backbone is more
efficient than that of SalsaNext (d, e, f); 5) two stacked PR-
Nets perform better than a single one (e, f).

Variants of the PRConv. We set the baseline as the bilin-
ear sampling (BS) that acquires the point features by inter-
polating the four neighbors of the corresponding RV pixel.
Afterwards, we add the kernel offset and the kernel weight

Type Offset Weight mIoU Runtime(ms)
a BS 60.7 20
b

PRConv
61.1 24.3

c ✓ 62.9 26.6
d ✓ ✓ 63.7 30

Table 4: The PRConv analysis on the SemanticKITTI validation set.
BS stands for bilinear sampling.

one by one to figure out the proposed PRConv. As shown in
Table 4, the PRConv without the kernel offset and the kernel
weight improves the +0.4 mIOU, compared with the baseline.
Moreover, adding the kernel offset into PRConv leads to the
biggest mIoU jump of +1.8. Finally, the complete PRConv
equipped with the kernel offset and weight outperforms the
baseline by +3.0 mIoU.

5 Conclusion
In this paper, we present an end-to-end PRNet for real-time
LiDAR semantic segmentation, which leverages the strengths
of the point-based and range-based methods. The PRNet ex-
tracts features mainly on the RV and produces semantic pre-
dictions in the 3D space by fused features originating from
both the 3D space and the RV space. To minimize the in-
formation loss, we propose the RVP operation for the RV
projection. To avoid semantic ambiguity, a novel PRConv
is proposed to transmit the RV features back to the 3D points
dynamically. Experimental results on the SemanticKITTI and
nuScenes benchmarks demonstrate the effectiveness and su-
periority of the proposed components. The PRNet has re-
solved two long-plagued issues for the range-based methods
and demonstrates the potential of the range-based methods
for both effectiveness and efficiency. Future works lie in inte-
grating image information to further improve its performance.
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