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Abstract

Single image dehazing as a fundamental low-level
vision task, is essential for the development of ro-
bust intelligent surveillance system. In this paper,
we make an early effort to consider dehazing ro-
bustness under variational haze density, which is
a realistic while under-studied problem in the re-
search filed of singe image dehazing. To prop-
erly address this problem, we propose a novel
density-variational learning framework to improve
the robustness of the image dehzing model as-
sisted by a variety of negative hazy images, to
better deal with various complex hazy scenarios.
Specifically, the dehazing network is optimized un-
der the consistency-regularized framework with the
proposed Contrast-Assisted Reconstruction Loss
(CARL). The CARL can fully exploit the nega-
tive information to facilitate the traditional positive-
orient dehazing objective function, by squeezing
the dehazed image to its clean target from differ-
ent directions. Meanwhile, the consistency reg-
ularization keeps consistent outputs given multi-
level hazy images, thus improving the model ro-
bustness. Extensive experimental results on two
synthetic and three real-world datasets demonstrate
that our method significantly surpasses the state-of-
the-art approaches.

1

Image dehazing aims to recover the clean image from a hazy
input, which is essential for the development of robust com-
puter vision systems. It helps to mitigate the side-effect of
image distortion induced by the environmental conditions,
on many visual analysis tasks, such as object detection [Li
et al., 2018a; Zhang et al., 2021a] and scene understand-
ing [Sakaridis et al., 2018; Zhang et al., 2021b]. Therefore,
single image dehazing has attracted more and more atten-
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Figure 1: The results of two dehazing methods on the same image

Dehazing Model 2 Dehazing Model 1

with different hazy densities. The first row shows the input hazy
images with three different densities. The second and third rows
show the corresponding dehazed images by current two representa-
tive methods (denoted as “Dehazing Model 1” and “Dehazing Model
2”), respectively. It shows that such methods are lack of robustness
to cope with hazy images in different scenarios.

tion, and many dehazing methods have been proposed recent-
ly [Qin et al., 2020; Wu et al., 2021].

Great efforts have been made in the past few years and end-
to-end deep learning based dehazing methods has achieved
great success in dealing with complex scenes [Dong et al.,
2020a; Li et al., 2017; Hong et al., 2020; Shao et al., 2020].
However, when performing on scenarios with different haze
density, these methods still cannot always obtain desirable de-
hzing performance witnessed by the inconsistency results as
shown in Figure 1. We can clear see that the same image with
different hazy densities usually generate dehazed images with
different qualities, by some current designed dehazing mod-
els. This phenomenon illustrates that such image dehazing
models are not robust to some complex hazy scenarios, which
is not what we expected for a good dehazing model. Unfortu-
nately, this situation may usually happen in real world. Con-
sequently, how to improve the robustness of dehazing model
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becomes an important yet under-studied issue.

The inconsistency results shown in Figure 1 also inspire
us to regularize the learning process by utilizing these multi-
level hazy images with different densities, to improve the
model robustness. To achieve this goal, we creatively pro-
pose a Contrast-Assisted Reconstruction Loss (CARL) under
the consistency-regularized framework for single image de-
hazing. It aims to train a more robust dehazing model to bet-
ter deal with various hazy scenarios, including but not limited
to multi-level hazy images with different densities.

In the proposed CARL, we fully exploit the negative in-
formation to better facilitate the traditional positive-orient
dehazing objective function. Specifically, we denote the
ground-truth clear image and the restored dehazed image as
the anchor and positive example, respectively. The negative
examples can be constructed not only from the original hazy
image and its variants with different hazy densities, but al-
so from the restored images generated by some other dehaz-
ing models. The CARL enables the network prediction to
be close to the clear image, while push it far away from the
hazy images in the feature space. Specifically, pushing an-
chor point far away from various negative images seems to
squeeze the anchor point to its positive example from differ-
ent directions. Elaborately selecting the negative examples
can help the CARL to improve the lower bound for approxi-
mating to its clear image under the regularization of various
negative hazy images. Besides, more negative examples in
the contrastive loss can usually contribute more performance
improvement, which has been demonstrated in metric learn-
ing research field [Khosla ef al., 2020]. Therefore, we also
try to adopt more negative hazy images to improve the model
capability to cope with various hazy scenarios.

To further improve the model robustness, we propose to
train the dehazing network under the consistency-regularized
framework on top of the CARL. The success of consistency
regularization lies in the assumption that the dehazing mod-
el should output very similar or even same dehazed images
when fed the same hazy image with different densities. Such
constraint meets the requirement of a good dehazing model
to deal with hazy images in different hazy scenarios. Specifi-
cally, we implement this consistency constraint by the mean-
teacher framework [Tarvainen and Valpola, 2017]. For each
input hazy image, we also resort to previously constructed im-
ages with different hazy densities or some other informative
negative examples. Then, L1 loss is used to minimize the dis-
crepancy among all the dehazed images which corresponds to
one clear target. The consistency regularization significantly
improves the model robustness and performance of the de-
hazing network, and it can be easily extended to any other
dehazing network architectures. The main contributions are
summarized as follows:

e We make an early effort to consider dehazing robustness
under variational haze density, which is a realistic while
under-studied problem in the research filed of singe im-
age dehazing.

e We propose a contrast-assisted reconstruction loss under
the consistency-regularized framework for single image
dehazing. This method can fully exploit various negative
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hazy images, to improve the dehzing model capability of
dealing with various complex hazy scenarios.

e Extensive experimental results on two synthetic and
three real-world image dehazing datasets demonstrate
that the proposed method significantly surpasses the
state-of-the-art algorithms.

2 Related Work

We can roughly divide existing dehazing methods into cate-
gories: the physical-scattering-model dependent methods and
the model-free methods.

The physical-scattering-model dependent methods try
to recover the clear image through estimating the atmospheric
light and transmission map by some specially designed priors
or network architectures. For the prior-based image dehazing
methods, they usually remove the haze using different statis-
tic image prior from empirical observations, such as the tra-
ditional dark channel prior (DCP) [He et al., 20101, non-local
prior [Berman er al., 2016] and contrast maximization [Tan,
2008]. Although these methods have achieved great success-
es, the priors can not handle all the cases in the unconstraint
wild environment.

Recently, as the prevailing success of deep learning in im-
age processing tasks, many deep dehazing methods depend-
ing on the atmosphere scattering model have been proposed.
[Zhang and Patel, 2018] directly embedded the physical mod-
el into the dehazing network by a densely connected encoder-
decoder structure. [Ren et al., 2016] proposed a coarse-
to-fine multi-scale CNN model to estimate the transmission
map. [Li et al., 2017] reformulated the original atmospheric
scattering model and jointly estimated the global atmospher-
ic light and the transmission map. However, such physical-
scattering-model based learning methods may produce accu-
mulative error and degrade the dehazing results, since some
relatively small inaccurate or biased estimation of the trans-
mission map and global atmospheric light could lead to larger
reconstruction error between the dehazed and clear images.

Model-free deep dehazing methods try to directly learn
the mapping between the hazy input image and clear result
without using atmospheric scattering model. Most of such
methods focus on strengthening the dehazing network. For
instance, [Liu ef al., 2019b] designed a dual residual neural
network architecture to explore the potential of paired opera-
tions for image restoration tasks. [Qu er al., 2019] proposed
a pixel-to-pixel dehazing network to obtain perceptual pleas-
ing results. [Qin ef al., 2020] proposed a fused attention
mechanism to strengthen the flexibility of the network to deal
with various information. These methods only minimize the
reconstruction loss between the dehazed image and its clear
target, without any regularization on images or features.

Recently, there also appeared some methods, which adopt-
ed distance metric regularization to further improve the re-
construction loss. [Wu et al., 2021] proposed the divided-
contrast regularization for single image dehazing. Our
method also falls into this category, but it is very differen-
t from them. We specifically propose the CARL under the
consistency regularization framework for single image dehaz-
ing. It can not only fully exploit existing negative hazy exam-
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Figure 2: The framework of the proposed method for robust single image dehazing. It consists of the same dehazing network architecture for
the student and teacher network, the Contrast-Assisted Reconstruction Loss (CARL) to fully exploit various negative hazy images to squeeze
the dehazed image to its clean target from different directions, the consistency regularization framework to explicitly deal with multi-level
hazy scenarios to further improve its robustness, and the traditional L1 reconstruction loss.

ples to assist the dehazing model to produce more natural and
sharper dehazed images, but also can improve the model ro-
bustness to deal with various complex hazy scenarios.

3 Proposed Method

The proposed method makes great efforts to deal with various
hazy scenarios from the following two aspects: 1) The CAR-
L improves the traditional positive-orient dehazing objective
function, by fully exploiting the various negative information
to squeeze the dehazed image to its clean target from different
directions; 2) The consistency regularization aims to further
improve the model robustness by explicitly utilizing the con-
straint outputs of multi-level hazy images. In the following,
we describe the algorithm in detail shown in Figure 2.

3.1 Dehazing Network Architecture

In this paper, we adopt the previously proposed FFA-Net [Qin
et al., 2020] as our backbone network architecture. As shown
in Figure 2, the student and teacher network share the same
network architecture (FFA-Net), which includes the follow-
ing components: the shallow feature extraction part, sev-
eral group attention architecture (Denoted as G-x), the fea-
ture concatenation module, the reconstruction part and global
residual skip connection.

3.2 Contrast-Assisted Reconstruction Loss

The contrastive learning method has achieved a series of suc-
cesses in representation learning, it aims to learn discrimina-
tive representations by pulling “positive” pairs close, while
pushing “negative” pairs far apart. Inspired by this, we pro-
pose the “Contrast-Assisted”” Reconstruction Loss (CARL) to
improve the traditional positive-orient dehazing methods, by
fully exploiting various negative information to squeeze the
dehazed image to its clean target from different directions.
To imitate the traditional contrastive learning, there are t-
wo aspects we need to consider: one is how to obtain use-
ful positive and negative training examples, the other is how
to apply the CARL in the dehazing framework [Wu et al.,
2021]. As we known, elaborately constructing efficient pos-
itive and negative training examples is very crucial to bet-

850

ter optimize the CARL. For the image dehazing task, obvi-
ously the positive pair is the dehazed image and its corre-
sponding clear one, which can be denoted as anchor point
and positive example. Our final goal is just to minimize
the discrepancy between them. Meanwhile, pushing an-
chor point far away from several negative examples is to
squeeze the anchor point to positive example from different
directions, as illustrated in Figure 2. Therefore, we gener-
ate negative examples from several aspects, which includes
the original hazy image, multi-level hazy images with d-
ifferent densities, some relatively low-quality dehazed im-
ages by previous model, and some other variants of the in-
put hazy images. For the latent space to apply the CARL,
we adopt the the fixed pre-trained model (e.g. VGG-19 [Si-
monyan and Zisserman, 2014]) as the feature extractor “E”
and then extract the image features from different intermedi-
ate network layers, which was also used in [Wu et al., 2021;
Johnson et al., 2016].

Denote the input hazy image as I, its corresponding de-
hazed image as ¢(I) which is generated by the dehazing net-
work ¢, and the ground-truth hazy-free image as J. The
selected negative images corresponding to ¢(I) denote as
I7,i e {l,---,K}, K is the number of negative examples
used in the CARL. We define the features extracted by the
fixed pre-trained VGG model as E(J), E(¢(I)) and E(I;)
for the positive, anchor and negative examples, respectively.
Then, the m-th CARL function L 4 ;; can be formulated as:

eflEvn(¢(1))7Em(J)‘/T

—log i — .
e |Em(o(I))—Em(J)|/T + Zi:l e~ |Em(o(I)—Em(I; )(\:7—
)
In Eq. 1, “e” denotes the exponential operation, E,,,m =
{1,2,--- , M}, extracts the image features from the m-th in-

termediate network layer of the fixed pre-trained model VG-
G [Simonyan and Zisserman, 2014]. | - | demotes the L1 dis-
tance, which usually achieves better performance compared
to L2 distance for image dehazing task. 7 > 0 is the tem-
perature parameter that controls the sharpness of the output.
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Therefore, the final CARL can be expressed as follows,

M
Loarr =Y wmLEapr, )
m=1

where w, is the weight coefficient for the m-th CARL using
the intermediate feature generated by the fixed VGG model.
Note that, in Eq. 1, the positive point E,,(J) and al-
1 the negative points E,, (I;”) are constant values, minimizing
L arr can optimize the parameters of the dehazing network
¢ through the dehazed image features E,,,(¢(])). Related to
our CARL, perceptual loss [Johnson ef al., 2016] minimizes
the reconstruction error between the restored and the ground-
truth images by using multiple intermediate features extract-
ed from the fixed pre-trained deep model. On top of this, one
divided-contrastive learning method [Wu et al., 2021] adopt-
ed the original hazy image as negative image to regularize the
solution space. Different from above methods, the proposed
CARL method aims to minimize the reconstruction error be-
tween the restored image and its corresponding clear ground-
truth, as well as pushing the restored dehazed image far away
from various negative hazy examples, which acts as a way
to squeeze prediction to its ground truth from different direc-
tions in the constraint learning space. Thus, it enables the
dehazing model to deal with various complex hazy scenarios.
The main difference between the traditional contrastive
learning and our proposed CARL is that: The traditional con-
trastive learning aims to learn discriminative feature repre-
sentations to distinguish instances from different classes or
identities, which cares about both the inter-class discrepancy
and intra-class compactness. However, for such image dehaz-
ing task, we just consider the reconstruction error between the
dehazed image and its corresponding clean target. Therefore,
our final goal of CARL is to better optimize the reconstruc-
tion loss with the help of various negative hazy examples in
the contrastive manner. This is also the reason why we call the
proposed method “Contrast-Assisted Reconstruction loss”.

3.3 The Consistency-Regularized Framework

We propose the consistency regularization based on the as-
sumption that a good dehazing model should output very sim-
ilar or even same dehazed images when fed the same hazy im-
age with different densities. Such explicit constraint further
improves the model robustness to deal with multi-level hazy
images. This learning paradigm is implemented by training
a student neural network ¢,(-) and a teacher neural network
¢+(+), which share the same network architecture, but are pa-
rameterized by 6, and 6, respectively.

Specifically, we first construct hazy images with differen-
t densities using the physical-scattering model. Usually, the
synthetic dehazing datasets themselves contain several hazy
images with different densities corresponding to one clean
image. For the real-world dehazing dataset, we generate dif-
ferent hazy images with the help of the transmission map and
atmospheric light given for other dataset, and some relative-
ly poor-quality dehazed image obtained by previous dehazing
model, such as DCP [He et al., 2010].

Given two different hazy images denoted as I and I,
which correspond to the same clear image J, they are fed into
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the student and teacher network respectively. These two hazy
images are processed by dehazing network ¢ () and ¢ (+) to
obtain the dehazed images ¢(I) and ¢;(I"). The consistency
regularization L¢ i can be expressed as follows,

Lor = |os(I) — ¢u(I')]. 3)

In Eq. 3, we use the L; loss to implement the consistency
regularization. Minimizing the loss function Lc g can direct-
ly optimize parameters of the student network ¢(-), while
the parameters of the teacher network is updated by the ex-
ponential moving average (EMA) techniques, which is based
on the previous teacher network and current student network
parameters. Unlike previous teacher network for image de-
hazing [Hong et al., 20201, we do not have a predefined high
quality model as the fixed teacher model, we build it from
past iteration of the student network ¢, (-). The updating rule
of “EMA” is 0; + A0y + (1 — M\)f,, and )\ is a smoothing
hyper-parameter to control the model updating strategy [Tar-
vainen and Valpola, 2017].

Therefore, such a consistency regularization keeps hazy
image with different densities or under different scenarios,
have the same haze-free output, which greatly improves the
robustness of the image dehazing model.

3.4 The Overall Loss Function

Apart from above introduced CARL and the consistency reg-

ularization, we also adopt the traditional reconstruction loss

L1 between the prediction ¢(I) and its corresponding ground

truth J in the data field. It can be implemented by the L1 loss
as follows,

Ly = |ps(1) = J|. “4)

Therefore, the overall objective function £ can be ex-
pressed as,

L=L1+MLcr+ XLoaRrL, @)

where A\; and )\, are two hyper-parameters to balance above
three terms in the overall loss function.

4 Experiments

4.1 Experiment Setup

Datasets and Metrics. To comprehensively evaluate our
proposed method, we conduct extensive experiments on t-
wo representative synthetic datasets and three challenging
real-world datasets. The widely used synthetic dataset:
RESIDEI[Li et al., 2018b], contain two subsets, i.e., Indoor
Training Set (ITS), and Outdoor Training Set (OTS). ITS and
OTS are used for training, and they have corresponding test-
ing dataset, namely, Synthetic Objective Testing Set (SOTS),
which consists of 500 indoor hazy images (SOTS-Indoor) and
500 outdoor hazy images (SOTS-Outdoor). We also evalu-
ate the proposed model on four popular real-world datasets:
NTIRE 2018 image dehazing indoor dataset (referred to as
I-Haze) [Ancuti et al., 2018b], NTIRE 2018 image dehazing
outdoor dataset (O-Haze) [Ancuti et al., 2018al, and NTIRE
2019 dense image dehazing dataset (Dense-Haze) [Ancuti et
al., 2019]. We adopt two commonly used evaluation metrics,
i.e., the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity index (SSIM), for the objective measurement.
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SOTS-Indoor SOTS-Outdoor

Method

PSNR SSIM PSNR SSIM
DCP [He et al., 2010] 16.62 0.8179 19.13 0.8148
MSCNN [Ren ez al., 2016] 17.57 0.8102 20.73 0.8187
DehazeNet [Cai et al., 2016] 21.14 0.8472 22.46 0.8514
AOD-Net [Li et al., 2017] 19.06  0.8504 2029  0.8765
DCPDN [Zhang and Patel, 2018] 19.00 0.8400 19.71 0.8300
GFN [Ren et al., 2018] 22.30 0.8800 21.55 0.8444
EPDN [Qu et al., 2019] 25.06 0.9232 22.57 0.8630
DuRN-US [Liu et al., 2019b] 32.12 0.9800 19.41 0.8100
Grid-Net [Liu et al., 2019a] 32.16  0.9836 30.86  0.9819
KDDN [Hong ef al., 2020] 34.72 0.9845 - -
DA [Shao et al., 2020] 25.30 0.9420 26.44 0.9597
MSBDN [Dong et al., 2020al 32.00 0.9860 30.77 0.9550
FFA-Net [Qin e al., 2020] 36.39 0.9886 32.09 0.9801
FD-GAN [Dong et al., 2020b] 23.15 09207 - -
DRN [Li et al., 2020] 3241 0.9850 31.17 0.9830
IDRLP [Ju ez al., 2021] 23.56 0.9383 - -
AECR-Net [Wu et al., 2021] 37.17 0.9901 - -
DIDH [Yoon et al., 2021] 3891 0.9800 30.40 0.9400
Ours 41.92 0.9954 33.26 0.9849

Table 1: Quantitative comparisons with SOTA methods on SOTS-
Indoor and SOTS-Outdoor synthetic datasets.

Implementation Details. We implement our method based
on PyTorch with NVIDIA RTX 2080Ti GPUs. In the train-
ing process, we randomly crop 240 x 240 image patches as
input and adopt Adam optimizer for optimization. The learn-
ing rate is initially set to 1 x 10~ and is adjusted using the
cosine annealing strategy [He ez al., 2019]. We follow [Wu et
al., 2021] to select the features of the 1st, 3rd, 5th, 9th and
13th layers from the fixed pre-trained VGG-19 [Simonyan
and Zisserman, 2014] to calculate the L1 distance in Eq.(2),
and their corresponding weight factors w,, are set as 3%, 16
é, i and 1, respectively. The number of negative examples
used in Eq. 1 is set to K = 5, and parameter 7 = 0.5. The
hyper-parameters A; and )y in Eq. 5 is set to 1.0 and 10.0,
respectively.

4.2 Comparisons with State-of-the-art Methods

Results on Synthetic Datasets. We follow the settings of
[Qin er al., 2020] to evaluate our proposed method on two
representative synthetic datasets, and compare it with seven-
teen state-of-the-art (SOTA) methods. The results are shown
in Table 1. We can see that our proposed method achieves the
best performance on both SOTS-Indoor and SOTS-Outdoor
datasets. On SOTS-Indoor, our proposed method achieves
41.92dB PSNR and 0.9954 SSIM, surpassing the second-best
3.01dB PSNR and 0.0053 SSIM, respectively. On the SOTS-
Outdoor, our proposed method achieves the gain with 1.17d-
B PSNR and 0.0019 SSIM, compared with the second-best
method. In Figure 3, we show the visual effects of represen-
tative methods of dehazed images for subjective comparison.
We can observe that DCP suffers from the color distortion,
where the images are darker and unrealistic. MSCNN, De-
hazeNet and AOD-Net cannot remove haze completely, and
there are still a lot of haze residues. Although Grid-Net and
FFA-Net can achieve better dehazed effect, there is still a gap
between their results and the ground truth. In contrast, the im-
ages generated by our proposed method are closer to ground
truth and more natural.
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I-Haze O-Haze Dense-Haze
Method

PSNR SSIM PSNR SSIM PSNR SSIM
DCP 14.43 0.7520 16.78 0.6530 10.06 0.3856
MSCNN 15.22 0.7550 17.56 0.6500 11.57 0.3959
DehazeNet 14.31 0.7220 16.29 0.6400 13.84 0.4252
AOD-Net 13.98 0.7320 15.03 0.5390 13.14 0.4144
Grid-Net 16.62 0.7870 18.92 0.6720 13.31 0.3681
KDDN - - 25.46 0.7800 14.28 0.4074
FFA-Net - - - - 14.39 0.4524
MSBDN 23.93 0.8910 24.36 0.7490 15.37 0.4858

IDRLP 17.36 0.7896 16.95 0.6990 - -
AECR-Net - - - - 15.80 0.4660
Ours 25.43 0.8807 25.83 0.8078 15.47 0.5482

Table 2: Quantitative comparisons with SOTA methods on I-Haze,
0O-Haze and Dense-Haze real-world datasets.

SOTS-Indoor Dense-Haze
Method
etho PSNR SSIM PSNR SSIM
Ly 36.39 0.9886 14.39 0.4524
L1+Lpive 37.54 0.9915 14.82 0.5354
Li+LcARL 39.56 0.9939 15.30 0.5438
Li+LcAarL + LoRr 41.92 0.9954 15.47 0.5482

Table 3: Ablation study on SOTS-Indoor and Dense-Haze datasets.

Results on Real-world Datasets. We also evaluate our pro-
posed method on three challenging real-world datasets. As
shown in Table 2, our proposed method outperforms most
state-of-the-art methods, and we have obtained 25.43dB P-
SNR and 0.8807 SSIM on I-Haze dataset, 25.83dB PSNR and
0.8078 SSIM on O-Haze dataset, 14.47db PSNR and 54.82
SSIM on Dense-Haze dataset. On I-Haze and Dense-Haze
datasets, although our proposed method is slightly lower than
the state-of-the-art methods in SSIM and PSNR, but higher
in terms of PSNR and SSIM, respectively. In general, our
proposed method can still maintain advanced results on real-
world datasets, and some visual comparison presented in Fig-
ure 3 also verifies it.

4.3 Ablation Study

To reveal the effectiveness of each ingredient, ablation study
are conducted to analyze different items in the framework,
including the £y, Lcr and Lo arr, on both synthetic and
real-world hazy image datasets.

We conduct all the experiments based on the same de-
hazing network architecture (FFA-Net [Qin et al., 2020]).
We implement the following four variants of the proposed
method: 1) £4: Training the network by the traditional
L4 loss function, which works as the baseline method; 2)
L1+Loarr: Training the network jointly with the L; loss
and our proposed CARL; 3) L1+Lpivc [Wu er al., 2021]:
Training the network jointly with the L; loss and the divided-
contrast loss [Wu et al., 20211, which is to make a comparison

Metrics | Az =1 A2 =5 A2 =10 A2 =15
PSNR 41.48 40.28 41.92 39.91
SSIM 0.9952 0.9935 0.9954 0.9932

Table 4: Parameter sensitivity analysis on SOTS-Indoor dataset.
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Figure 3: Visual comparisons on two hazy images with different methods. The first row: the dehazed results from SOTS-Indoor dataset. The
second row: the dehazed results from SOTS-Outdoor dataset. The numbers under each image represent the PSNR and SSIM values.
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Figure 4: The dehazed results of different methods on the image
with different hazy densities.

with ours; 4) L1+Lcarr + Lor: Training the network joint-
ly with the L; loss, CARL and the consistency regularization,
which is our final algorithm as illustrated in Eq. 5.

The performance of above-mentioned methods are sum-
marized in Table 3, we can see that by adding our proposed
CARL into the traditional L; loss, we can improve the base-
line performance 3.17db and 0.91db PSNR on the SOTS-
Indoor and Dense-Haze datasets, respectively. Compared
with the relevant method £p;,c [Wu et al., 2021], our pro-
posed method outperforms £ p;,¢ by a margin of 2.02db and
0.48db PSNR on these two datasets, respectively. When fur-
ther adding the proposed consistency regularization Lo, we
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can improve the performance by 2.36db and 0.17db PSNR on
these two datasets, respectively. As shown in Figure 4, we
can see that our method generates more consistent dehazed
images, and can deal with multi-level hazy images well.
Parameter sensitivity analysis is shown in Table 4. As
defined in Eq. 5, our final loss function contains three terms:
L1, Lor and Loarp. To investigate the effect of hyper-
parameters on the performance, we conduct comprehensive
experiments with various values of these parameters. Here,
we just list the performance with various Ay when A\; = 1.0
in Table 4, for the limitation of paper length. We can clearly
see that our method yields best performance when Ao = 10.0.

5 Conclusion

In this paper, we propose a contrast-assisted reconstruction
loss for single image dehazing. The proposed method can
fully exploit the negative information to better facilitate the
traditional positive-orient dehazing objective function. Be-
sides, we also propose the consistency regularization to fur-
ther improve the model robustness and consistency. The pro-
posed method can work as a universal learning framework to
further improve the image dehazing performance on top of
various cutting edge dehazing network architectures, without
bringing in additional computation cost or parameters in the
testing phase. In the future, we will extend our method to
many other relevant tasks, such as image deraining, image
super-resolution, etc.
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