
Light Agents Searching for Hot Information

Dariusz R. Kowalski1 and Dominik Pajak2

1School of Computer and Cyber Sciences, Augusta University
2Wrocław University of Science and Technology

dkowalski@augusta.edu, dominik.pajak@pwr.edu.pl

Abstract
Agent-based crawlers are commonly used in network
maintenance and information gathering. In order not to
disturb the main functionality of the system, whether
acting at nodes or being in transit, they need to operate
online, perform a single operation fast and use small
memory. They should also be preferably deterministic,
as crawling agents have limited capabilities of
generating a large number of truly random bits. We
consider a system in which an agent receives an update,
typically an insertion or deletion, of some information
upon visiting a node. On request, the agent needs to
output hot information, i.e., with the net occurrence
above certain frequency threshold. A desired time
and memory complexity of such agent should be
poly-logarithmic in the number of visited nodes and
inversely proportional to the frequency threshold. Ours
is the first such agent with rigorous analysis and a
complementary almost-matching lower bound.

1 The Model and the Problem
Finding elements occurring above certain frequency φ, so called
hot items, is one of the fundamental tools in mining online streams
and histogram study, c.f., [Ioannidis and Christodoulakis, 1993;
Ioannidis and Poosala, 1995]. It can also be applied in data
warehousing, data mining and information retrieval, decision
support systems, databases, caching, load balancing, network
management, anomaly detection, c.f., [Demaine et al., 2002;
Fang et al., 1998; Gibbons and Matias, 1999; Karp et al., 2003].

We consider a stream of operations, also called transactions,
involving elements in the universe N of size n. We do not limit
the distribution of elements in the stream – they could be created
arbitrarily, even by an online adversary, which aims at “fooling”
the agent processing the stream aiming to find hot elements. Each
operation involves a single element x∈N and could be either
an insertion or deletion of this element (to/from some large data
repository). Observe that if a large Θ(n) space is allowed at
an agent, then a simple heap data structure could process each
insertion or deletion operation in O(log n) time, and find the
hot items in O(1ϵ log n) time, for any stream, c.f.,[Aho et al.,
1983]. However, in case of large universe N (Big Data), such
a solution is not practical. Therefore, for more than 20 years the

research in this area focused on finding a summary data structure,
of sublinear (in n) size and processing/enlisting time.

There is, however, a subtle twist – could sublinear algorithms
return all and only hot elements? [Cormode and Muthukrishnan,
2005b] showed that enlisting all and only hot elements is
impossible with sublinear memory o(n). (They were inspired
by a seminal paper [Alon et al., 1996] proving that estimating
highest frequency is impossible in sublinear memory o(n).) This
also applies to randomized algorithms: any algorithm which
guarantees outputting all and only hot elements with probability
at least 1−σ, for some constant σ, must also use Ω(n) memory.
This generalization uses a related result on the Index problem
in communication complexity, c.f., [Kushilevitz and Nisan, 1997].
This argument implies that, if we are to use less than Θ(n)
memory, then we must sometimes output items with frequency
smaller than φ. Therefore, the main challenge is:
To design an efficient (light) deterministic online algorithm
(agent) processing any stream of operations and, upon request,
listing all elements of frequency at least φ and no element of fre-
quency at most φ−ϵ. Light, or well-scalable, agent means that
it should process an operation or output an element in time at
most polylogarithmic in n (i.e., logcn for some constant c>0),
as n= |N | could be very large, while using memory linear in 1/ϵ
and polylogarithmic in n. Light algorithms have already been
designed in some cases:
• When randomness is allowed, c.f., [Cormode and Muthukrish-

nan, 2005b]; however, false positives and false negatives are pos-
sible; also, it is not known if the result holds against adversarial
streaming, i.e., if the adversary decides on consecutive elements
in the stream online, seeing the past choices of the algorithm,

• When second pre-processing or processing in larger batches (so
called window-based) is allowed, c.f., [Misra and Gries, 1982;
Lin et al., 2005] however, such agents are not pure online.

Our results. In this work (Section 2) we design a deterministic
algorithm that overcomes all of the abovementioned obstacles:
it is fully online (it does not go backwards or look ahead when
processing current stream location), it does not use any random
bits, and it works for arbitrary streams even created by an online
adaptive adversary. It handles both insertions and deletions.
Finally, it is also light and well-scalable (as we analyze formally
in Section 3), in the sense that it uses only polylogarithmic
time per operation and returning a hot element while using
only O(log

3n
ϵ) local memory. This memory space is close to

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

363

Type of algorithm Time per item Memory Operations Reference

Deterministic – two passes O(1
φ
log(φn)) ⋆ O(1

ϵ
) insert only [Misra and Gries, 1982]

Deterministic O(1
φ
log(φn)) † O(log(n/ϵ)

ϵ
) insert only [Manku and Motwani, 2002]

Randomized LV O(1) expected O(1
ϵ
) insert only [Demaine et al., 2002]

Randomized MC – approx O(log 1
σ
) O(logn

φε2
) insert only [Charikar et al., 2002]

Randomized MC – approx O(logn·log 1
φσ

) O

(
logn·log 1

φσ

ε

)
insert & delete [Cormode and Muthukrishnan, 2005b]

Deterministic O
(

log1/(φϵ)n·logn
φϵ

)
O
(

log3n
φ2ϵ2

)
insert & delete [Ganguly and Majumder, 2007]

Deterministic O(polylog n) O(log
3n
ε

) insert & delete this paper

Table 1: Performance of best algorithms finding hot elements. LV and MC denote Las Vegas and Monte Carlo solutions, resp., while approx mean
only approximated solutions. ∗ shows additionally that an amortized processing time is O(log 1

φ
), while in † the amortized time is O(log(nφ)),

as discussed in [Cormode and Muthukrishnan, 2005b]. Amortized time denotes the total time for the whole stream processing divided by the number
of processed operations, and is a weaker measure that worst-case complexity considered in this work. In the results of the existing papers a notation
k was sometimes used that corresponds to φ=1/(k+1). Notation σ in the existing papers denotes the probability of failure. The result of [Misra
and Gries, 1982] and [Demaine et al., 2002] consider the special case, where ϵ=φ.

optimal, as we show in the proof of a lower bound in Section 4.
Table 1 compares performance of our agent with most relevant
previous work. Finally, we discuss possible extensions (including
multi-agent parallelization) and open problems in Section 5.

Model and problem. Consider an incoming very long
stream of operations on elements of a very large universe N
of size n= |N |, where each operation is of a form op(x), for
op∈{insert,delete} and x∈N . We assume that each operation
contains a O(log n)-bit identifier of an element x involved; we
will be using “element” and “item” interchangeably throughout
this paper. The net occurrence of an item x∈N in step t, denoted
by nt(x), is the number of insertions of x minus the number of
deletions of x in the first t operations of the stream. The frequency
of element x in step t is denoted by ft(x)=nt(x)/t. The stream
satisfies Basic Integrity Constraint, as defined in [Cormode
and Muthukrishnan, 2005b]: in each round a frequency of any
element is non-negative, in particular, the number of deletions
never exceeds the number of insertions of an element.

The problem of finding hot elements (also called frequent
elements) is parametrized by 1 > φ > ϵ > 0; we denote it by
finding (φ,ϵ)-hot elements. The objective is to design an agent,
consisting of data structures and algorithms, capable of processing
the operations of the stream online in sequence (without the
possibility of returning to already processed operations). At any
point, upon external request the agent should be able to return
a set of frequent elements. We will say that the output of the
algorithm is correct if the returned set contains O(1/φ) elements,
including all elements with frequency at least φ and no element
with frequency smaller than or equal to φ−ϵ.

Performance of an agent is measured in terms of time to process
a single operation from the stream, time to output all the (φ,ϵ)-hot
elements, and the total local memory used. In the measurement,
the atomic operation concerns so called Machine word: a unit of
memory that is sufficient to store a single element, step number
and all problem parameters; every basic operation on machine
words, e.g., arithmetics, is accounted as 1 in time complexity. We
aim at time and memory efficient agents, i.e., performing each

operation (or outputting an element) in timeO(polylog n) and us-
ing O(1ϵ polylog n) memory units (each storing a machine word).
Additional notation. By t denote the current step number (i.e.,
the number of operations of the stream that have already been
handled by the algorithm). We will also use notation γ= ϵ

6 .1

1.1 Previous and Related Work
Handling insertions and deletions. [Cormode and Muthukrish-
nan, 2005b] proposed randomized online algorithm with memory
O(k logk logn), processing each operation in time O(logklogm),
and outputting hot elements in time O(k log k logm), where
k= 1

φ−1. The algorithms return no items with frequencies less
than 1

k+1−ϵwith some user-specified probability. A deterministic
summary structure for data streams in [Ganguly and Majumder,
2007] finds the most frequent elements however it requires space
O(log3n/(φ2ε2)). In [Cormode and Muthukrishnan, 2005a], the
objective is to return an approximate frequency of any element
using memory Õ(1/ε) and time Õ(1), but the error was propor-
tional to ε times the total frequency of all the elements. In [Gilbert
et al., 2002b] the considered problem is to return approximate
quantiles of the data – the solution uses space O(1/ε2).

Earlier results include the problem of histogram maintenance,
which involves finding a piecewise-constant approximation of
data distribution. The optimal histogram is close to the data vector
in terms of ℓ1 or ℓ2 norms hence it approximates all the data points,
whereas in the problem of hot elements the objective is to approx-
imate the frequencies of only the most frequent elements.[Gib-
bons et al., 1997] were the first who considered insertions and
deletions in the context of maintaining various histograms, how-
ever their methods need periodical access to large portion of
the data in the presence of deletes. [Gibbons and Matias, 1998;

1Auxiliary parameters in this work are chosen for convenience of
mathematical analysis in our general streaming model, without harming
asymptotic performance. Further optimization of constants could be
possible through more detail case study and/or specific experimental
optimization for selected datasets.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

364

Gibbons and Matias, 1999] analyzed mainly insertion operations,
but also performed experimental study in the presence of deletions.
[Gilbert et al., 2002a] designed and analyzed algorithms for main-
taining histograms with guaranteed accuracy and small space.
Insertion-only streams. For streams with only insertions,
in a special case without a lower bound on the frequency of
returned elements (which is equivalent to ϵ = φ), [Misra and
Gries, 1982] designed a deterministic algorithm with processing
and enlisting time O(klogk) and memory O(k) (which in this
case equals to O(1/ϵ)). Their algorithm however is not fully
online, as it requires a second pass on the stream. In the same
model, [Demaine et al., 2002] proposed a single-pass randomized
algorithm for finding frequent elements using O(k) memory and
O(1) expected time for processing one item.

In the more general case, [Manku and Motwani, 2002]
proposed a deterministic algorithm Lossy Counting that processes
finds hot elements using O(log(n/ϵ)/ϵ) memory. [Charikar et
al., 2002] proposed a randomized algorithm using O(klogn/ϵ2)
memory and and O(log(1/σ)) time per operation that succeeds
with probability at least 1−σ.
Recent works. Recently, results on finding frequent items in
streams include models where later items in the stream have higher
weight [Wu et al., 2017; Cafaro et al., 2017], as well as many
applications, e.g., finding frequent elements in two-dimensional
data streams [Lahiri et al., 2016; Epicoco et al., 2018].

2 Algorithm
2.1 Data Structures with Operations
Our agent maintains two data structures: a disperser-based
structure of group counters and a structure of individual entries
built on the top of balanced Binary Search Trees.
Definition of disperser. Formally, a disperser G= (V,W,E)
is a bipartite graph satisfying the following criteria:
Left-degree: G has left-degree d (i.e., each vertex in V has d

neighbors in W),
Right-set: |W |=ϕℓd/δ,
Dispersion: for every L⊆ V such that |L| ≥ ℓ, the set ΓG(L)

of neighbors of L in graph G is of size at least (1−ξ)|W |.
Construction of disperser. [Ta-Shma et al., 2001] showed
a construction of a disperser with construction parameters:
left-degree d= polylog n and entropy loss δ=O(log3n), such
that for each v ∈ V neighborhood ΓG(v) can be enlisted in
time and memory polylog n. They also mentioned existence of
dispersers with d,δ=O(logn).
Group counters. To build this structure, we use a is an
(ℓ,d,ξ)-disperser graph G with entropy loss δ for parameters:
|V |=n, |W |=ϕ d

2ξγ for some sufficiently large constant ϕ>1,
0<ξ < 1/2 is an arbitrary chosen constant, d,δ depend on the
construction of disperser (see the construction comments later
on), and ℓ= δ

2ξγ (recall our notation γ= ϵ
6). Each element x∈N

is associated with a unique vertex vx∈V and each node wg∈W
is associated with a group counter g, where the group is the set
ΓG(vx)⊆V of neighbors of wg in G. The set of group counters
G(x) of an element x∈N is the set of group counters associated
with neighbors of vx in graph G, i.e., G(x)={g :wg∈ΓG(vx)}.

We will be using vx and x interchangeably, whenever it does not
raise any confusion; similarly, wg and g.

Individual entries. To account for operations on elements that
need to be counted precisely, we introduce a new structure C of
individual entries with supporting procedures. The entries will be
kept for two types of elements: candidates (potential hot elements
with large number of insertions minus deletions) and recently
modified elements (elements for which there exists an operation
insert or delete at most ⌈2/γ⌉ steps ago). The reason why we
need to keep individual entries for recently modified elements
is that we do not process an incoming operation immediately.
Instead, upon arrival of an operation our agent inserts it to an
auxiliary queue Q and updates group counters and individual
entries (at most) ⌈2/γ⌉ steps later. All these happen in the local
memory of the agent (of limited capacity) and does not cause the
agent to go backwards the stream nor looking ahead. Individual
entry of an element x consists of:

• key x of the element x∈N ;

• candidate counter c(x), which is incremented/decremented
by 1 upon handling of each insertion/deletion of element x;

• recent counter r(x), which stores the number of insertions
minus the number of deletions of element x in recent
operations in the stream;

• number of operations λ(x), which stores the number of
recent operations on element x.

In each step, our agent receives a single operation from the
stream. Note that after the algorithm processes an operation, it
cannot go back to it (i.e., its algorithm only makes a single online
pass over the stream). In the processing, the following procedures
are used on datastructure C:
check(x): it checks if there is an entry with key x. If there is,

it returns ⟨c(x),r(x),λ(x)⟩, otherwise it returns null; it takes
time O(log|C|);

add(x): it adds an entry element with key x and initial values of
all counters c(x), r(x), λ(x) equal to 0; it takes time O(log|C|);

size(): it returns the number of entries; works in time O(1);

apply recent(op,x): it applies operation op on recent counter
r(x) of element x; it checks if there is an entry with key x in
the balanced tree T ; if there is no such entry, it creates it; then
it increments λ(x) and increments or decrements (depending on
the type of op) the recent counter r(x); it takes time O(log|C|);

rollback recent(op,x): it performs rollback of operation op on
an entry with key x; it accesses entry with key x; decrements
λ(x), decrements (if op= insert) or increments (if op=delete)
r(x); it takes time O(log|C|);

apply candidate(op,x): it applies operation op on the candidate
counter of entry with key x; it finds a copy of an entry with key x
in the balanced tree and increments (if op= insert) or decrements
(if op=delete) its counter c(x) by 1; it takes time O(log|C|);

remove if small(x,s): it removes element key x if the minimum
group counter of x is below threshold s and if the number of
recent operations equals to zero (i.e., λ(x) = 0); it takes time
O(polylog n) (because this is the time to access all the group
counters to which v belongs);

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

365

get larger than(s): it returns a list of keys for which the corre-
sponding candidate counter plus recent counter exceeds s; it ac-
cesses the entries in order (the structure is sorted by c(x)+r(x))
and returns the elements as long as the value is greater than s.
It takes time proportional to the number of returned elements.

Implementation of datastructure C. Implementation of
datastructure C with time complexities of individual operations,
as claimed in the previous paragraph, can be achieved using
standard datastructures. We use a balanced Binary Search Tree T1
(e.g., Red-Black Tree, c.f., [Aho et al., 1983]), with keys being
the identifiers of all the elements for which an individual entry
exists and entries being tuples of a type ⟨r(x),c(x),λ(x),px⟩.
This ensures that searching and returning the individual entry of
an element (if it exists) takes logarithmic time. Each entry of T1
has a pointer px to an entry in a second Balanced Binary Search
Tree T2 with keys being the values of r(x)+ c(x) and entries
being tuples ⟨x,qx⟩, where qx points towards the entry of element
x in tree T1. Clearly, any update of counters r(x),c(x),λ(x)
for some element x requires logarithmic time operation to find
the entry in T1 and then logarithmic time to modify the key of
a corresponding entry in T2. Inserting and deleting elements
also requires logarithmic time. Listing the elements (operation
get larger than(s)) quickly is feasible since the inorder traversal
of tree T2 returns the elements in order of decreasing r(x)+c(x).
The time of the operation is proportional to the number of
returned elements, multiplied by O(logn).

2.2 Main Algorithm
Intuitions. There is a following interplay between the two
data structures (group counters and individual entries) in the
agent’s algorithm. The group counters determine which elements
should be included in the individual entries as candidates for hot
elements. The individual entries keep track of the operations on
the candidates for hot elements and determine which elements
should be returned as hot.

Processing of an operation. In our algorithm, each element
x ∈N has an associated set of group counters G(x) (note that
each group counter is shared by multiple elements). Processing of
operation op(x) (where op is either insert or delete) involves up-
dating (incrementing or decrementing, resp.) each of the counters
G(x). If all the group counters G(x) are above a threshold γ ·t,
it indicates that the element may be a candidate for being a hot
element. In this case, the agent checks the structure of individual
entries C and updates the candidate counter c(x) in the entry of
x, or creates it if it does not exist. In our algorithm we define
the candidate as an element with at least γ · t net occurrences
(insertions minus deletions) in the first t operations of the stream.

Group counters. A group counter g is incremented when any
element from the group (recall that the group is determined by the
topology of the used disperser G) is inserted in the stream. This
means that some element x might have all its group counters G(x)
above γ · t while its net occurrence nt(x) could be below γ · t
(because insertions of other elements have caused the counters in
G(x) to exceed the γ ·t threshold). Hence, some ’false positive’
candidates might be included in C. In our analysis we will bound
the number of such false positives. We ensure this by proving that
in any set of size Θ(δ/γ),some element will have a group counter
with value at most γ ·t. (Recall δ is the disperser’s entropy loss.)

Algorithm 1: Handling 2⌈ 1γ ⌉ consecutive operations.

1 t← current step number;
2 γ←ϵ/6,τ←⌈1/γ⌉;
// Phase 1

3 Divide elements included in C into τ chunks
E1,...,Eτ each of (at most) ⌈C.size()/τ⌉ elements;

4 for i←1 to τ do
5 Receive the next operation op(x);
6 Q.enqueue(op(x));
7 C.apply recent(op,x);
8 foreach v∈Ei do
9 C.remove if small(v,⌈γt⌉);

// Phase 2
10 for i←1 to τ do
11 Receive the next operation op(x);
12 Q.enqueue(op(x));
13 C.apply recent(op,x);

// Process two items from the queue
14 Process(Q.dequeue(),C,γ,t+2(i−1));
15 Process(Q.dequeue(),C,γ,t+2(i−1)+1);

Algorithm 2: Extracting hot elements at step t.
1 return C.get larger than((φ−ϵ)t);

Procedure Process(op(x), C,γ, t)
// Processing a single operation

1 Compute set G(x) of group counters of x;
2 foreach g∈G(x) do
3 if op = insert then g←g+1 ;
4 else g←g−1;
5 C.rollback recent(op,x);
6 if C.check(x) then
7 C.apply candidate(op,x);
8 else
9 gmin←min{g :g∈G(x)};

10 if gmin≥⌈γt⌉ then
11 C.add(x);
12 C.apply candidate(op,x);

Candidates. The key property guarantying that our algorithm is
correct is the following: in every step t, each element with at least
γ ·t net occurrences has its individual entry in C. It is nontrivial
to show, as this property must hold in every step, and the set of
such elements might change over time. We have to make sure
that when an element exceeds the threshold, an individual entry
for this element must be created immediately. We ensure this
by (1) keeping individual entries for all elements for which there
is even a single recent operation, and (2) inserting an element
into C when each of its group counters exceeds γ ·t. With these
properties, we know that each hot element is at any time in C
and, moreover, at the moment such an element is inserted into C
it is just crossing the γ ·t threshold. Because the occurrences are
counted precisely after an element is added to C, we miss only
γ ·tx net occurrences of an element x inserted into C at step tx.
Since γ < ϵ and tx≤ t, each hot element has at least (φ−ϵ) ·t

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

366

net occurrences while having an individual entry. This allows
our algorithm to correctly find all the hot elements.

Pseudo-codes. The algorithm is described on three pseudo-
codes: one handling 2⌈1/γ⌉ consecutive operations in the
stream, c.f., a pseudo-code in Algorithm 1, a sub procedure
that processes a single operation, c.f., procedure Process, and
the final pseudo-code enlisting hot elements in the processed
stream, c.f., a pseudo-code in Algorithm 2. Note that a request
to return hot elements can arrive at any step (also while handling
2⌈1/γ⌉ consecutive operations). In such case, the execution of
Algorithm 1 is paused and Algorithm 2 is immediately executed.

The latter is a single execution of procedure get larger than(s)
for s=(φ−ϵ)t, where t is the current position in the stream.

The former, Algorithm 1, works as follows. In a single iteration
of the algorithm, processes 2⌈1/γ⌉ consecutive operations, online
one-by-one. This part of the stream, also called a window (recall
though the agent does not process whole window at once, but
online one-by-one), is further divided into two sub-windows
of ⌈1/γ⌉ operations each. In the first sub-window the agent
performs Phase 1, during which it executes the cleanup of C (see
Algorithm 1 lines 4-9). During these steps, the new operations are
pre-processed (using apply recent method of C) and inserted into
the queueQ. In each step of processing the second sub-window
(Phase 2), the agent finishes processing of some pair of operations
from the queue (see Algorithm 1 lines 10-15). Hence, the length
of the queue decreases by 1 in each step of Phase 2, and thus
after the last step the queue is empty. Note that our algorithm,
even though it processes operations in windows, is strictly online,
because in each step the agent receives a new operation from the
stream and each received operation is immediately handled.

3 Analysis of the Algorithm
In the analysis, for the sake of clarity, we sometimes add lower
index t to some model variables to indicate that the values of
these variables are taken just after processing t operations from
the stream, e.g., Gt(x) denotes the set of all group counters of
element x after processing the first t operations.

The first lemma shows that there is a limited number of
elements x ∈ N , namely δ

2ξγ , having all its group counter at
least ⌈γt⌉. The second lemma shows that the number of recent
operations stored in the recent counters is at most ⌈1/γ⌉+ 1.
Thus procedure remove if small executed on all the elements
from C removes all but at most δ

2ξγ +⌈1/γ⌉+1 entries. When
an operation arrives we first pre-process it by inserting into queue
Q (and upon insertion, this operation is accounted for in a recent
counter). Some number of steps later we finish processing the
operation, by executing procedure Process with this operation
as the first argument.

Lemma 1. After processing first t stream operations by Algo-
rithm 1, for any set S⊆N , where |S|= δ

2ξγ , there is an element
s∈S, such that g<γt for some of its group counters g∈Gt(s).

Proof. First observe, that since in upon processing an operation,
we increment at most d= polylog n group counters (recall that
d is the left-degree of the disperser G used for the construction,
c.f., [Ta-Shma et al., 2001]), then after processing t operations
from the stream the sum of the group counters is at most td. Since

there are |W |= ϕd
2ξγ group counters (where a constantϕ>1), asso-

ciated 1-1 with the right vertices of disperser G, then the average
value of a group counter is at most td/|W |. At least 2ξ-fraction
of the counters must be below 1/(2ξ) times the average; thus,
there are at least 2ξ|W | group counters with values smaller than
td/(2ξ|W |)≤γt, where ξ<1/2 is a parameter of the disperser G
and W of size |W |≥ d

2ξγ is the number of its right-side vertices.
If we take any set S⊆N of size at least δ

2ξγ ,the set NG(S) of
neighbors of S in graph G is of size at least (1−ξ)|W |, by disper-
sion. Hence at least 2ξ|W |+(1−ξ)|W |−|W |=ξ|W | counters
associated with some elements in S must be below γt.

Lemma 2. At any step of the algorithm, the total number of
operation stored in recent counters is at most τ+1.

Proof. It is easy to see that the size of queueQ in Algorithm 1
is always at most τ+1. It is because it is empty at the beginning
of the algorithm and then we add a single operation to it in each
iteration of for-loop in lines 4-9 of Algorithm 1 and then in each
iteration of the for-loop in lines 10-15 of Algorithm 1 we first add
a single operation and then remove two. Since both for-loops have
τ iterations each, the maximum size of the queue is after line 12
during the first iteration of the second for-loop and equals to τ+1.
Hence the total number of operations stored in the recent counters
is also at most τ+1. It remains to observe that each operation
in the queue contributes exactly one to the sum

∑
v∈Nλ(v).

Lemmas 1 and 2 imply an upper bound on the size of structure C.

Lemma 3. 1. After each Phase 1, the number of individual
entries in C is at most δ

2ξγ+⌈1/γ⌉+1;

2. After each Phase 2, the number of individual entries in C
is at most δ

2ξγ+3⌈1/γ⌉+1.

Next we relate the number of net occurrences nt(x) of an ele-
ment x∈N in the stream by position t, to counters c(x) and r(x).

Lemma 4. After first t steps of Algorithm 1:

1. for every element x∈N , if nt(x)≥⌈γt⌉, then x∈Ct ,

2. for every element x ∈ Ct we have nt(x) − ⌈γt⌉ ≤
ct(x)+rt(x)≤nt(x).

Proof. To show (1), we need to show, that in the algorithm
after processing t′ operations all elements with at least ⌈t′γ⌉
occurrences are in C. To prove this we need to show that we never
remove from C an element with at least ⌈t′γ⌉ net occurrences
and that we always add to C an element when its number of net
occurrences becomes equal to or larger than ⌈t′γ⌉. We prove this
fact by induction. Assume that it holds for all phases up to some
step t′. We then consider the following Phase 1 and Phase 2.
Note that the queueQ is empty at the beginning of each Phase 1.
It is because each Phase 1 adds τ operations to it and each Phase
2 removes τ operations from the queue. Note that, when the
queue is empty, each group counter contains the total number
of insertions minus number of deletions of all the elements from
the group (because we processed all the operations up to this
step). This means that any element removed from C by operation
remove if small has some group counter at most ⌈tγ⌉, hence
it surely has at most ⌈tγ⌉ occurrences in the first t operations
in the stream. Additionally, we keep in C individual entry for

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

367

each element with at least one (recent) operation in the interval
[t,t+τ]. Hence after Phase 1 we have in C all the elements that
have at least ⌈tγ⌉ occurrences in the first t operation or at least
one operation in the interval [t,t+τ]. Hence after Phase 1 we
have that C contains all the elements that have at least ⌈(t+τ)γ⌉
occurrences. In Phase 2 we add elements to C only upon handling
of some t′-th operation op(x) if each group counter of x equals
to at least ⌈t′γ⌉. Hence, after handling t′-th operation in Phase
2, the claim holds. This finishes the inductive proof.

To show (2), we first observe that if an element x ∈ C,
then upon processing an opration on x, this operation is
immediately accounted for in counter r(x). Hence r(x) is
incremented/decremented upon each insertion/deletion of element
x as long as x belongs to C. Note that upon handling of
an operation, the sum r(x) + c(x) does not change. Hence
rt(x)+ct(x) stores the number insertions minus the number of
deletions of element x since the step when x was inserted into C.
This means that ct(x)+rt(x)≤nt(x). To show that left side of
(2), consider the largest time step t′<t, such that at step t′, x /∈C.
We know from (1), that nt′(x)< ⌈γt′⌉. We also know that as
long as x belongs to C, ct(x)+rt(x) counts all the occurences of
x, hence ct(x)+rt(x)=nt(x)−nt′+1(x)≥nt(x)−⌈γt′⌉.

Theorem 1. Algorithms 1 and 2 correctly solve the problem of de-
terministically finding (φ,ϵ)-hot elements usingO(log3n/ϵ)mem-
ory, O(polylog n) worst-case time for processing a single oper-
ation, and O(logn/φ) time for enlisting the (φ,ϵ)-hot elements.

Proof. To show that the main algorithm, consisting of
Algorithms 1 and 2, is correct we need to show two facts:

1. it returns all elements with at least tφ occurrences,

2. it returns no element with less than t(φ−ϵ) occurrences.
The second fact follows directly from Lemma 4(2), because if
t(φ− ϵ) > nt(x), then also t(φ− ϵ) > c(x)+ r(x), and such
element is not returned by procedure get larger than.

The first part follows from Lemma 4(1). If t≤ 1/γ, then all
the insertions minus deletions are stored in the recent counters
(i.e., rt(x) = nt(x)), hence if nt(x)≥ tφ, then r(x)≥ t(φ−ϵ)
and this element will be returned by procedure get larger than().

Otherwise, if t > 1/γ if we have an element x, with
nt(x) > tφ = t(φ − ϵ) + 6γt > t(φ − ϵ) + tγ + 5 >
t(φ− ϵ) = t(φ− ϵ)+ ⌈tγ⌉. Then by Lemma 4(1) x ∈ Cc and
ct(x)+rt(x)≥nt(x)−⌈γt⌉≥ t(φ−ϵ) and this element will be
returned by procedure get larger than().

The memory complexity of our algorithm is straighforward
from the definition of the data structures (the dominating part is the
structure of group counters, and the overhead log3n comes from
the value of δ in the constructive disperser). The time of enlisting
the hot elements is in fact: O(1/(φ−ϵ)) elements times O(logn)
per element (see the definition of procedure get larger than()),
which clearly gives O(log n/φ) for φ − ϵ = Θ(φ); in case
1/(φ − ϵ) = o(1/φ) we can run our algorithm for finding
(φ,φ/2)-hot elements rather than original parameters φ,ϵ, which
clearly returns only valid (φ, ϵ)-hot elements. Polylogarithmic
time per operation follows from the polylogarithmic time of
enlisting group counters of a single element (using disperser) and
a constant number of calls to logarithmic-time procedures on the
individual entries structure.

4 Lower Bound on Memory
Theorem 2. Any deterministic algorithm finding (φ, ϵ)-hot
elements requires memory Ω

(
1
ϵ

)
, even for insertions.

Proof. Let α=⌈ 1
φ−ϵ⌉−1. W.l.o.g. assume α∈Z. Consider any

deterministic algorithm finding (φ, ϵ)-hot elements. We design
a stream to enforce the lower bound Ω

(
1
ϵ

)
on its memory size.

Let X be an arbitrary set of x=
⌊
1−φ+ϵ

ϵ

⌋
elements. Note that

x=Θ(1/ϵ). First part of the stream S(X) associated with set X
contains α insertions of each element from set X, starting from α
insertions of the first element inX, thenα insertions of the second
element, etc. Next, the adversary adds x insertions of element v∈
N to the previously constructed stream and checks whether ele-
ment v is hot after these operations. Observe that if v /∈X, we have
f(v)= x

αx+x=
1

α+1≤φ−ϵ. Otherwise, i.e., if v∈X, we get

f(v)=
α+x

αx+x
=
α/x+1

α+1
≥

(1/(φ−ϵ)−1)·ϵ
1−φ+ϵ +1

1/(φ−ϵ)
=

ϵ
φ−ϵ+1

1/(φ−ϵ)
=φ .

Since there are
(
n
x

)
choices of set X, the number

of bits to uniquely encode all possible sets X is
log2

(
n
x

)
=Θ((1−(φ−ϵ))/ϵ · log n), which is Θ(1/ε) machine

words. Consider an algorithmA for finding (φ,ϵ)-hot elements
using less memory. Since the memory size is smaller than log2

(
n
x

)
machine words, there exist two setsX1≠X2, |X1|,|X2|=x, such
that after processing streamS(X1) the memory state is exactly the
same as after processing stream S(X2). We showed that after pro-
cessing S(X1) all and only elements from X1 can be returned by
the algorithm as hot element. On the other hand, inS(X2), all and
only elements from X2 can be returned by the algorithm as hot el-
ement. This is a contradiction with the assumption thatA is a cor-
rect deterministic algorithm for finding (φ,ϵ)-hot elements.

5 Extensions, Discussion and Open Directions
False positives/negatives and stochastic counterpart. Our ap-
proach guarantees no false-negatives, one could turn it into no
false-positives by running the agent for parameters φ+ϵ,ϵ instead
of φ,ϵ, resp. If the stream is stochastic, our agent returns all and
only elements with frequency at least φ with probability corre-
sponding to the distribution of hot items, e.g., for power-law distri-
bution the probability of false positive/negative is polynomial in ϵ.
Graphs, hypergraphs, relationships and weights. Our agent
could be applied if the universe N contains a relationshipR on
some set N , e.g., a graph or a hypergraph. Our agent not only
monitors high frequencies of (hyper-)edges, but also vertices from
set N or sets in any other sub-relation R′ of R, with a slight
performance overhead maxR∈R |{R′ : R′ ⊆ R & R′ ∈ R′}|.
Moreover, instead of inserting or deleting elements, we could im-
plement more complex operations of updating variables in set N .
Parallel version. When operations appear faster than a single
agent can handle, we can employ multiple agents to process the
operations. Parallelization of our algorithm is possible assuming
that the agents have parallel access to queueQ, structure C and the
structure of group counters. When having κ agents, for κ<τ , we
can parallelize the loops in lines 4 - 9 and 10 - 15 of Alg. 1. We
handle κ operations in each parallel step (and κmodτ once every
⌈τ/κ⌉ parallel step) and we retain the same memory complexity
of the algorithm (i.e., agents could use a small shared memory).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

368

Acknowledgments
Partially supported by Polish National Science Center (NCN)
grant 2019/33/B/ST6/02988 and by the NSF grant 2131538.

References
[Aho et al., 1983] Alfred V. Aho, John E. Hopcroft, and

Jeffrey D. Ullman. Data Structures and Algorithms. Com-
puter Science and Information Processing. Addison-Wesley,
Reading, Massachusetts, 1st edition, January 1983.

[Alon et al., 1996] Noga Alon, Yossi Matias, and Mario Szegedy.
The space complexity of approximating the frequency
moments. In STOC 1996, pages 20–29. ACM, 1996.

[Cafaro et al., 2017] Massimo Cafaro, Italo Epicoco, Marco
Pulimeno, and Giovanni Aloisio. On frequency estimation
and detection of frequent items in time faded streams. IEEE
Access, 5:24078–24093, 2017.

[Charikar et al., 2002] Moses Charikar, Kevin C. Chen, and
Martin Farach-Colton. Finding frequent items in data streams.
In ICALP 2002, pages 693–703. Springer, 2002.

[Cormode and Muthukrishnan, 2005a] Graham Cormode and
S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. J. Algorithms,
55(1):58–75, 2005.

[Cormode and Muthukrishnan, 2005b] Graham Cormode and
Shan Muthukrishnan. What’s hot and what’s not: tracking
most frequent items dynamically. ACM Transactions on
Database Systems (TODS), 30(1):249–278, 2005.

[Demaine et al., 2002] Erik D. Demaine, Alejandro López-Ortiz,
and J. Ian Munro. Frequency estimation of internet packet
streams with limited space. In Algorithms - ESA 2002,
10th Annual European Symposium, Rome, Italy, September
17-21, 2002, Proceedings, volume 2461 of Lecture Notes in
Computer Science, pages 348–360. Springer, 2002.

[Epicoco et al., 2018] Italo Epicoco, Massimo Cafaro, and
Marco Pulimeno. Fast and accurate mining of correlated
heavy hitters. Data Mining and Knowledge Discovery,
32(1):162–186, 2018.

[Fang et al., 1998] Min Fang, Narayanan Shivakumar, Hector
Garcia-Molina, Rajeev Motwani, and Jeffrey D. Ullman.
Computing iceberg queries efficiently. In VLDB 1998, pages
299–310. Morgan Kaufmann, 1998.

[Ganguly and Majumder, 2007] Sumit Ganguly and Anirban
Majumder. Cr-precis: A deterministic summary structure for
update data streams. In Combinatorics, Algorithms, Proba-
bilistic and Experimental Methodologies, First International
Symposium, ESCAPE 2007, Hangzhou, China, April 7-9,
2007, Revised Selected Papers, volume 4614 of Lecture Notes
in Computer Science, pages 48–59. Springer, 2007.

[Gibbons and Matias, 1998] Phillip B. Gibbons and Yossi
Matias. New sampling-based summary statistics for improving
approximate query answers. In SIGMOD 1998, Proceedings
ACM SIGMOD International Conference on Management
of Data, June 2-4, 1998, Seattle, Washington, USA, pages
331–342. ACM Press, 1998.

[Gibbons and Matias, 1999] Phillip B. Gibbons and Yossi
Matias. Synopsis data structures for massive data sets. In
SODA, pages 909–910. ACM/SIAM, 1999.

[Gibbons et al., 1997] Phillip B. Gibbons, Yossi Matias, and
Viswanath Poosala. Fast incremental maintenance of
approximate histograms. In VLDB 1997, pages 466–475.
Morgan Kaufmann, 1997.

[Gilbert et al., 2002a] Anna C. Gilbert, Sudipto Guha, Piotr
Indyk, Yannis Kotidis, S. Muthukrishnan, and Martin Strauss.
Fast, small-space algorithms for approximate histogram
maintenance. In STOC 2002, pages 389–398. ACM, 2002.

[Gilbert et al., 2002b] Anna C. Gilbert, Yannis Kotidis,
S. Muthukrishnan, and Martin Strauss. How to summarize
the universe: Dynamic maintenance of quantiles. In VLDB
2002, pages 454–465. Morgan Kaufmann, 2002.

[Ioannidis and Christodoulakis, 1993] Yannis E. Ioannidis and
Stavros Christodoulakis. Optimal histograms for limiting
worst-case error propagation in the size of join results. ACM
Trans. Database Syst., 18(4):709–748, 1993.

[Ioannidis and Poosala, 1995] Yannis E. Ioannidis and
Viswanath Poosala. Balancing histogram optimality and
practicality for query result size estimation. In Proceedings
of the 1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, USA, May 22-25,
1995, pages 233–244. ACM Press, 1995.

[Karp et al., 2003] Richard M. Karp, Scott Shenker, and
Christos H. Papadimitriou. A simple algorithm for finding
frequent elements in streams and bags. ACM Trans. Database
Syst., 28:51–55, 2003.

[Kushilevitz and Nisan, 1997] Eyal Kushilevitz and Noam
Nisan. Communication complexity. Cambridge University
Press, 1997.

[Lahiri et al., 2016] Bibudh Lahiri, Arko Provo Mukherjee, and
Srikanta Tirthapura. Identifying correlated heavy-hitters in
a two-dimensional data stream. Data mining and knowledge
discovery, 30(4):797–818, 2016.

[Lin et al., 2005] Chih-Hsiang Lin, Ding-Ying Chiu, Yi-Hung
Wu, and Arbee LP Chen. Mining frequent itemsets from data
streams with a time-sensitive sliding window. In Proceedings
of the 2005 SIAM International Conference on Data Mining,
pages 68–79. SIAM, 2005.

[Manku and Motwani, 2002] Gurmeet Singh Manku and Rajeev
Motwani. Approximate frequency counts over data streams.
In VLDB 2002, pages 346–357. Morgan Kaufmann, 2002.

[Misra and Gries, 1982] Jayadev Misra and David Gries. Find-
ing repeated elements. Sci. Comput. Program., 2(2):143–152,
1982.

[Ta-Shma et al., 2001] Amnon Ta-Shma, Christopher Umans,
and David Zuckerman. Loss-less condensers, unbalanced
expanders, and extractors. In STOC 2001, pages 143–152.
ACM, 2001.

[Wu et al., 2017] Shanshan Wu, Huaizhong Lin, Yunjun
Gao, Dongming Lu, et al. Novel structures for counting
frequent items in time decayed streams. World Wide Web,
20(5):1111–1133, 2017.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

369

	The Model and the Problem
	Previous and Related Work

	Algorithm
	Data Structures with Operations
	Main Algorithm

	Analysis of the Algorithm
	Lower Bound on Memory
	Extensions, Discussion and Open Directions

