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Abstract
To avoid discriminatory uses of their data, organizations
can learn to map them into a representation that filters
out information related to sensitive attributes. However,
all existing methods in fair representation learning gener-
ate a fairness-information trade-off. To achieve different
points on the fairness-information plane, one must train
different models. In this paper, we first demonstrate that
fairness-information trade-offs are fully characterized by
rate-distortion trade-offs. Then, we use this key result
and propose SoFaiR, a single shot fair representation
learning method that generates with one trained model
many points on the fairness-information plane. Besides
its computational saving, our single-shot approach is, to
the extent of our knowledge, the first fair representation
learning method that explains what information is af-
fected by changes in the fairness / distortion properties of
the representation. Empirically, we find on three datasets
that SoFaiR achieves similar fairness-information trade-
offs as its multi-shot counterparts.

1 Introduction
Machine learning algorithms increasingly support decision-
making systems in contexts where outcomes have long-term
implications on the subject’s well-being. A growing body of
evidence find that algorithms can either replicate or exacer-
bate existing social biases against some demographic groups.
These evidence span many domains, including recidivism
risk assessment [ProPublica, 2016], face recognition [Buo-
lamwini and Gebru, 2018], education data mining [Gardner
et al., 2019], and medical diagnosis [Pfohl et al., 2019].

As a result, organizations that collect data are increasingly
scrutinized for the potentially discriminatory use of a data
by downstream applications. A flexible solution to the data-
science pipeline is to control unfair uses of a data before its
ingestion by a machine algorithm. Fair representation learn-
ing [Zemel et al., 2013] follows this paradigm. It is a data
pre-processing method that encodes the data into a represen-
tation or code Z, while removing its correlations with sensi-
tive attributes S.

Current approaches in fair representation learning [Zemel
et al., 2013; Madras et al., 2018; Gitiaux and Rangwala,
2021a; Creager et al., 2019] generate a fairness-information
trade-off and are inflexible with respect to their fairness-
information trade-off, which is set at training time. This lim-
its the deployment of fair representation learning approaches.

For example, in medical applications, at test time, a user may
need to adjust the content of the representation depending
on whether gender is an appropriate feature for the down-
stream task at play. On one hand, for a downstream appli-
cation that predicts cardiovascular risk, gender is an impor-
tant/appropriate feature that should be part of the representa-
tion of the data. On the other hand, for a downstream applica-
tion that predicts payment of medical bills, gender should be
irrelevant to the outcome and thus, filtered out from the repre-
sentation. With existing methods in fair representation learn-
ing, the user would have to re-train a fair encoder-decoder
to meet each request. At issue are computational costs and
lack of consistency between released representations, since
the user cannot explain what changes occur between each
data product it releases.

This paper introduces SoFaiR, Single Shot Fair
Representation, a method to generate a unfairness-distortion
curve with one single trained model. We first show that we
can derive unfairness-distortion curves from rate-distortion
curves. We can control for the mutual information I(Z, S)
between representation and sensitive attribute by encoding X
into a bitstream and by controlling for its entropy. We then
construct a gated architecture that masks partially the bit-
stream conditional on the value of the Lagrangian multiplier
in the rate-distortion optimization problem. The mask adapts
to the fairness-information trade-off targeted by the user who
can explore at test time the entire unfairness-distortion curve
by increasingly umasking bits. For example, in the case
of a downstream medical application for which gender is
sensitive and needs to be filtered out, the user sets at test time
the Lagrangian multiplier to its largest value, which lowers
the resolution of the representation and in a binary basis,
masks the rightmost tail of the bit stream.

Besides saving on computational costs, SoFaiR allows
users to interpret what type of information is affected by
movement along unfairness-distortion curves. Moving up-
ward unmasks bits in the tail of the bitstream and thus, in-
creases the resolution of the representation encoded in a bi-
nary basis. By correlating these unmasked bits with data fea-
tures, the practitioner has at hand a simple method to explore
what information related to the features is added to the repre-
sentation as its fairness properties degrade.

Empirically, we demonstrate on three datasets that at cost
constant with the number of points on the curve, SoFaiR con-
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structs unfairness-distortion curves that are comparable to the
ones produced by existing multi-shot approaches whose cost
increases linearly with the number of points. On the bench-
mark Adults dataset, we find that increasingly removing in-
formation related to gender degrades first how the represen-
tation encodes working hours; then, relationship status and
type of professional occupations; finally, marital status.

Our contributions are as follows: (i) we formalize
fairness-information trade-offs in unsupervised fair represen-
tation learning with unfairness-distortion curves and show a
tractable connection with rate-distortion curves; (ii) we pro-
pose a single shot fair representation learning method to con-
trol fairness-information trade-off at test time, while training
a single model; and, (iii) we offer a method to interpret how
improving or degrading the fairness properties of the result-
ing representation affects the type of information it encodes.

Proofs of theoretical results are in the appendix. Addi-
tional experimental details and results are in the supplemen-
tary file1. The code publicly available here2.

Related Work. A growing body of machine learning litera-
ture explores how algorithms can adversely impact some de-
mographic groups (e.g individuals self-identified as Female
or African-American) (see [Chouldechova and Roth, 2018]
for a review). This paper is more closely related to meth-
ods that transform the data into a fair representation. Most
of the current literature focus on supervised techniques that
tailor the representations to a specific downstream task (e.g
[Madras et al., 2018; Edwards and Storkey, 2016; Moyer et
al., 2018; Gupta et al., 2021; Jaiswal et al., 2020]). How-
ever, practical implementations of fair representation learning
would occur in unsupervised setting where organizations can-
not anticipate all downstream uses of a data. This paper con-
tributes to unsupervised fair representation (e.g [Gitiaux and
Rangwala, 2021b]) by (i) formalizing fairness-information
trade-off in a distortion-rate phase diagram, which extends
compression-based approaches (e.g [Gitiaux and Rangwala,
2021a]); and (ii), proposing an adaptive technique that allows
a single trained model to output as many points as desired on
a unfairness-distortion curve.

The implementation of SoFaiR relates to approaches in
rate-distortion that learn adaptive encoder and vary the com-
pression rate at test time (e.g. [Theis et al., 2017; Choi et al.,
2019]. We borrow soft-quantization techniques and entropy
coding to solve the rate-distortion problem that can be derived
from the fair representation learning objective. Our adaptive
mask relates to the gain function in [Cui et al., 2020] that
selects channels depending on the targeted bit rate. We rely
on successive refinement methods from information theory
(e.g [Kostina and Tuncel, 2019]) that use a common encoder
for all points on the unfairness-distortion curve and add new
information by appending bits to a initially coarse representa-
tion. To our knowledge, we are the first contribution to imple-
ment a deep learning multi-resolution quantization and apply
it to the problem of single shot fair representation learning.

1See Long version at https://arxiv.org/abs/2204.12556
2See https://github.com/Gitiauxx/SoFaiR

Figure 1: Unfairness-distortion curves I(D) vs. rate-distortion
curve R(D). The unfairness distortion I(D) can be deduced
from the rate-distortion R(D) curve by a downward shift equal to
D −H(X|S) if the distortion is less than D∗.

2 Problem Statement
2.1 Preliminaries
Consider a population of individuals represented by features
X ∈ X and sensitive attributes in S ∈ S ⊂ {0, 1}ds , where
ds ≥ 1 is the dimension of the sensitive attributes space.

The objective of unsupervised fair representation learning
is to map features X ∈ X into a d−dimensional represen-
tation Z ∈ Z such that (i) Z maximizes the information re-
lated toX , but (ii) minimizes the information related to sensi-
tive attributes S. We control for the fairness properties of the
representation Z via its mutual information I(Z, S) with S.
I(Z, S) is an upper bound to the demographic disparity of any
classifier using Z as input [Gupta et al., 2021]. We control for
the information contained in Z by constraining a distortion
d(X, {Z, S}) that measures how much information is lost
when using a data reconstructed from Z and S instead of the
original X . Therefore, fair representation learning is equiv-
alent to solving the following unfairness-distortion problem

I(D) = min
f
I(Z, S) s.t. d(X, {Z, S}) ≤ D (1)

where f : X → Z is an encoder. The unfairness-distortion
function I(D) defines the minimum mutual information be-
tween Z and S a user can expect when encoding the data
with a distortion less or equal to D. The unfairness-distortion
problem (1) implies a fairness-information trade-off: lower
values of the distortion constraint D degrade the fairness
properties of Z by increasing I(D). The objective of this
paper is given a data X to obtain the unfairness-distortion
function I(D) with a single encoder-decoder architecture.

2.2 Unfairness Distortion Curves
Rate distortion theory characterizes the minimum average
number of bits R(D) used to represent X by a code Z while
the expected distortion incurred to reconstruct X from the
code is less than D. We show how to derive unfairness-
distortion functions I(D) from rate distortion functions
R(D).

Theorem 2.1. Suppose that the distortion is given by
d(X, {Z, S}) = E[− log(p(x|z, s)]. Then, the unfairness
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distortion function I(D) is equal to R(D) +D −C if ∂R∂D ≤
−1 and 0 otherwise. C = H(X|S) is a constant that does
not depend on D, but only on the data X . Moreover, I(D) is
a non-increasing convex function.

Phase diagram. Figure 1 shows a graphical interpretation
of Theorem 2.1 in a (D,R) plane. (D∗, R∗) denotes the
point on the rate-distortion curve where ∂R

∂D = −1. For
D ≤ D∗, the rate distortion curve is above the line defined
by R+D = H(X|S) and that difference between I(D) and
R(D) is I(Z, S). ForD > D∗, the rate-distortion curve is the
line R+D = H(X|S) and the unfairness-distortion curve is
the horizontal axis. We call the regime D∗ ≤ D ≤ H(X|S)
the fair-encoding limit where the distortion is less than its up-
per limit, but Z is independent of sensitive attribute S.

Information bottleneck. Theorem 2.1 implies that
fairness-distortion trade-offs are fully characterized by
rate-distortion trade-offs. A fundamental result in rate dis-
tortion theory ([Tishby, 1999]) shows that the rate-distortion
function is given by the information bottleneck

R(D) = min
f
I(X,Z) s.t d(X, {Z, S}) ≤ D. (2)

By solving this information bottleneck with d(X, {Z, S}) =
H(X|Z, S) and invoking Theorem 2.1, we can recover the
unfairness-distortion I(D). [Gitiaux and Rangwala, 2021a]
provide an intuition for this result. Controlling for the mutual
information I(Z,X) allows to control for I(Z, S) because an
encoder would not waste code length to represent informa-
tion related to sensitive attributes, since sensitive attributes
are provided directly as an input to the decoder. We can write
the information bottleneck in its Lagrangian form as

min
f
βI(Z,X) + E[− log p(x|z, s)] (3)

The coefficient β relates to the inverse of the slope of the rate-
distortion curve: ∂R

∂D = −1/β. Each value of β generates
a different point along the rate-distortion curve and thus, by
Theorem 2.1 a different point along the unfairness-distortion
curve. Higher values of β lead to representations with lower
bit rate and lower mutual information with S. To explore a
unfairness-distortion curve, existing multi-shot strategies are
prohibitively expensive as they learn a new encoder f for each
value of β. Moreover, they cannot interpret how changes in β
affect the representation generated by the encoder.

3 Method: Single-Shot Unfairness-Distortion
Curves.

We propose a single-shot method, SoFaiR, to generate with
one model as many points as desired on the unfairness-
distortion curve. An encoder f : X → {0, 1}d×r com-
mon to all values of β encodes the data into a d dimen-
sional latent variable e ∈ [0, 1]d. We quantize each dimen-
sion ej of the d−dimensional latent variable with a resolu-
tion rj(β): we transform ej into a quantized representation
zj(β) = [e ∗ r(β)]/r(β), where [.] denotes the rounding-up
operation and r(.) is a decreasing function of β.

Figure 2: SoFaiR generates interpretable shifts along the unfairness-
distortion curve. For a point z1, SoFair learns a mask m1 that hides
bits on the tails of each dimension of the representation. By relaxing
the mask to first m2 then m3, the number of bits used to represent
the data increases from a1 to a2 and then a3; and, the representation
moves to z2 then z3, which reduces the distortion at the expenses
of degraded fairness properties. z1, z2 and z3 only differ by their
masked bits (black squares).

3.1 Interpretability
To maintain an interpretable relation between z(β) and z(β

′
)

for β
′
< β, we write rj(β) = 2aj(β), where aj(.) is a de-

creasing function of β for j = 1, ..., d. Each dimension zj(β)
of the quantized representation is then encoded into aj(β)

bits. Moreover, for β
′
< β, each dimension j of the represen-

tation z(β
′
) is made of the same aj(β) bits as zj(β), followed

by aj(β
′
) − aj(β) additional bits. Each dimension zj(β)

of the quantized representation is encoded into aj(β) bits
bj,1, bj,2, ..., bj,aj(β), where bj,l ∈ {0, 1} for l = 1, ..., aj(β).
For β

′
< β and for j = 1, ..., d, we have

zj(β
′
) = zj(β) +

aj(β
′
)∑

l=aj(β)

bj,l2
−l.

Therefore, we have a tractable and interpretable relation be-
tween zj(β

′
) and zj(β). This construction allows relaxing

fairness constraints and decreasing distortion by unmasking
additional bits for each dimension of the representation. Fig-
ure 2 shows an example for a 2-dimensional representation. A
user who has released z1 with high distortion and low mutual
information I(Z, S) reduces distortion at the cost of fairness
by unmasking one bit for the first dimension and two bits for
the second and by generating z2.

3.2 Quantization
We assign a maximum number of bits A > 0 to encode each
dimension of the representation. We apply a function he to
map the d−dimensional latent variable e into [0, 1]d×A and
then, apply a rounding-up operator [he(e)] to generate a d×A
matrix, each row encoding a dimension of the representation
with A bits (see Figure 2 with A = 3). For each dimension j,
we implement aj(.) by applying a function ha to map e into
a d−dimensional vector of R+d and by computing aj(β) =
A [1− tanh(ha(e)jβ))].

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

689



Figure 3: Unfairness-Distortion curves for a) DSprites, b) Adults-Gender, c) Adults-Race-Gender(left) and d) Heritage.

For each value of β and each row of the matrix [he(e)],
we mask all the entries in position l > aj(β): for each row
j and each column l, we compute a soft mask mj,l(β) =
σ (aj(β)− l) where σ denotes a sigmoid activation; and then,
we apply a rounding operator [mj,l(β)] to our soft mask.

For example, suppose that we encode in at mostA = 8 bits
the embedding value e = 0.7 and that h(e) = e. For β = 0,
we use all the bits (a(0) = 8) and z = 0.699; for β = 0.5,
a = 8(1 − tanh((0.5)(0.7))) = 5.3 and we use only 5 bits
with z = 0.6875.

The binarization caused by the rounding operation [.] is
not differentiable. We follow [Theis et al., 2017] and use
a gradient-through approach that replaces [.] by the identity
during the backward pass of back-propagation, while keep-
ing the rounding operation during the forward pass.

3.3 Entropy Estimation

In our implementation, encoding and quantization are deter-
ministic andZ is completely determined byX: H(Z|X) = 0
and I(Z,X) = H(Z). To estimate the entropy of the
representation Z, we use an auto-regressive factorization
and write the discrete distribution P (z|β) as P (z|β) =∏d
j=1 P (zj |z.<j , β), where the order of the dimension j is

arbitrary and z.<j denotes the dimension between 1 and j−1.
We approximate the discrete distribution p(zj |z.<j , β) by a

continuous distribution q(zj |z.<j , β) such that the probability
mass of q on the interval [zj−1/2aj(β), zj+1/2aj(β)] is equal
to p(zj |z.<j , β). We can show then that H(z|β) is bounded

above by
∑d
j=1Ez∼p(z) log

∫ 1/2aj(β)

−1/2aj(β)
q(zj + u|z.<j , β)du

(see Appendix). We follow [Salimans et al., 2017] and for
each j = 1, ..., d, we model q(.|z.<j , β) as a mixture of K
logistic distributions with means µj,k(β), scales γj,k(β) and
mixtures probability πj,k(β), which allows a tractable for-
mulation of our upper-bound (see Appendix). The resulting
adaptive information bottleckneck (3) is:

min
g,f,q,µ,γ,π

E[− log p(x|g(z, s, β)) + βH(z|β)], (4)

where g is a decoder that reconstructs the data x from z, s
and β. The expectation is taken over the data x and values of
β uniformly drawn in [0, 1].

4 Experiments
We design our experiments to answer the following research
questions: (RQ1) Does SoFaiR generate in a single-shot
unfairness-distortion curves comparable to the ones generated
by multi-shot models? (RQ2) Do representations learned by
SoFaiR offer to downstream tasks a fairness-accuracy trade-
off on par with state-of-the-art multi-shots techniques in un-
supervised fair representation learning? (RQ3) What infor-
mation is present in the additional bits that are unmasked as
we move up the unfairness-distortion curve? Architecture de-
tails and hyperparameter values are in the supplementary file.

4.1 Datasets
We validate our single-shot approach with three benchmark
datasets: DSprite-Unfair, Adults and Heritage.

DSprite Unfair is a variant of the DSprites data and con-
tains 64 by 64 black and white images of various shapes
(heart, square, circle). We modify the sampling to generate
a source of potential unfairness and use as sensitive attribute
a variable that encodes the orientation of the shapes.

The Adults dataset contains 49K individuals with in-
formation on professional occupation, education attainment,
capital gains, hours worked, race and marital status. We con-
sider as sensitive attribute, gender in Adults-Gender; and,
gender and race in Adults-Gender-Race.

The Health Heritage dataset contains 95K individuals
with 65 features related to clinical diagnoses and procedures,
lab results, drug prescriptions and claims payment aggregated
over 3 years (2011-2013). We define as sensitive attributes an
intersection variable of gender and age.

4.2 Unfairness-Distortion Curves
To plot unfairness-distortion curves, we estimate the distor-
tion as the l2− loss between reconstructed and observed data,
which is equal to Ex,z,s[− log p(x|z, s)] (up to a constant) if
the distribution of p(X|Z, S) X is an isotropic Gaussian. We
also approximate the mutual information I(Z, S) with an ad-
versarial lower bound (see appendix):

I(Z, S) ≥ H(S)−min
c
Es,z[− log c(s|z)], (5)

where c is an auditing classifier that predicts S from Z. Un-
like adversarial methods (e.g. [Edwards and Storkey, 2016]),
we do not use this bound for training our encoder-decoder, but

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

690



Dataset Model AUFDC Average per step (ms) Total time (106 ms): CPU/GPU (↓)
(↓) CPU / GPU 4 points 8 points 16 points

DSprites-UnfaiR SoFaiR 0.21 79± 1.2 / 55± 0.2 18.5/13.0 18.5/13.0 18.5/13.0
SoFaiR-NOS 0.25 78± 1.1 / 54± 0.3 18.4/13.1 18.4/13.1 18.4/13.1

MSFaiR 0.14 76± 3.2 / 55± 0.3 71.4/52.1 142.9/104.2 285.8/208.0
Adults-Gender SoFaiR 0.32 91± 3.3/6± 0.0 2.3/0.1 2.3/0.1 2.3/0.1

SoFaiR-NOS 0.58 91± 4.3/6± 0.0 2.3/0.1 2.3/0.1 2.3/0.1
MSFaiR 0.35 92± 1.0/6± 0.0 9.4/0.6 18.9/1.1 37.7/2.3

Adults-Gender-Race SoFaiR 0.30 92± 4.3/6± 0.0 2.4/0.1 2.4/0.1 2.4/0.1
SoFaiR-NOS 0.53 92± 4.0/6± 0.0 2.4/0.1 2.4/0.1 2.4/0.1

MSFaiR 0.36 90± 4.0/6± 0.0 9.1/0.6 18.3/1.1 36.6/2.3
Heritage SoFaiR 0.62 125± 3.0/8.6± 1.6 3.7/0.3 3.7/0.3 3.7/0.3

SoFaiR-NOS 0.73 123± 2.5/10± 0.3 3.7/0.3 3.7/0.3 3.7/0.3
MSFaiR 0.56 123± 3.1/10± 0.8 14.7/1.2 29.4/2.3 58.7/4.8

Table 1: Area under the unfairness-distortion curve and computational costs of single-shot (SoFaiR) versus multi-shot (MSFaiR) fair rep-
resentation learning methods. Lower (↓) is better. This shows that SoFaiR provides unfairness-distortion curves with similar AUFDC as
MSFaiR, but at much lower computational costs.

only for post mortem evaluation of the unfairness-distortion
trade-off generated by SoFaiR. In practice, we train a set of
5 fully connected neural networks c : Z → S and use their
average cross-entropy to estimate the right hand side of (5).

4.3 Area Under Unfairness-Distortion Curves
To quantitatively compare the unfairness-distortion curves of
competing approaches, we introduce the area under unfair-
distortion curve, AUFDC. A lower AUFDC means that a
model achieve lower I(Z, S) for a given level of distortion.
To allow comparison across datasets, we normalize the value
of AUFDC by the area of the rectangle [0, Dmax]× [0, Imax],
where Dmax is the distortion obtained by generating random
permutation of a representation and Imax is the value of the
lower bound (5) when auditing raw data.

4.4 Comparative Methods
Methods. We compare SoFaiR with five fair representation
methods: (i) LATFR (e.g [Madras et al., 2018]) controls
for I(Z, S) by using the lower bound (5) ; (ii) MaxEnt-
ARL [Roy and Boddeti, 2019] replaces the adversary’s cross-
entropy of LATFR with the entropy of the adversary’s predic-
tions; (iii) CVIB [Moyer et al., 2018] replaces adversarial
training with an information-theory upper bound of I(Z, S);
(iv)β − V AE [Higgins et al., 2016] solves the information
bottleneck (3) by variational inference, which upper-bounds
I(Z, S), provided that the decoder uses the sensitive attribute
as input [Gitiaux and Rangwala, 2021a]; (v) MSFaiR re-
produces SoFaiR, but solves the rate-distortion problem (4)
separately for different values of β. All methods have the
same autoencoder architecture. Most methods are tailored
to a specific downstream task. In our unsupervised setting,
we repurpose them by replacing the cross-entropy of the
downstream classification task with our measure of distortion
E[− log p(x|Z, s)].
Pareto fronts. We construct Pareto fronts that compare the
unfairness properties of the representation to the accuracyAy
of a downstream task classifier that predicts a downstream
label Y from Z. Critically in our unsupervised setting, we

do not provide the labels Y to encoder-decoders. To match
existing benchmarks, we measure the unfairness properties of
the representation with the average accuracy As of auditing
classifiers that predict S from Z. The higher Ay for a given
As, the better is the fair representation method.

5 Results

Figure 4: Pareto fronts for a) Adults-Gender (left), b) Adults-Race-
Gender(right). The downstream task label is whether income is
larger than 50K.

5.1 RQ1: Single Shot Fairness-Distortion Curves
Figure 3 shows SoFaiR’s unfairness-distortion curves for
DSprites (left), Adults-Gender (middle left), Adults-Gender-
Race (middle right) and Heritage (right). By increasing at
test time the value of β, the user can smoothly move down
the unfairness-distortion curve: values of β close to zero lead
to low distortion - high I(Z, S) points; values of β close
to one lead to higher distortion - low I(Z, S) points. Fig-
ure 3 demonstrates that a solution to the adaptive bottleneck
(4) allows one single model to capture different points on
the unfairness-distortion curve. This result is consistent with
Theorem 2.1 and illustrates that controlling for the bit rate of
Z via its entropy H(Z) is sufficient to control for I(Z, S).
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Figure 5: Unmasked bits for different values of the fairness coefficient β for the Adults-Gender-Race dataset. Each row is a dimension of Z.
Each colored square is an unmasked bit. Black squares represent masked bits. Darker bits exhibit higher bit demographic disparity ∆(b). As
β decreases, SoFaiR unmasks more bits for each dimension of Z. And, bits with higher disparity are more likely to be the last unmasked.

Ablation study. AUFDC scores in Table 1 show that So-
FaiR is competitive with its multi-shot counterpart: SoFaiR
outperforms MSFaiR for Adults-Gender and Adults-Gender-
Race (lower AUFDC), but is slightly outperformed for Her-
itage and DSprites-Unfair (higher AUFDC). On the other
hand, SoFaiR unambigously outperforms SoFaiR-NOS, a
model similar to SoFaiR but with a decoder that does not use
the sensitive attribute S as side-channel. The relation between
unfairness-distortion and rate-distortion curves in Theorem
2.1 is tractable only if we use E[− log(p(x|z, s)] as a mea-
sure of distortion and does not hold if we useE[− log(p(x|z)]
instead and the decoder does not receive S as side channel.

Computational costs. Table 1 compares the computational
costs of SoFaiR and MSFaiR. We average the cpu and gpu
times of a training step over 10 profiling cycles and the num-
ber of training epochs. We perform the experiment on a
AMD Ryzen Threadripper 2950X 16-Core Processor CPU
and a NVIDIA GV102 GPU. The average computing cost
of a training step is similar for SoFaiR and MSFaiR since
both methods rely on similar architecture. However, So-
FaiR’s computational costs remain constant as the number
of points on the unfairness-distortion curve increases, while
MSFaiR’s costs increase linearly. For example, 16 points for
the DSprites-Unfair require about 137 hours of running time
with MSFaiR and only 8 hours with SoFaiR.

5.2 RQ2: Pareto Fronts
In Figure 4, the larger the downstream classifier’s accuracy
Ay for a given value of the auditor’s accuracy As, the bet-
ter the Pareto front. First, SoFaiR and MSFaiR’s Pareto
fronts are either as good or better than the ones generated by
LATFR, CV IB, Maxent − ARL and β − V AE. Excep-
tions to this observations include Adults-Gender-Race for low
values of As where LATFR outperforms SoFaiR/MSFaiR.
Rate distortion approaches are competitive, which confirms
the tight connection between rate-distortion and unfairness-
distortion as presented in Theorem 2.1. Both SoFaiR and
MSFaiR offer more consistent performances than LATFR
or Maxent − ARL whose representations keep leaking in-
formation related to S for Adults-Gender regardless of the
constraints placed on the adversary. And, β − V AE exhibits
non-monotonic behavior for Adults-Gender. Second, Figure
4 shows that SoFaiR’s Pareto fronts are similar to the ones
offered by MSFaiR, its multi-shot counterpart. This result is

consistent with AUFDC scores in Table 1. Pareto fronts for
Heritage and DSPrites-Unfair are in the supplementary file.

Figure 6: Additional information provided by refining the repre-
sentation for Adults-Gender (left) and Adults-Gender-Race (right)
dataset. This shows the correlation between data features and ad-
ditional bits that SoFaiR unmasks when loosening the fairness con-
straint. Correlations are computed between the data features and
the first principal component of newly unmasked bits. Each column
corresponds to a decrease of β as labeled on the horizontal axis.

5.3 RQ3: Interpretability
Bit disparity. We measure the disparity of each bit b as
∆(b) = maxs∈S |P (b = 1|S = s) − P (b = 1|S 6= s)|.
Bit disparity is the demographic disparity of a classifier that
returns 1 if b = 1 and 0 otherwise. Moreover, we show in
the supplementary file that maxb ∆(b) is a lower bound of
I(Z, S): a large value of ∆(b) means that the presence of bit
b in the bitstream will significantly degrade the fairness prop-
erties of Z. In Figure 5, loosening the fairness constraint at
test time – decreasing β – unmasks more bits, while keep-
ing the leftmost bits identical to ones obtained with higher
values of β. SoFaiR degrades gracefully the fairness proper-
ties of the representation by increasing its resolution. Figure
5 also shows that for Adults-Gender-Race, bits with higher
disparity ∆ are less likely to be unmasked with stringent fair-
ness constraints – high β – and are only active when more
leakages related to sensitive attribute are tolerated – low β.
Therefore, by forcing SoFaiR to generate many points on the
unfairness-distortion curve, we obtain an information order-
ing that pushes to the tail of the bitstreams the bits the most
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correlated with S. We observe a similar pattern with Adults-
Gender (supplementary file).
Fairness and information loss. Unlike alternative methods
in fair representation learning, SoFaiR offers a simple tool to
interpret at test time what information is lost as the fairness
constraint tightens. In Figure 6, we plot for Adults-Gender
and Adults-Gender-Race how additional bits unmasked as β
decreases correlate with data features. As we move up the
unfairness-distortion curve for Adults-Gender, additional in-
formation first relates to marital status; then, occupation type,
relationship status and hours-per-week. It means that for
downstream tasks that predict marital status, a representation
on the bottom right of the unfairness-distortion curve (high
distortion, low I(Z, S)) is sufficient to achieve good accu-
racy. But, downstream tasks that need hours-per-week would
find more difficult to obtain good accuracy without moving
up the unfairness-distortion curves, i.e leaking additional in-
formation related to sensitive attribute S.

6 Conclusion
In this paper, we present SoFaiR, a single-shot fair representa-
tion learning method that allows with one trained model to ex-
plore at test time the fairness-information trade-offs of a rep-
resentation of the data. Our implementation relies on a tight
connection between rate-distortion and unfairness-distortion
curves. SoFaiR is a step toward practical implementation
of unsupervised fair representation learning approach, all the
more as users can now explain what information is lost as the
fairness properties of the representation improve.

A Appendix
A.1 Proof of Theorem 2.1
First, we show the following identity:
Lemma A.1. I(Z, S) = I(Z,X) +H(X|Z, S)−H(X|S).

Proof. The proof of Lemma A.1 relies on multiple iterations
of the chain rule for mutual information:

I(Z, S)
(a)
= I(Z, {X,S})− I(Z,X|S)

(b)
= I(Z,X) + I(Z, S|X)− I(Z,X|S)

(c)
= I(Z,X)− I(Z,X|S)

(d)
= I(Z,X)− I(X, {Z, S}) + I(X,S)

(e)
= I(Z,X) +H(X|Z, S)−H(X|S)

where (a), (b) and (d) use the chain rule for mutual informa-
tion; and, (c) uses the fact that Z is only encoded from X
and from S, so H(Z|X,S) = H(Z|X) and I(Z, S|X) =
H(Z|X) − H(Z|X,S) = 0. And (e) uses the fact that
I(X,S) = H(X)−H(X|S) and I(X, {Z, S}) = H(X)−
H(X|Z, S).

Lemma A.1 implies that if the distortion is d(X, {Z, S}) =
H(X|Z, S), the unfairness-distortion function is given by

I(D) = min
f
I(Z,X) +H(X|Z, S)−H(X|S)

s.t. H(X, {Z, S}) ≤ D
(6)

Second, a fundamental theorem in rate-distortion [Cover
and Thomas, 2012] shows that if the distortion is
d(X, {Z, S}) = H(X|Z, S) the rate-distortion function is
given by

R(D) = min
f
I(X,Z) s.t H(X|Z, S) ≤ D, (7)

and that R(D) is a non-increasing convex function. The next
Lemma shows how solution of the minimization problem (7)
solves the minimization problem (6) whenever ∂R(D)

∂D ≤ −1

Lemma A.2. Let D ≥ 0 be a distortion value. Assume that
∂R(D)
∂D ≤ −1. A solution f∗ of the minimization (7) for D is

also solution of (6).

Proof. At the optimum, the constraint in (7) is binding and
thus, that Hf∗(X|Z, S) = D, where the subs-script f∗ re-
minds that the code Z depends on f∗. Consider now a solu-
tion g∗ of the minimization (6) for a distortion D. We con-
sider two cases: case (I) the constraint is binding for g∗ in (6);
case (II) the constraint is not binding for g∗ in (6).

case (I): Hg∗(X|Z, S) = D and we have

I(D) = Ig∗(Z,X) +Hg∗(X|Z, S)−H(X|S)

= Ig∗(Z,X) +D −H(X|S)

(a)

≥ If∗(Z,X) +D −H(X|S),

(8)

where (a) uses the fact that f∗ is solution of (7) and that
Hg∗(X|Z, S) ≤ D. Therefore, since Hf∗(X|Z, S) ≤ D,
f∗ is also solution of (6).

case (II): Let denoteD
′

the value of the distortion achieved
by g∗. Then, D

′
= Hg∗(X|Z, S) < D. We have

I(D) = Ig∗(Z,X) +Hg∗(X|Z, S)−H(X|S)

= Ig∗(Z,X) +D
′
−H(X|S)

(a)

≥ R(D
′
) +D

′
−H(X|S),

(9)

where (a) follows from the definition ofR(D
′
). By convexity

of the rate-distortion function, we have that

R(D
′
)−R(D)

(a)

≥ ∂R(D)

∂D
(D
′
−D)

(b)

≥ (D −D
′
),

(10)

where (a) uses the convexity of R(D) and that D
′
< D and

(b) uses that ∂R(D)
∂D ≤ −1. Hence, by combining (9) and

(10), we have

I(D) ≥ R(D)+D−H(X|S) = If∗(Z,X)+D−H(X|S).

Therefore, f∗ is also solution of the minimization (6) since
Hf∗(X|Z, S) ≤ D.

It follows from Lemma A.2 that we have by definition of
f∗, if ∂R(D)

∂D ≤ −1

I(D) = If∗(Z,X)+D−H(X|S) = R(D)+D−H(X|S),
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which proves the first part of the statement in Theorem 2.1.
Moreoover, if ∂R(D)

∂D < −1, ∂I(D)
∂D = ∂R(D)

∂D + 1 < 0, hence
I(.) is decreasing for D such that ∂R(D)

∂D < −1.

To prove that if ∂R(D)
∂D ≥ −1, I(D) = 0, we first prove the

following Lemma:

Lemma A.3. Let D∗ denote the value of D such that
∂R(D)
∂D = −1. For D∗ ≥ D, I(D) = I(D∗).

Proof. LetD > D∗. Let g∗ be a solution of the minimization
(6) for D. Note that a solution of (6) for D∗ respects the
constraint of the minimization (6) for D and thus, I(D∗) ≥
I(D). Let D

′
denote Hg∗(X|Z, S). Then, by definition of

the rate-distortion objective value (7), we have

I(D) = Ig∗(Z,X) +D
′
−H(X|S)

≥ R(D
′
) +D

′
−H(X|S).

(11)

If D
′
< D∗, then we already know that I(D

′
) = R(D

′
) +

D
′ −H(X|S) and that I(D

′
) > I(D∗) ≥ I(D). Moreover,

by inequality (11), ≥ I(D
′
), thus I(D

′
) > I(D) ≥ I(D

′
),

which is a contradiction. If D
′

= D∗, we already know that
I(D) ≤ I(D∗) = R(D∗)+D∗−H(X|S) = I(D

′
) ≤ I(D)

and thus that I(D) = I(D∗).
It remains to look at the case D

′
> D∗. Consider D” ∈

[D∗, D
′
]. By convexity of R(D) we have

R(D∗)−R(D
′
) ≤ ∂R(D∗)

∂D
(D∗ −D

′
)
(a)
= D

′
−D∗,

where (a) comes the fact that ∂R(D∗)
∂D = −1. It results that

by the inequality (11) I(D) ≥ R(D∗) + D∗ − H(X|S).
Moreover, we already know that R(D∗) +D∗ −H(X|S) =
I(D∗). Hence I(D∗) ≥ I(D) ≥ I(D∗), which proves the
equality in Lemma A.2.

Lemma A.4. Let D∗∗ = H(X|S). We have I(D∗∗) = 0.

Proof. Consider an encoder g that generates a random vari-
able Z independent of X . Then Hg(X|Z, S) = D∗∗

and Ig(Z,X) = 0. Therefore, g respect the constraint of
the minimization (6) for D∗∗ and I(D∗∗) ≤ Ig(Z,X) +
Hg(X|Z, S)−H(X|S) = 0. Hence, I(D∗∗) = 0.

By combining Lemma A.2 and A.4, we can show that
I(D) = 0 for D ≥ D∗∗.

A.2 Entropy Estimation

We follow a standard approach in rate-distortion [Theis
et al., 2017; Choi et al., 2019] and approximate the dis-
crete distribution p(zj |z.<j , β) by a continuous distribution
q(zj |z.<j , β) such that the probability mass of q on the inter-
val [zj − 1/2aj(β), zj + 1/2aj(β)] is equal to p(zj |z.<j , β).

Therefore,

H(z|β) = −
d∑
j=1

E [log p(zj |z.<j , β)]

= −
d∑
j=1

E

log

∫ 1

2
aj (β)

−1

2
aj (β)

q(zj + u|z.<j , β)du


+KL

p|| ∫ 1

2
aj (β)

−1

2
aj (β)

q(zj + u|z.<j , β)du


(a)

≤ −
d∑
j=1

E

log

∫ 1

2
aj (β)

−1

2
aj (β)

q(zj + u|z.<j , β)du


(12)

where (a) uses the non-negativity of the Kullback-Leibler di-
vergence KL between the true distribution p(z|β) and its ap-
proximation q(z|β) once convolved with a uniform distribu-
tion over [−1/2aj(β), 1/2aj(β)].

We follow [Salimans et al., 2017] and for each j = 1, ..., d
we model q(.|z.<j , β) as a mixture ofK logistic distributions
with means µj,k(β), scales γj,k(β) and mixtures probability
πj,k(β), which allows to compute exactly the integral term in
(12). Specifically, we compute

µj,k = µ0
j,k(β) + wµj,k(β)Γj � zj , (13)

and

log(γj,k) = γ0j,k(β) + wγj,k(β)Γj � zj , (14)

where µ0
j,k(.), γ0j,k() are functions from [0, 1] to R; wµjk()

and wγj,k() are functions from [0, 1] to Rd; and, Γj =

(1, 1, .., 1, 0, ...0) is a d− dimensional vector equal to one for
entry before j and zero otherwise. Γj guarantees that the dis-
tribution q(.|z.<j) is conditioned only on z.<jand not on any
zj′ for j

′ ≥ j.
The use of logistic distribution allows to compute the upper

bound in (12) as Hq(z|β) where Hq(z|β) is given by

−
d∑
j=1

E

[
log

(
K∑
k=1

πj,kσ

(
zj + µj,k(β)

γj,k(β)
+

1

2aj(β)

)

−σ
(
zj + µj,k(β)

γj,k(β)
− 1

2aj(β)

))]
.
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