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Abstract
In recent years, most fairness strategies in machine
learning have focused on mitigating unwanted bi-
ases by assuming that the sensitive information is
available. However, in practice this is not always
the case: due to privacy purposes and regulations
such as RGPD in EU, many personal sensitive at-
tributes are frequently not collected. Yet, only a
few prior works address the issue of mitigating
bias in this difficult setting, in particular to meet
classical fairness objectives such as Demographic
Parity and Equalized Odds. By leveraging recent
developments for approximate inference, we pro-
pose in this paper an approach to fill this gap. To
infer a sensitive information proxy, we introduce
a new variational auto-encoding-based framework
named SRCVAE that relies on knowledge of the
underlying causal graph. The bias mitigation is then
done in an adversarial fairness approach. Our pro-
posed method empirically achieves significant im-
provement over existing works in the field. We ob-
serve that the generated proxy’s latent space cor-
rectly recovers sensitive information and that our
approach achieves a higher accuracy while obtain-
ing the same level of fairness on two real datasets.

1 Introduction
Over the past few years, machine learning algorithms have
emerged in many different fields of application. However, this
development is accompanied with a growing concern about
their potential threats, such as their ability to reproduce dis-
crimination against a particular group of people based on
sensitive characteristics (e.g., religion, race, gender, etc.).
In particular, algorithms trained on biased data have been
shown to be prone to learn, perpetuate or even reinforce these
biases [Bolukbasi et al., 2016], leading to numerous inci-
dents being reported in recent studies [Angwin et al., 2016;
Lambrecht and E. Tucker, 2016]. To address this issue, there
has been a growing interest for fair machine learning in the
academic community, and a high variety of bias mitigation
strategies have been proposed in the last decade [Zhang et al.,
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2018; Adel et al., 2019; Hardt et al., 2016; Grari et al., 2020b;
Chen et al., 2019; Zafar et al., 2015; Celis et al., 2019;
Wadsworth et al., 2018]. Currently, the vast majority of
these state-of-the-art approaches rely on having access to
the sensitive information to be mitigated during training
(though sometimes encrypted as in [Veale and Binns, 2017;
Kilbertus et al., 2018]). However, in practice, it is often unre-
alistic to assume that this sensitive information is available or
even collected. In Europe, for example, a car insurance com-
pany cannot ask a potential client about his/her origin or reli-
gion, as this is strictly regulated. Furthermore, in May 2018,
the EU introduced the General Data Protection Regulation
(GDPR), representing one of the most important changes in
the regulation of data privacy in 20 years. It strictly regulates
the collection and usage of sensitive personal data. Ignor-
ing sensitive attributes as input of predictive models in order
to achieve fairness is known as ”fairness through unaware-
ness” [Pedreshi et al., 2008], but was shown to be insuffi-
cient since complex correlations in the data may provide un-
expected links to sensitive information [Dwork et al., 2012].

For this reason, some approaches have attempted to ob-
tain a fair predictor model without the sensitive information.
Most of them leverage the use of external data or prior knowl-
edge on correlations [Zhao et al., 2021; Madras et al., 2018;
Schumann et al., 2019; Gupta et al., 2018]. Others pursue
fairness implicitly, by ensuring local smoothness in the deci-
sion function, rather than explicitly focusing on subgroups to
be protected [Hashimoto et al., 2018; Lahoti et al., 2020].

To overcome limitations of these approaches, we propose
a novel approach that leverages a causal graph to recon-
struct sensitive information using Bayesian variational au-
toencoders (VaEs). The inferred information is then used as a
proxy for mitigating biases in a adversarial fairness training
setting. We empirically show experiments that this approach,
based on sensitive reconstruction, is significantly more effec-
tive for achieving usual fairness objectives than its competi-
tors, with a more direct control on mitigated biases.

2 Background and Related Work
In this paper, we consider training data which consists of n
examples (xi, yi)

n
i=1, where xi ∈ Rp is the feature vector of

the i-th example and yi its binary outcome. In our context the
training sample xi is decomposed into two feature vectors
xci ∈ Rpc and xdi ∈ Rpd . In addition, we consider an -
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unobserved - binary sensitive attribute si for all i. We study
fairness under the two following definitions.
Definition 1. Demographic Parity: A classifier is considered
fair under the demographic parity criterion if the prediction
Ŷ from featuresX is independent from the protected attribute
S [Dwork et al., 2012]. The underlying idea is that each de-
mographic group has the same chance for a positive outcome.
The p-rule assessment considers the likelihood ratio for the
unprivileged group (the higher the more fair):

P-rule(Ŷ , S) = min(
P (Ŷ = 1|S = 1)

P (Ŷ = 1|S = 0)
,
P (Ŷ = 1|S = 0)

P (Ŷ = 1|S = 1)
)

Definition 2. Equalized Odds: A classifier is considered fair
according to this criterion if the outcome Ŷ has equal false
positive rates and false negative rates for both demographics
S = 0 and S = 1 [Hardt et al., 2016]. A metric to assess
this is the disparate mistreatment (DM) [Zafar et al., 2015],
which we report as the sum of the two following quantities:

∆FPR : |P (Ŷ = 1|Y = 0, S = 1)− P (Ŷ = 1|Y = 0, S = 0)|
∆FNR : |P (Ŷ = 0|Y = 1, S = 1)− P (Ŷ = 0|Y = 1, S = 0)|

From the state-of-the-art literature, one possible way to
achieve fairness despite the unavailability of sensitive at-
tributes during training is to use transfer learning methods
from external sources of data where the sensitive group labels
are known. For example, [Madras et al., 2018] proposed to
learn fair representations via adversarial learning on a specific
downstream task and transfer it to the targeted one. [Schu-
mann et al., 2019] and [Coston et al., 2019] focus on do-
main adaptation. [Mohri et al., 2019] considers an agnostic
federated learning context by equalizing the performance of
all participants through the lens of minimax optimization and
fair resource allocation. However, this makes the actual de-
sired bias mitigation highly dependent on the distribution of
the external data. Other methods require prior knowledge on
sensitive correlations. With prior assumptions, [Gupta et al.,
2018] and [Zhao et al., 2021] mitigate the dependence of the
predictions on the available features that are known to be
likely correlated with the sensitive attribute. However, such
strongly correlated features do not always exist in the data.

Finally, a few approaches address this objective without
any prior knowledge on the sensitive information. Some of
these works aim at improving the accuracy for the worst-
case protected group (Rawlsian Max-Min objective) by lever-
aging techniques from distributionally robust optimization
[Hashimoto et al., 2018] or adversarial learning [Lahoti et
al., 2020]. Other works act on the input data using a cluster-
based balancing strategy in order to minimize the biases lo-
cally [Yan et al., 2020]. However, such methods are usually
ineffective for traditional group fairness definitions such as
demographic parity and equalized odds. Their blind way of
mitigation affects non-sensitive information, likely implying
a degradation of the predictor accuracy.

Our approach is inherently different from the aforemen-
tioned approaches. Based on minimal prior knowledge of
causal relationships in the data, we perform Bayesian infer-
ence of latent sensitive proxies, whose dependencies with pre-
diction outputs are mitigated in a second training step.

sx!
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y

zx!
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y

s

Figure 1: Causal graphs of SRCVAE: Left graph represents prior
expert knowledge, where x is mapped into two components xc and
xd. Right graph denotes the graph considered in our approach, with
a multivariate confounder z inferred to be used as a proxy of the
sensitive attribute s. Solid arrows denote causal links, red dashed
arrows denote inference, grey circles denote missing attributes.

3 Methodology
In our approach, we first assume the existence and availability
of a specific causal graph which underlies the training data,
as discussed in subsection 3.1. The causal graph allows us to
infer, through Bayesian inference, a latent representation con-
taining as much information as possible about the sensitive
feature. This process is described in subsection 3.2. Finally,
we present in subsection 3.3 our methodology to mitigate fair-
ness biases while preserving as much as possible prediction
accuracy using this latent representation.

3.1 Causal Structure of SRCVAE
Our work relies on the assumption of having an underlying
causal graph describing the data, where causal interactions
are indicated as directed edges between subsets of features
(nodes). We consider the training data

In particular, we suppose that the graph can be represented
by the illustration shown in Figure 1. This structure is aimed
to be generic enough to fit with most real world settings
(slightly different graphs are studied in appendix). In the left-
most graph, parents of the output y are split into three compo-
nents xc, xd and s. The subsets xc and xd regroup together all
of the features that are given as input x to the model. The dis-
tinction between the two is made depending on the existence
or absence of a causal relationship with the missing sensitive
information s: no interaction is assumed with xc, while some
is with xd. In addition, some causal relationship may exist
between xc and xd.

To illustrate the generic aspect of this framework, we apply
it to the Adult UCI dataset. The assumed causal graph of this
dataset, with Gender as the sensitive attribute s and Income as
the expected output y, is shown in Figure 2. In this context, xc
is the set of variables Race, Age and Native Country which do
not depend on the sensitive attribute, while xd corresponds to
all remaining variables that are generated from xc and s (i.e.,
xd = {Education,Work Class, ...}).

Assuming all of the variables except s are available, our
purpose is to recover all the hidden information not caused
by the set xc but responsible of xd and y. In a real world sce-
nario, it is noteworthy that the accuracy with which one can
recover the real sensitive s depends on the right representa-
tion of the complementary set xc. Yet, it is possible that the
set xc is under-represented. In such a case, there is a risk that
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Figure 2: Causal Graph - Adult UCI

the reconstruction of s may contain some of this missing ad-
ditional information. For instance, assuming that the graph
from Figure 2 is the exact causal graph that underlies the
Adult UCI, let us consider a setting where the variable Race
is hidden. Hence, this variable would be likely to leak in the
sensitive variable reconstruction. In such a leakage setting,
we argue that working with a binary sensitive proxy would
strongly degrade the inferred sensitive information, by intro-
ducing noise in the reconstruction. This is what motivated us
to rather consider the rightmost graph from Figure 1. It con-
siders a multivariate continuous intermediate confounder z
that both causes the sensitive s and the observed variables in
xd and y. As long as the confounder z contains the real sen-
sitive information, removing the corresponding dependence
with the output prediction is guaranteed to ensure fairness for
the model (we prove this in 1). As we observe in the experi-
ments section, such a multivariate proxy also allows for better
generalization abilities for mitigated prediction.

3.2 Reconstructing the Sensitive Attributes
We describe in this section the first step of our SRCVAE (Sen-
sitive Retrieval Causal Variational Autoencoder) framework,
which aims to generate a latent representation z that contains
as much information as possible about the real sensitive fea-
ture s. As discussed above, our strategy is to use Bayesian
inference approximation, using the pre-defined causal graph
represented in Figure 1.
VAE Leveraging recent developments for approximate in-
ference with deep learning, many different works proposed
to use Variational Autoencoding methods (VAE) [Kingma
and Welling, 2013] to model exogenous variables in causal
graphs. It has been shown to achieve successful results, in
particular in the sub-field of counterfactual fairness [Louizos
et al., 2017; Grari et al., 2020a]. We propose to apply VAE
for our setting of fairness with hidden sensitive attribute.

Following the rightmost causal graph from Figure 1, the
decoder distribution pθ(xc, xd, y|z) can be factorized as:

pθ(xc, xd, y|z) = p(xc)pθ(xd|xc, z)pθ(y|xc, xd, z)
Given an approximate posterior qϕ(z|xc, xd, y), we obtain

the following variational lower bound:
log(pθ(xc,xd, y)) ≥ E (xc,xd,y)∼D,

z∼qϕ(z|xc,xd,y)

[log pθ(xd, y|xc, z)

+ log(p(xc))−DKL(qϕ(z|xc, xd, y)||p(z))
]
(1)

where DKL denotes the Kullback-Leibler divergence of
the posterior qϕ(z|xc, xd, y) from a prior p(z), typically
a standard Gaussian distribution N (0, I). The posterior
qϕ(z|xc, xd, y) is estimated using a deep neural network with
parameters ϕ, which typically outputs the mean µϕ and the
variance σϕ of a diagonal Gaussian distribution N (µϕ, σϕI).

The likelihood term, which factorizes as pθ(xd, y|xc, z) =
pθ(xd|xc, z)pθ(y|xc, xd, z), is defined as the output of a neu-
ral network with parameters θ. Since attracted by a standard
prior, the posterior is supposed to remove the probability mass
for any information of z that is not involved in the reconstruc-
tion of xd and y. Since xc is given together with z as input
of the likelihoods, all the information from xc should be re-
moved from the posterior distribution of z. In this paper, we
employ a variant of the ELBO optimization as done in [Pfohl
et al., 2019], where the term DKL(qϕ(z|xc, xd, y)||p(z)) is
replaced by a Maximum Mean Discrepancy (MMD) term
LMMD(qϕ(z)||p(z)) between the aggregated posterior qϕ(z)
and the prior. This has been shown to be more powerful than
the classical DKL for ELBO optimization in [Zhao et al.,
2017], as the latter may be too restrictive [Chen et al., 2016;
Sønderby et al., 2016], and also tends to overfit the data.

HGR Minimization To be accurate, inference must ensure
that no dependence is created between xc and z (no arrow
is linking xc to z in the rightmost graph in Figure 1). This
ensures the generation of a proper sensitive proxy that is not
linked to the complementary xc. However, by optimizing the
ELBO Equation 1, some dependence may still be observed
empirically between xc and z, as we show in Section 4. This
is due to some information from xc leaking to the inferred
z. In order to ensure some minimum independence level, we
add a penalisation term in the proposed loss function. Lever-
aging recent research for mitigating the dependence between
continuous variables, we extend the main idea of [Grari et
al., 2021; Grari et al., 2020b] by adapting this penalization
to the case of variational autoencoders. Following this idea,
we consider the Hirschfeld-Gebelein-Renyi (HGR) coeffi-
cient [Rényi, 1959] to measure the (possibly non linear) de-
pendence between two (possibly multidimensional) variables.
In the following, we denote as ĤGR

wf ,wg

U∼DU ,V∼DV
(U, V ) the

neural estimation of HGR between two variables U and V ,
computed via two inter-connected neural networks f and g
with parameters wf and wg [Grari et al., 2020b; Grari et al.,
2021]:

ĤGR
wf ,wg

U∼DU ,V∼DV
(U, V ) = max

wf ,wg

EU∼DU ,V∼DV (f̂wf
(U)ĝwg

(V ))

where DU (resp. DV ) is the distribution of U (resp. V ), and f̂
(resp. ĝ) refer to standardized outputs of network f (resp. g).

Reconstruction Objective Altogether, the final objective
of our SRCVAE approach is given as:

argmin
θ,ϕ

max
wf ,wg

− E (xc,xd,y)∼D,
z∼qϕ(z|xc,xd,y)

[log pθ(xd, y|xc, z)

+ λmmdLMMD(qϕ(z)||p(z))]

+ λinf ĤGR
wf ,wg

(xc,xd,y)∼D,
z∼qϕ(z|xc,xd,y)

(xc, z)
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Figure 3: Neural architecture of SRCVAE in max phase for the HGR
estimation between xc and z via gradient ascent (a) and Variational
autoencoder structure of SRCVAE in min phase (b).

where λmmd, λinf are scalar hyperparameters. The additional
MMD objective can be interpreted as minimizing the distance
between all moments of each aggregated latent code distribu-
tion and the prior distribution. Note that giving y as input of
the inference scheme q(z|xc, xd, y) is allowed since z is only
used during training (see next section).

In Figure 3, we represent the min-max structure of SRC-
VAE. The left structure represents the max phase where the
HGR between z and xc is estimated by gradient ascent with
multiple iterations. The right graph represents the min phase
where the reconstruction of xd and y is performed by the de-
coder pθ (red frame) via the generated latent space z from the
encoder qϕ. The adversarial HGR component (blue frame)
ensures independence between the generated latent space z
and xc. The network f takes the set xc as input, while g takes
the continuous representation space z. This way, for each gra-
dient iteration of SRCVAE we capture the estimated HGR be-
tween the set xc and the generated proxy latent space z. At the
end of each iteration, the algorithm updates the parameters of
the decoder parameters θ as well as the encoder parameters
ϕ by one step of gradient descent. Concerning the HGR ad-
versary, the backpropagation of the parameters ωf and ωg is
performed by multiple steps of gradient ascent. This allows
for a more accurate estimation of the HGR at each step, lead-
ing to a far more stable learning process. λinf controls the
importance of the dependence loss in the optimization.

3.3 Mitigating the Unwanted Biases
The sensitive reconstruction model can now be used for train-
ing a fair predictive function hθ. Since z contains some con-
tinuous multidimensional information, we adopt an HGR-
based approach inspired from [Grari et al., 2020b; Grari et
al., 2021] which have shown superior performance in this
context. In our setting, we also verify this claim empirically
as shown in appendix. We propose to mitigate the unwanted
bias via an adversarial penalization during the training phase
that depends on the targeted fairness objective.

Demographic Parity We propose to find a mapping hθ(x)
that both minimizes the deviation with the expected target y

and does not imply much dependency with the representation
z, inferred from qϕ(z|xc, xd, y) as described in the previous
section. We propose the following optimization, which con-
siders a neural estimation of HGR as well, but this time ap-
plied to variables hθ(x) (the output of the classifier) and z
(the inferred latent representation):

argmin
θ

max
ψf ,ψg

L(hθ(x), y)+λDP ĤGR
ψf ,ψg

(xc,xd,y)∼D,
z∼qϕ(z|xc,xd,y)

(hθ(x), z)

where L is the predictor loss function (the log-loss function
in our experiments) of the output hθ(x) ∈ R w.r.t. the tar-
get label y. The hyperparameter λDP controls the impact of
dependence between the output prediction hθ(x) ≈ p(y =
1|xd, xc) and the sensitive proxy z. To assess this correla-
tion, K different representations are sampled for each obser-
vation (xci , xdi , yi) from the causal model (200 in our experi-
ments). As in the inference phase, the backpropagation of the
HGR adversary with parameters ψf and ψg is performed by
multiple steps of gradient ascent. This allows to optimize a
more accurate estimation of the HGR at each step, leading to
a greatly more stable predictive learning process.
Practice in real-world As mentioned in the first subsec-
tion, the assumed causal graph 1 requires the right represen-
tation of the complementary set xc. If the set xc is under-
represented, some specific hidden attributes can be integrated
with the sensitive information in the inferred sensitive latent
space z. The following Theorem 1 allows us to ensure that
mitigating the HGR between z and ŷ implies some upper-
bound for the targeted objective (proof in appendix).
Theorem 1. For two nonempty index sets S and Z such that
S ⊂ Z and Ŷ the output prediction of the model, we have:

HGR(Ŷ , Z) ≥ HGR(Ŷ , S) (2)
Proof. in appendix

Therefore, minimizing HGR(Ŷ , Z) tends to reduce the real
bias objective HGR(Ŷ , S). Results on benchmark and real-
world datasets demonstrate below in part 1 that such an as-
sumed graph demonstrates good robustness properties. This
property is also held for equalized-odds we consider below,
with HGR(Ŷ , Z|Y ) ≥ HGR(Ŷ , S|Y ).
Equalized odds We extend the demographic parity opti-
mization to the equalized odds task. The objective is to find a
mapping hθ(x) which both minimizes the deviation with the
expected target y and does not imply too much dependency
with the representation z conditioned on the actual outcome
y. For the decomposition of disparate mistreatment, we pro-
pose to divide the mitigation based on the two different val-
ues of y. Identification and mitigation of the specific non lin-
ear dependence for these two subgroups leads to the same
false positive and the same false negative rates for each de-
mographic. We propose the following optimization:

argmin
θ

max
ψf0

,ψg0
,ψf1

,ψg1

L(hθ(x), y)+

λ0 ĤGR
ψf0

,ψg0

(x,y)∼D0,
z∼qϕ(z|x,y)

(hθ(x), z) + λ1 ĤGR
ψf1

,ψg1

(x,y)∼D1,
z∼qϕ(z|x,y)

(hθ(x), z)
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(a) λinf =0.0;HGR(xc, z)=81.7% (b) λinf =0.2;HGR(xc, z)=22.6%

Figure 4: Inference phase for Adult UCI: t-SNE of the sensitive la-
tent reconstruction Z. Blue points are males (S = 1), red ones are
females (S = 0). Increasing λinf improves the independence of z
from xc. This leads to a better separation between male and female
data points, which indicates a proper sensitive proxy.

with D0 (resp. D1) corresponding to the observations set
(x, y) verifying y = 0 (resp. y = 1). The hyperparameters λ0
and λ1 control the impact of the dependence loss for the false
positive and the false negative objective respectively. The first
penalisation (controlled by λ0) enforces the independence be-
tween the output prediction hθ(x) ≈ pθ(y = 1|x) and the
sensitive proxy z only for the cases where y = 0. It enforces
the mitigation of the difference of false positive rates between
demographics, since at optimum for θ∗ with no trade-off (i.e.,
with infinite λ0) and (x, y) ∼ D0, HGR(hθ∗(x), z) = 0 and
implies theoretically: hθ∗(x) ⊥ z|y = 0. The second one en-
forces the mitigation of the difference between the true pos-
itive rates, since the dependence loss is performed between
the output prediction hθ(x) and the sensitive proxy only for
cases where y = 1 (i.e., mitigation of ∆FNR).

4 Experimental Results
For our experiments, we empirically evaluate the perfor-
mance of our contribution on real-world data sets where the
sensitive s is available. This allows to assess the fairness of
the output prediction, obtained without the use of the sensi-
tive attribute, w.r.t. this ground truth. For this purpose, we use
the popular Adult UCI and Default datasets (descriptions in
Appendix), often used in fair classification.
Sensitive Reconstruction In order to understand the in-
terest of mitigating the dependence between the latent space
z and the complementary set xc during the inference phase,
we plot the t-SNE of z with two different inference mod-
els for the Adult UCI dataset in Figure 4. We consider a
version of our model trained without the penalization term
(λinf = 0.00) as a baseline. It is then compared to a ver-
sion trained with a penalization term equal to 0.20. As ex-
pected, training the inference model without the penalization
term results in a poor reconstruction of the z proxy, where
the dependence on xc is observed. We can observe that the
separation between the men (blue points) and women (red
points) data is not significant. We also observe that increas-
ing this hyper-parameter (λinf ) allows to decrease the HGR

estimation from 81.7% to 22.6% and to greatly increase the
separation between male and female data points.
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Figure 5: Distributions of the predicted probabilities given the real
sensitive s (Adult UCI data set) for the Demographic Parity task.
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Figure 6: Dynamics of adversarial training

Bias Mitigation The dynamics of adversarial training for
demographic parity is performed for Adult UCI with unfair
(λDP = 0) and fair (λDP = 0.5) models as illustrated in
Figure 6. Other values are presented in appendix. We repre-
sent the accuracy of the model (top), the P-rule metric be-
tween the prediction and the real sensitive s (middle), and
the HGR between the prediction and the latent space z (bot-
tom). For the unfair model (leftmost graph) we observe that
the convergence is stable and achieves a P-rule of 29.5%. As
expected, the penalization loss decreases (measured with the
HGR) when the hyperparameter λDP is increased. It allows
to increase the fairness metric P-rule to 83.1% with a slight
drop of accuracy.

In Figure 5 we plot the distribution of the predicted prob-
abilities for each sensitive attribute s for three different mod-
els: an unfair model with λDP = 0, and two fair models with
λDP = 0.45 and 0.50, respectively. For the leftmost graph
(i.e. λDP = 0) the model appears to be very unfair, since
the distribution between the sensitive groups differs impor-
tantly. As expected, we observe that the distributions are more
aligned as λDP values increase.

For the two datasets, we test different models where, for
each, we repeat five runs by randomly sampling two subsets,
80% for the training set and 20% for the test set. As differ-
ent optimization objectives result in different algorithms, we
run separate experiments for the two fairness objectives of
our interest. As an optimal baseline to be reached, we con-
sider the approach from [Adel et al., 2019] using observa-
tions of the sensitive s during training, which we denote as
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Figure 8: Equalized odds task

True S. We also compare various approaches specifically de-
signed to be trained in the absence of the sensitive informa-
tion during training: FairRF [Zhao et al., 2021], FairBal-
ance [Yan et al., 2020], ProxyFairness [Gupta et al., 2018]
and ARL [Lahoti et al., 2020]. The latter is only compared for
the equalized odds task (i.e. discussion in [Zhao et al., 2021]).
We plot the performance of these approaches by displaying
the Accuracy against the P-rule for Demographic Parity (Fig-
ure 7) and the Disparate Mistreatment (DM) for Equalized
Odds (Figure 8). For all algorithms, we clearly observe that
the Accuracy, or predictive performance, decreases when fair-
ness increases. As expected, the baseline True S achieves the
best performance for all the scenarios with the highest ac-
curacy and fairness. We note that, for all levels of fairness
(controlled by the mitigation weight in every approach), our
method outperforms state-of-the-art algorithms for both fair-
ness tasks (except some points for very low levels of fairness,
on the left of the curves). We attribute this to the ability of
SRCVAE to extract a useful sensitive proxy, while the ap-
proaches FairRF and ProxyFairness seem to greatly suffer
from merely considering correlations present in the data for
mitigating fairness. The approach FairBalance, which pre-
processed the data with clustering, seems inefficient and de-
grades the predictive performance too significantly. The ad-
vantages of our approach are more pronounced on the De-
fault dataset, where a less obvious correlation exists between
observed variables and the sensitive attribute. In that setting,
leveraging the knowledge of a causal graph appears to be cru-
cial.

Proxy dimensions In figure 9(a), we perform an additional
experiment on the sensitive proxy. For the two datasets we
observe that increasing z dimensions results in increased ac-
curacy. Increasing the dimensions to 5 for Adult UCI (same
experiment for Default in appendix) allows to obtain better
results in terms of accuracy and this for all levels of P-rule.
We claim that mitigating biases in larger spaces allows bet-
ter generalisation abilities at test time, as already observed in
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Figure 9: Additional Experiments

another context in [Grari et al., 2021]. It supports the choice
of considering a multivariate sensitive proxy z, rather than di-
rectly acting on a reconstruction of s as a univariate variable.
Noisy graph In figure 9(b), we analyse the impact of noise
in the causal graph. To do this, we focus on cases where
the decomposition of x in sets xc and xd is noisy, or sets
of variables are under-represented. For this purpose, we ex-
perimented 8 scenarios on the Adult UCI data set. First,
we removed features from xc: the race (S1), the age (S2).
Then, we removed features from xd: the education (S3) and
the hour (S4). Finally, we moved features from xc to xd
and reversely: membership inversion between race and ed-
ucation (S5), membership inversion between age and hour
(S6), inclusion of age in xd (S7) and inclusion of hour in xc
(S8). From the results, our approach appears greatly robust to
noise, with results in every scenario at least comparable to the
best considered competitors (which all present settings where
performances catastrophically drop as observed in Fig. 7 and
8). This robustness is partly achieved thanks to the use of a
multivariate continuous proxy z, which limits the possible
lack of sensitive information that would occur with a scalar
proxy of s, if non-sensitive information leaks in the recon-
struction. While the inclusion of variables from xd to xc may
induce the removal of some useful sensitive information from
the proxy, the inclusion of variables from xc to xd may lead
to optimize the independence of some non sensitive informa-
tion with model outputs. If fairness needs to be guaranteed,
the expert must thus tend to favor false xd variables rather
than false xc, the former only inducing a slight accuracy loss
in most cases (as demonstrated in Theorem 1).

5 Conclusion and Future Work
This paper proposed a new way to mitigate undesired bias
without the availability of the sensitive demographic informa-
tion in training. To generate a latent representation which is
expected to contain the most sensitive information as possi-
ble, the approach relies on a new variational auto-encoding
based framework named SRCVAE. In a second phase, in-
ferred proxies serve to mitigate biases in an adversarial fair-
ness training of a prediction model. Compared with other
state-of-the-art algorithms, our method proves to be more ef-
ficient in terms of accuracy for similar levels of fairness. For
further investigation, we are interested in extending this work
to settings where the actual sensitive can be continuous (e.g.
age or weight attribute) and/or multivariate.
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