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Abstract
While deep neural networks have achieved great suc-
cess in graph analysis, recent work has shown that
they are vulnerable to adversarial attacks. Compared
with adversarial attacks on image classification, per-
forming adversarial attacks on graphs is more chal-
lenging because of the discrete and non-differential
nature of the adjacent matrix for a graph. In this
work, we propose Cluster Attack — a Graph Injec-
tion Attack (GIA) on node classification, which in-
jects fake nodes into the original graph to degenerate
the performance of graph neural networks (GNNs)
on certain victim nodes while affecting the other
nodes as little as possible. We demonstrate that a
GIA problem can be equivalently formulated as a
graph clustering problem; thus, the discrete opti-
mization problem of the adjacency matrix can be
solved in the context of graph clustering. In particu-
lar, we propose to measure the similarity between
victim nodes by a metric of Adversarial Vulnerabil-
ity, which is related to how the victim nodes will be
affected by the injected fake node, and to cluster the
victim nodes accordingly. Our attack is performed
in a practical and unnoticeable query-based black-
box manner with only a few nodes on the graphs
that can be accessed. Theoretical analysis and ex-
tensive experiments demonstrate the effectiveness
of our method by fooling the node classifiers with
only a small number of queries.

1 Introduction
Graph neural networks (GNNs) have obtained promising per-
formance in various applications to graph data [Ying et al.,
2018; Qiu et al., 2018; Chen et al., 2019]. Recent studies have
shown that GNNs, like other types of deep learning models,
are also vulnerable to adversarial attacks [Dai et al., 2018;
Zügner et al., 2018]. However, there still exists a gap be-
tween most of the existing attack setups and practice where
the capability of an attacker is limited. Instead of directly mod-
ifying the original graph (aka., Graph Modification Attack,
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Figure 1: An illustration of query-based graph injection attack with
partial information.

GMA) [Yang and Long, 2021], we focus on a more practical
setting to inject extra fake nodes into the original graph (aka.,
Graph Injection Attack, GIA) [Zou et al., 2021]. We perform
query-based attack, which indicates that the attacker has no
knowledge on the victim model but can access the model
with a limited number of queries. As an example in Figure 1,
high-quality users in a social network may be misclassified
as low-quality users after being connected with a fraudulent
user whose features (maybe the meta data of the account) are
carefully crafted utilizing query information from the target
model.

Compared to adversarial attacks on image classifica-
tion [Chen et al., 2017; Ilyas et al., 2018; Dong et al., 2018],
the study of query-based adversarial attacks on graph data
is still at an early stage. Existing attempts include training
a surrogate model using query results [Wan et al., 2021],
a Reinforcement-Learning-based method [Ma et al., 2021],
derivative-free optimization [Yang and Long, 2021] and a
gradient-based method [Mu et al., 2021]. However, most of
the existing attacks simply adopt the optimization methods
from other fields, such as image adversarial attacks, without
utilizing the rich structure of graph data, which has consider-
able potential to achieve a higher performance attack.
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Unlike most previous work, we only allow the adversary to
access the information of a small part of the nodes since it is
usually impossible to observe the whole graph, especially for
large networks in practical scenarios. Moreover, we perform a
black-box attack, which does not allow the adversary to have
access to the model structures or parameters. The adversary
has only a limited number of queries on the victim model
about the predicted scores of certain nodes, which is more
practical. It is also noted that, owing to the non-i.i.d. nature
of graph data, connecting victim nodes to fake nodes may
have side effects on the accuracy of victim nodes’ neighbors,
which is not our purpose. To our best knowledge, this is the
first attempt to limit the influence to a certain range of victim
nodes and protect the other nodes from being misclassified
simultaneously.

We propose a unified framework for query-based adversar-
ial attacks on graphs, which subsumes existing methods. In
general, the attacker decides on the current perturbation as
a conditional distribution on history query results and cur-
rent graph status. Under this framework, we propose a novel
attack method named Cluster Attack, which considers the
graph-dependent priors by better utilizing the unique structure
of the graph. In particular, we try to find an equivalent dis-
crete optimization problem. We first demonstrate that a GIA
problem can be formulated as an equivalent graph clustering
problem. Because the discrete optimization problem of an ad-
jacent matrix can be solved in the context of graph clustering,
we prevent query-inefficient searching in the non-Euclidean
space. The resulting cluster serves as a graph-dependent prior
for the adjacent matrix, which utilizes the vulnerability of the
local structure. Second, the key challenge in graph clustering
is to define the similarity metric between nodes. We propose
a metric to measure the similarity of victim nodes, called Ad-
versarial Vulnerability; this is related to how the victim nodes
will be affected by the injected fake node, and we cluster the
victim nodes accordingly. The Adversarial Vulnerability is
only related to the local structure of the graph and thus can be
handled with only part of the graph observed.

Our contributions are summarized as follows:

• We propose a unified framework for query-based adver-
sarial attacks on graphs, which formulates the current
perturbation as a conditional distribution on the history
of query results and on the current graph status.

• We propose Cluster Attack, an injection adversarial at-
tack on a graph, which formulates a GIA problem as an
equivalent graph clustering problem and thus solves the
discrete optimization of an adjacent matrix in the context
of clustering.

• After providing theoretical bounds on our method, we
empirically show that our method achieves high perfor-
mance in terms of success rate of attacks under an ex-
tremely strict setting with a limited number of queries
and only part of the graph observed.

2 Background
In this section, we present recent works on node classification
and adversarial attacks on graphs.

2.1 Node Classification on a Graph
Node classification on graphs is an important task, with a wide
range of applications such as user classification in financial
networks. It aims to carry out classification by aggregating the
information from neighboring nodes [Kipf and Welling, 2017;
Hamilton et al., 2017; Veličković et al., 2017]. Recent work
has carried out node classification using graph convolutional
networks (GCNs) [Kipf and Welling, 2017], which is one
of the most representative GNNs. Specifically, let a graph
be G = (A,X), where A and X respectively represent the
adjacency matrix and the feature matrix. Given a subset of
labeled nodes in the graph, GCN aims to predict the labels of
the remaining unlabeled nodes in the graph as

f(G) = f(A,X) = softmax
(
Âσ(ÂXW(0))W(1)

)
, (1)

where Â is the normalized adjacency matrix; W(0) and W(1)

are parameter matrices; σ is the activation function; and f(G)
is the prediction corresponding to each node.

2.2 Graph Adversarial Attacks
Numerous methods have been developed to perform adversar-
ial attacks on graphs. Early works focused on modifying the
original graph (i.e., Graph Modification Attack) [Dai et al.,
2018; Zügner et al., 2018], while some recent works [Zou et
al., 2021; Tao et al., 2021] have focused on a more practical
setting to inject extra fake nodes into the original graph (i.e.,
Graph Injection Attack). For query-based graph adversarial
attacks, as shown in Table 1, various efforts have been made.
Some have focused on attacking the task of node classification
[Yang and Long, 2021] while there also have been efforts to
attack graph classification [Wan et al., 2021; Ma et al., 2021;
Mu et al., 2021], with gradient-based [Mu et al., 2021] or
gradient-free methods [Yang and Long, 2021; Wan et al., 2021;
Ma et al., 2021]. Nevertheless, most of the existing attacks just
adopt optimization methods from other fields (especially im-
age adversarial attack), ignoring the unique structure of graph
data. In this work, we propose to attack in a graph-specific
manner utilizing the inherent structure of a graph.

3 A Unified Framework for Query-Based
Adversarial Attacks on Graphs

We now present a unified framework for query-based adver-
sarial attacks as well as the threat model and loss function.

3.1 Graph Injection Attack
Given a small set of victim nodes ΦA ⊆ Φ in the graph, the
goal of graph injection attack is to perform mild perturbations
on the graph G = (A,X), leading to G+ = (A+,X+),
such that the predicted labels of the victim nodes in ΦA are
changed into the target labels. This goal is usually achieved
by optimizing the adversarial loss L(·) under constraints as:

min
G+

L(G+) s.t. dist(G,G+) ≤ ∆, (2)

where dist(G,G+) denotes the magnitude of perturbation and
has to be within the adversarial budget ∆. In this section, it
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Method Optimization Step Target Task

Random ∆G ∼ Random -

GRABNEL ∆G = argmin
∆G

Lsur(G+∆G) Graph Classification
[Wan et al., 2021] (GMA+GIA)

DFO [Yang and Long, 2021] ∆G = F (G, δ)−G, δ ∼ DFO Node Classification (GMA)

[Mu et al., 2021] ∇p(∆A) = 1
Q

∑Q
1 sgn( p(∆A+µuq)−p(∆A)

µ
uq), uq ∼ Gaussian Graph Classification (GMA)

Rewatt [Ma et al., 2021] ∆G ∼ p(·|G) from Reinforcement Learning Agent Graph Classification (GMA)

Cluster Attack (Ours)


∆Xfake = I(L(A+,X+) > L(A+,

[
X

Xfake + δXij

]
)) · δXij

∇XfakeEL(A+,X+) = 1
σn

∑n
i=1 ZiL(A+,

[
X

Xfake + σZi

]
)

Node Classification (GIA)

∆A ∼ cluster prior

Table 1: Existing query-based methods on graph adversarial attacks.

can be specified as |Φfake| ≤ ∆fake and
∑

u∈Φfake
d(u) ≤

∆edge with d(u) being the degree of node u.
In graph injection attacks, we have the augmented adjacent

matrix A+ =

[
A BT

B Afake

]
and the augmented feature ma-

trix X+ =

[
X

Xfake

]
. We further use Φ+ = Φ ∪ Φfake to

denote the node set of G+. In particular, Xfake corresponds
to the feature of fake nodes; B denotes the connections be-
tween fake nodes and original nodes, and Afake denotes the
mutual connections between fake nodes. The malicious at-
tacker manipulates Afake,B and Xfake, leading to as low
classification accuracy on ΦA as possible.

In a query-based adversarial attack on graphs, we uniformly
formulate the update of a graph at time t as

∆G(t) ∼ p
(
∆G(t)|{f(Gi)|i = 1, 2, ..., qt}, Gt), (3)

where {f(Gi)|i = 1, 2, ..., qt} denotes the feedback (hard la-
bels or predicted values) of total qt queries in the history from
the target model. A curated list of current query-based graph
adversarial attacks is shown in Table 1. In general, perturba-
tion ∆G(t) in time step t is conditioned on the history of query
results {f(Gi)|i = 1, 2, ..., qt} and the current graph status
G. Previous work has focused on using different optimization
methods, including reinforcement learning [Ma et al., 2021]
and gradient-based optimization [Mu et al., 2021] to decide
∆G without utilizing the graph structure explicitly.

3.2 Threat Model
Adversary Capability. We greatly restrict the attacker’s
ability so that we can only make connections between victim
nodes and fake nodes. No connections can be made between
fake nodes because connected malicious fake nodes are easier
for detectors to locate. The number of new edges ∆edge is set
as barely the number of victim nodes ΦA, which means that
each victim node is connected by only one new edge.

Protected Nodes. As mentioned above, owing to the non-
i.i.d nature of graph data, attacking victim nodes may have
unintended side effects on their neighboring nodes. While

attacking victim nodes, we simultaneously aim to keep the la-
bels of untargeted nodes unchanged, to make our perturbation
unnoticeable. In our setting, we try to protect Nk(ΦA), which
are the neighbors of the victim nodes within k-hop.

Partial Information. It is practical to assume that the at-
tacker has access to only part of the graph when conducting the
attack. As mentioned above, we adopt an extremely strict set-
ting so that we can only observe the features and connections
of the observed nodes defined as

Φo = ΦA ∪Nk(ΦA) ∪ Φfake. (4)

Limited Queries. It is practical in real scenarios that we
have a limited number of queries to the victim model rather
than full outputs of arbitrarily many chosen inputs. In our
setting, we can query at most K times in total for the predicted
scores of the observed nodes. The architecture and parameters
about the victim model are unknown to the attacker.

3.3 Loss Function
We aim to make the classifier misclassify as many nodes as
possible in the victim set of ΦA . As it is nontrivial to directly
optimize the number of misclassified nodes since the objective
is discrete, we choose to optimize a surrogate loss function:

min
G+

L(G+) ≜
∑
v∈ΦA

ℓ(G+, v) + λ
∑

v∈Nk(ΦA)

ℓN (G+, v),

s.t. dist(G,G+) ≤ ∆, (5)

where ℓ(G+, v) and ℓN (G+, v) represent the loss functions
for each victim node and for a protected node, respectively.
A smaller ℓ(G+, v) means that node v is more likely to be
misclassified by the victim model f ; by contrast, a smaller
ℓN (G+, v) means that the predicted label of node v is less
likely to be changed during our attack. In particular, we design
our loss in the manner of the C&W loss [Carlini and Wagner,
2017], and define:

ℓ(G+, v) =

σ

(
max
yi ̸=yt

([f(A+,X+)]v,yi)− [f(A+,X+)]v,yt

)
,

(6)
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Figure 2: An illustration of Cluster Attack. We first compute Adversarial Vulnerability for each victim node with a limited number of queries;
after that, we cluster the victim nodes and inject fake nodes accordingly; and finally we optimize the fake nodes’ features.

where yt stands for the target label of node v and the attacker
succeeds only when node v is misclassified as yt. σ(x) =
max(x, 0). [f(G+)]v,yi

denotes the output logit of node v of
class yi. For protected nodes, we define:

ℓN (G+, v) =

σ

(
max
yi ̸=yg

[f(A+,X+)]v,yi
)− [f(A+,X+)]v,yg

)
,

(7)

where yg is the ground-truth label of v from the victim model.

4 Cluster Attack with Graph-Dependent
Priors

4.1 Cluster Attack
The combinatorial optimization problem (5) is hard to solve
owing to the non-Euclidean nature of the adjacent matrix and
the complex structure of neural networks. To tackle this, we
tried to find an equivalent combinatorial optimization problem
and transform our GIA problem into a well-studied one. Here,
we point out that every choice of adjacent matrix has an equiv-
alent representation of a division of victim nodes into clusters.
Thus, we get our key insight that this discrete optimization
problem can be transformed into an equivalent graph cluster-
ing problem, which is a well-studied discrete optimization
problem [Schaeffer, 2007].
Proposition 1 (GIA/Graph Clustering Equivalence). Given
graph G and a set of nodes ΦA ⊆ Φ, for a division of the vic-
tim nodes ΦA into Nfake clusters C = {C1, C2, ..., CNfake

},
∪Ci∈CCi = ΦA, there exists a corresponding B and vice
versa.

Proof. We provide a one-to-one mapping between clus-
ter C and adjacent matrix B. Specifically, given C =
{C1, C2, ..., CNfake

}, ∪Ci∈CCi = ΦA we get B from

Bij =

{
1, if vj ∈ Ci

0, otherwise
. (8)

We have

∆edge =
∑
i

∑
j

Bij =
∑
i

|Ci| = |ΦA|. (9)

Thus, we resultant B is valid in our setting.

Given B where |ΦA| = ∆edge =
∑

i

∑
j Bij , we derive

the cluster C from

vj

{
∈ Ci, if Bij = 1

/∈ Ci, if Bij = 0
. (10)

We have
∑

i |Ci| =
∑

i

∑
j Bij = |ΦA|.

In our setting, each victim node is connected to only one
fake node, which indicates∑

i

Bij = 1, ∀ vj ∈ ΦA. (11)

In this case, each cluster gets disjoint with each other

Ci ∩ Cj = ∅, ∀ 1 ≤ i, j ≤ Nfake. (12)

Then we get ∪Ci∈CCi = ΦA and C is a valid division.

Because Afake = 0 is fixed in our setting, we formulate
our graph injection attack problem as an equivalent graph
clustering problem. As a result, the non-trivial discrete opti-
mization problem of the adjacency matrix can be solved in the
context of graph clustering. The resulting cluster serves as a
graph-dependent prior for adjacent matrix B, which prevents
inefficient searching in non-Euclidean discrete space.

For graph clustering, the main concern is the metric of the
similarity between victim nodes. To investigate how a fake
node will affect the performance on a certain node, we propose
Adversarial Vulnerability as the similarity metric for graph
clustering. Adversarial Vulnerability of a victim node reflects
its “most vulnerable angle” towards adversarial features of
fake nodes, which is related only to the local structure of the
graph and can be handled with only part of the graph observed.
We have the insight that victim nodes sharing similar Adversar-
ial Vulnerability are more likely to be affected simultaneously
when they are connected to the same fake node.

Definition 1 (Adversarial Vulnerability). For victim node v ∈
Φ, its Adversarial Vulnerability is defined as

AV(v) = argmin
xu

L(G+), (13)

where xu denotes the feature of fake node u connected to node
v. For the fake node itself, the Adversarial Vulnerability is
defined as its own feature.
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Here, we adopt Euclid’s distance as distance metric between
victim nodes’ Adversarial Vulnerability which is in Euclidean
feature space.
Definition 2 (Adversarial Distance Metric). ∀v, u ∈ Φ+, the
Adversarial Distance Metric between node v and u is defined
as d(v, u) = ||AV(v)− AV(u)||22.

After the Adversarial Vulnerability is computed, the ob-
jective of the cluster algorithm is to minimize the following
cluster distance as

min
C

∑
Ci∈C

∑
v∈Ci

d(v, ci), (14)

where the cluster center ci is the corresponding fake node of
cluster Ci, and

AV(ci) =
1

|Ci|
∑
v∈Ci

AV(v). (15)

4.2 Optimization
To approximate Adversarial Vulnerability, we adopt zeroth-
order optimization [Chen et al., 2017], which is similar to
query-based attacks on image classification, to better utilize
limited queries. For graph with discrete features, the optimiza-
tion of Eq. (13) can be

∆Xfake =

I
(
L(A+,X+) > L

(
A+,

[
X

Xfake + δXij

]))
· δXij ,

(16)
where δXij denotes the tentative perturbation in dimension j
of a feature of the ith fake node and I(·) is the indicator func-
tion. A tentative perturbation is adopted only if it diminishes
the adversarial loss. For continuous feature space, we adopt
NES [Ilyas et al., 2018] for gradient estimation as

∇Xfake
EL(A+,X+) =

1

σn

n∑
i=1

ZiL
(
A+,

[
X

Xfake + σZi

])
,

(17)

where σ > 0 is the standard variance, n is the size of the NES
population and Zi ∼ N (0, INfake×D) is the perturbation of
Xfake. After gradient estimation, gradient-based optimization
methods can be adopted. Here, we use Projected Gradient
Descent (PGD) [Madry et al., 2018] to optimize Xfake.

Our method is outlined in Figure 2. With the resultant Ad-
versarial Vulnerability, we solve the optimization of Eq. (14)
by K-Means clustering. After that, the features of fake nodes,
initialized as the cluster center in Eq. (15), are optimized us-
ing Eq. (16) and Eq. (17). More details of our algorithm are
deferred to the appendix.

4.3 Theoretical Analysis
Connecting fake nodes to an original graph brings a victim
node (1) one 1-hop neighbor (the fake node connected to it);
(2) neighbors at a farther distance connected through this fake
node; (3) fake nodes connected to other victim nodes which
are at least 2-hop away. It is noted that 1-hop neighbors are
often dominant. Here we leave out the influence of farther

neighbors caused by the fake node and fake nodes connected
to other victim nodes which are at least 2-hop or even farther.
The loss function over the ith victim node vi ∈ ΦA in Eq. (5)
can thus be seen as a function of fake nodes’ features (here we
set a trade-off parameter λ = 0 for analysis). We have

L(G) =
∑

vi∈ΦA

l(G+, vi) =

|ΦA|∑
i=1

li(xi), (18)

where xi denotes fake nodes’ features connected to victim
node vi. Theoretically, we provide our bounds under certain
smooth conditions which hold for numerous neural networks.
Definition 3 (W-condition). We say that a function L(G) =∑|ΦA|

i=1 li(xi) satisfies the W-condition, if and only if ∀ 1 ≤
i ≤ |ΦA|, li(·) satisfies the Lipschitz condition of order 2. In
this case, we have
mi||xi − x∗

i ||22 ≤ li(xi)− li(x
∗
i ) ≤ Mi||xi − x∗

i ||22, (19)
where 0 ≤ mi ≤ Mi are constants and 1 ≤ i ≤ |ΦA|. x∗

i is
the minimum of li(·).

Note that M exists because the loss function satisfies the
Lipschitz condition of order 2 under W-condition; and it also
includes m because m = 0 always satisfies Eq. (19). Un-
der W-condition, we derive our bounds on the difference in
adversarial loss between our results and optimal adversarial
examples.
Proposition 2. If L(·) in Eq. (18) satisfies the W-condition,
Gm is the optimal choice of Eq. (2) and G

′
is the optimal

given by the Cluster Attack of Eq. (14). Then, we have

L(G
′
)− L(Gm) ≤ |M −m|min

C

∑
Ci∈C

∑
v∈Ci

d(v, ci), (20)

where M = max1≤i≤|ΦA| Mi and m = min1≤i≤|ΦA| mi.

Proof. We have

L(G
′
)− L(Gm)

=

|ΦA|∑
i=1

li(x
′
i)−

|ΦA|∑
i=1

li(x
m
i )

=

|ΦA|∑
i=1

(li(x
′
i)− li(x

∗
i ))−

|ΦA|∑
i=1

(li(x
m
i )− li(x

∗
i ))

≤
|ΦA|∑
i=1

Mi||x′
i − x∗

i ||22 −
|ΦA|∑
i=1

mi||xm
i − x∗

i ||22

≤M

|ΦA|∑
i=1

||x′
i − x∗

i ||22 −m

|ΦA|∑
i=1

||xm
i − x∗

i ||22

=M min
C

∑
Ci∈C

∑
v∈Ci

d(v, ci)−m

|ΦA|∑
i=1

||xm
i − x∗

i ||22

≤M min
C

∑
Ci∈C

∑
v∈Ci

d(v, ci)−mmin
C

∑
Ci∈C

∑
v∈Ci

d(v, ci)

=|M −m|min
C

∑
Ci∈C

∑
v∈Ci

d(v, ci),

(21)
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Name Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3702 6
Reddit 232965 11606919 602 41
ogbn-arxiv 169343 1157799 128 40

Table 2: Statistics of the datasets.

where xm
i and x′

i are features of the fake node connected to
ith victim node provided by Eq. (2) and Cluster Attack of Eq.
(14), respectively.

Proposition 2 indicates that the difference in adversarial
loss between our results and optimal adversarial examples is
bounded by the minimal cluster distance in Eq. (14) and how
each li(·) is linear to ||xi − x∗

i ||22.

5 Experiments
5.1 Experimental Setup
Dataset. We do our experiments on Cora and Citeseer [Sen
et al., 2008], which are two benchmark small citation networks
with discrete node features, and on Reddit [Hamilton et al.,
2017] and ogbn-arxiv [Hu et al., 2020], which are two large
networks with continuous node features. The statistics of the
datasets are shown in Table 2.

Parameters. For each experimental setting, we run the ex-
periment for 100 times and report the average results. In each
round, we randomly sample |ΦA| nodes as victim nodes. We
set k = 1 in Nk(ΦA), which means we aim to protect the
1-hop neighbors of victim nodes. Without specification, we
compare our method with baselines with a trade-off parameter
set as λ = 0 in Eq. (5).

Comparison Methods. Since this study is the first to per-
form query-based injection attack on node classification, most
of the previous baselines on graph injection attacks cannot
be easily adapted to our problem. We include the following
baselines:

Random Attack, which decides the fake nodes’ features
and connections between fake nodes and original nodes ran-
domly.

NETTACK, one of the most effective attacks by first adding
several nodes and then adding many edges between the fake
nodes and original nodes [Zügner et al., 2018].

NETTACK - Sequential, which is a variant of NET-
TACK [Zügner et al., 2018] by sequentially adding fake nodes.

Fake Node Attack, which adds fake nodes in a white-box
attack scenario [Wang et al., 2018].

G-NIA, a white-box graph injection attack [Tao et al., 2021].
We refer to the reported results on Citeseer.

TDGIA, a black-box GIA method with superior perfor-
mance to all the baselines in KDD Cup 20201 of graph injec-
tion attack. We mainly compare our method with this method.
Note that TDGIA is not query-based [Zou et al., 2021].

1https://www.kdd.org/kdd2020/kdd-cup

Among the above baselines, TDGIA is performed in a con-
tinuous feature space while NETTACK and Fake Node Attack
are performed in discrete feature spaces.

5.2 Quantitative Evaluation
Without loss of generality, we uniformly set Nfake = 4 and
let the number of victim nodes vary to see the performance
under different Nfake : |ΦA|.

Performance on Small Datasets with Discrete Features
We first evaluate the performance of the Cluster Attack along
with other baselines on Cora and Citeseer with discrete fea-
tures. The number of queries K is set to K = |ΦA| · Kt +
Nfake ·Kf , where Kt = Kf = D (feature dimension). The
results are shown in Table 3. Our algorithm outperforms all
baselines in terms of success rates. This is because our method
prevents inefficiently searching the non-Euclidean space of
the adjacent matrix and better utilizes the limited queries in
searching the Euclidean feature space. The results also demon-
strate that the Adversarial Vulnerability is a good metric for
clustering the victim nodes.

Performance on Large Datasets with Continuous Features
In this section, we evaluate the performance of the Cluster
Attack on Reddit (with 1500|ΦA| + 750Nfake queries) and
obgn-arxiv (with 4000|ΦA|+ 2000Nfake queries), two large
networks with continuous feature whose victim nodes have
a higher average degree. We compare our method with the
state-of-the-art method which has superior performance to
other baselines. In these challenging datasets, we perform an
untargeted attack, which means attacker successes when the
predicted labels of victim nodes are changed. The results are
shown in Table 4. Our algorithm outperforms the baseline in
terms of success rates. This is because, with the cluster prior of
the adjacent matrix, our Cluster Attack prevents inefficiently
searching in non-Euclidean space and make the best use of
the limited queries to search the Euclidean feature space. An-
other reason is because of the good metric of the Adversarial
Vulnerability, which provides an appropriate cluster prior.

5.3 Ablation Study
Performance with Different Trade-Off Parameters λ
In this section, we examine the performance of Cluster At-
tack with different trade-off parameters λ between fake nodes
and protected nodes in the Cora dataset. We uniformly set
Nfake = 4, |ΦA| = 10. We choose two competitive baselines
and adapt their loss functions to our trade-off format. The
results are shown in Figure 3. It can be seen from Figure 3
that, when λ increases (which means that we pay more at-
tention to the protected nodes), the percentage of protected
nodes whose labels remain unchanged during the attack also
increases. This is because we try to protect the labels of the
protected nodes from being changed in a trade-off formulation
in our loss function, Eq. (5). Also, our trade-off formulation
can be generalized to other baselines, as shown in Figure 3.
This is because we design our loss function in Eq. (5) in a
generalizable manner independent of attack method.
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Method Cora Citeseer
T = 3 T = 5 T = 7 T = 10 T = 3 T = 5 T = 7 T = 10

Random 0.07 0.08 0.04 0.05 0.04 0.02 0.03 0.03
NETTACK 0.61 0.57 0.55 0.53 0.75 0.71 0.66 0.61
NETTACK - Sequential 0.68 0.73 0.72 0.70 0.76 0.74 0.72 0.67
Fake Node Attack 0.61 0.58 0.54 0.52 0.76 0.68 0.62 0.60
G-NIA - - - - 0.86 0.76 0.70 0.65

Cluster Attack 0.99 0.93 0.84 0.72 1.00 0.89 0.80 0.70

Table 3: Success rates of Cluster Attack along with other baselines with discrete feature space. T denotes number of victim nodes.

Method ogbn-arxiv Reddit
T = 12 T = 16 T = 12 T = 16

TDGIA 0.45 0.38 0.09 0.07

Cluster Attack 0.67 0.59 0.15 0.12

Table 4: Success rates of Cluster Attack along with other baseline
with continuous features. T denotes number of victim nodes.
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Figure 3: Cluster Attack in Cora with different λ.

Performance with Different Number of Queries
In this section, we examine the performance of Cluster Attack
with a different number of queries. We set Kt = Kf = α ·D
and examine the performance under different α in Cora and
Citeseer dataset. We uniformly set Nfake = 4, |ΦA| = 10
with λ = 0 and λ = 1. The results are shown in Figure 4.
The success rate of Cluster Attack drops as the number of
queries drops. Our algorithm still performs well when the
number of queries drops slightly, especially when α ≥ 0.4.
This demonstrates that our Cluster Attack can work in a query-
efficient manner. This is because cluster algorithm provides
graph-dependent priors for the adjacent matrix and thus pre-
vents inefficient searching. Searching in the Euclidean feature
space is more efficient.

We provide additional experiments in the appendix. The ex-
periments show that nodes with a lower degree are more likely
to get misclassified under attack. Also, when the number of
fake nodes increases, the success rate of the attack increases
too, which is consistent with our intuitive understanding. We
provide an ablation study on the cluster metric of Adversarial
Vulnerability. We find that original Cluster Attack performs
better than Cluster Attack without Adversarial Vulnerability,
i.e., the victim nodes’ Adversarial Vulnerabilities are randomly
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Figure 4: Success rates of Cluster Attack with different number of
queries in Cora and Citeseer.

set. This result demonstrates the effectiveness of our Adver-
sarial Vulnerability.

6 Conclusion
In this paper, we provide a unified framework for query-based
adversarial attacks on graphs. Under the framework, we pro-
pose Cluster Attack, a query-based black-box graph injection
attack with partial information. We demonstrate that a graph
injection attack can be formulated as an equivalent clustering
problem. The difficult discrete optimization problem of the
adjacent matrix can thus be solved in the context of clustering.
After providing theoretical bounds on our method, we empiri-
cally show that our method has strong performance in terms
of the success rate of attacking.

Ethical Statement
The safety and robustness of AI are attracting more and more
attention. In this work, we propose a method of adversarial
attack. We hope our work reveals the potential weakness
of current graph neural networks to some extent, and more
importantly inspires future work to develop more robust graph
neural networks.
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