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Abstract

While the stable marriage problem and its variants
model a vast range of matching markets, they fail
to capture complex agent relationships, such as the
affiliation of applicants and employers in an inter-
view marketplace. To model this problem, the ex-
isting literature on matching with externalities per-
mits agents to provide complete and total rank-
ings over matchings based off of both their own
and their affiliates’ matches. This complete order-
ing restriction is unrealistic, and further the model
may have an empty core. To address this, we in-
troduce the Dichotomous Affiliate Stable Matching
(DASM) Problem, where agents’ preferences in-
dicate dichotomous acceptance or rejection of an-
other agent in the marketplace, both for themselves
and their affiliates. We also assume the agent’s
preferences over entire matchings are determined
by a general weighted valuation function of their
(and their affiliates’) matches. Our results are three-
fold: (1) we use a human study to show that real-
world matching rankings follow our assumed valu-
ation function; (2) we prove that there always exists
a stable solution by providing an efficient, easily-
implementable algorithm that finds such a solution;
and (3) we experimentally validate the efficiency of
our algorithm versus a linear-programming-based
approach.

1

In many markets, two classes of participants seek to be paired
with each other. For example, in labor markets, workers are
paired with firms [Perrault ef al., 2016]; in online advertising,
eyeballs are paired with advertisements [Shen et al., 2020;
Dickerson er al., 2019]; and, in morally-laden settings such
as refugee resettlement and organ donation, refugees are
paired with new housing locations [Jones and Teytelboym,
2018] and donors are paired with needy recipients [Ashlagi
and Roth, 2021; Li et al., 2014], respectively. The field
of market design purports to provide analytically-sound and
empirically-validated approaches to the design and fielding of
such matching markets, and necessarily joins fields such as
economics and computer science [Roth, 2002; Roth, 2018].

Introduction
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The seminal work of Gale and Shapley [1962] charac-
terized the stable marriage problem, where both sides of a
market—workers and firms, refugees and settlement loca-
tions, etc.—express preferences over the other side, and the
goal is to find a robust matching that does not unravel in the
face of agents’ selfish behavior. Myriad generalizations were
proposed in the following decades; see Manlove [2013] for
an overview of the history and variants of these problems.
Largely, these models assume that agents’ preferences only
consider the direct impact of an outcome on that agent.

One extension of stable marriage is matching with exter-
nalities wherein agents on each side of a two-sided market
have preferences over their own match and the matches of
others. These models often incorporate many more realis-
tic and complex assumptions which makes for a richer and
harder to analyze matching setting [Pycia, 2012; Echenique
and Yenmez, 2007; Baccara et al., 2012]. Sasaki and
Toda [1996] first introduced matching with externalities,
where agents’ decisions to deviate from a proposed match
depended on reasonable assumptions for the reaction of other
agents to the deviation. Hafalir [2008] and Mumcu and
Saglam [2010] expand upon this stability notion for one-to-
one matchings with further restrictions on agent behavior;
while Bando [2012; 2014] extends the analysis to many-to-
one matchings where firms consider other firms’ externalities.

Much work in the matching with externalities literature
focuses on the appropriateness of various stability defini-
tions. Much analysis then centers on the complexity and
hardness of the proposed matching algorithms. For instance,
Brénzei [2013] models agent values in matching with exter-
nalities as arbitrary functions and creates a valuation as a
sum over the agent’s values over all matches. In our work,
an agent values a match as either acceptable or unaccept-
able (dichotomously), and we do a (weighted) sum over all
relevant matches for the agent to get their valuation. While
there is existing work on the complexities of these match-
ings, eliciting general preferences over a complex market can
be intractable, both with respect to human ability and com-
putational/communication complexity [Rastegari et al., 2016;
Sandholm and Boutilier, 2006]. One commonly imposed as-
sumption is that of dichotomous preferences [Bogomolnaia
and Moulin, 2004], which coarsely places alternatives into
acceptable or unacceptable bins.

This work is inspired by Dooley and Dickerson [2020],
which explores matching with externalities in academic fac-
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ulty hiring; however, in our work, we analyze the marketplace
with dichotomous preferences. Our main motivation is the
academic faculty inferview marketplace, where we match in-
terview slots for universities and graduating students, and uni-
versities care about their graduating students’ matches. Other
motivations include playdate matching, study abroad, student
project allocation, and the dog breeding market.

We note that the only simplification we introduce to the
Dooley and Dickerson model is that of binary preferences.
This assumption is prevalent in various matching settings
like resource allocation [Ortega, 2020] and more specifi-
cally in the allocation of unused classrooms in a school set-
ting [Kurokawa et al., 2018] and barter exchange [Aziz,
2020]. With this additional assumption, we are able to pro-
vide positive and constructive principled approaches to clear-
ing (dichotomous) affiliate matching markets.

QOur contributions. We view our contributions as follows.
* We introduce the Dichotomous Affiliate Stable Match-
ing (DASM) Problem, which characterizes the affili-
ate matching problem under dichotomous preferences to
better accommodate realistic preference elicitation con-
straints, along with a valuation function for agents to
rank matches based off their preferences, parameterized
by an employer’s relative valuation of its affiliates’ and
its own matches (§2);
We run a human survey to provide support for the model
design choices, showing that real people in some situa-
tions may, indeed, adhere to our valuation function un-
der different parameters (§3);
We propose an efficient algorithm to solve the DASM
Problem (§4), i.e., yield a stable matching; and
We perform experimental validation of our algorithmic
approach to verify its correctness and scalability (§5).

2 Model Definition

We now present our matching model. This model represents
hiring interview markets where applicants have previous af-
filiations with employers and preferences are encoded as bi-
nary values that denote interest or disinterest (i.e., dichoto-
mous preferences [Bogomolnaia and Moulin, 2004]). We de-
scribe the model in the most general many-to-many setting.
We formalize the model, including defining valuation func-
tions (§2.1), stability, and other useful concepts (§2.2).

2.1 The Dichotomous Affiliate Stable Matching
Problem

In the Dichotomous Affiliate Stable Matching (DASM) Prob-
lem, we are given sets A of n applicants and E of m em-
ployers. For every a € A (resp. e € FE), we are given
a complete preference function pr, : E — {0,1} (resp.
pr¢ : A — {0,1}, the notational difference will be clear
later). If v and v are on opposite sides, then we say w is
interested in or likes v if pr,(v) 1 (or pri(v) = 1if
u € FE), otherwise u is disinterested in v. The many-to-
many matching scenario specifies that v might be matched
with as many as ¢(u) agents on the other side of the market,
where ¢(u) is the capacity of u. A valid matching is a func-
tion p : AU E — 24YF such that for any a € A (resp.
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e € E): p(a) C E (resp. p(e) C A), |u(a)] < q(a) (resp.
|u(e)| < qle)), and e € p(a) if and only if @ € u(e).

One defining aspect of this market is the notion of affili-
ates which represent previous relationships between agents.
Let aff : E — 24 return an employer’s set of affiliate. For in-
stance, in Figure 1, a; is e ’s affiliate, and a5 and ag are both
eo’s affiliates. Then aff(e;) = {a1}, aff(es) = {az,as},
and aff(eg) = (. Note that aff over all e € E forms a
disjoint cover of A, so each applicant is the affiliate of ex-
actly one employer. In this model, e cares about its affiliates’
matches. To express this, for any a € aff(e), e has prefer-
ences pr¢ : E — {0,1}. To account for these preferences,
e’s valuation of matchings is over tuples of its own and its af-
filiates’ matches. While these valuations may be general, we
will examine a natural and flexible additive valuation method.

Definition 1. For any e € E and a € A, we define the
weighted valuation function over a match 1 for a given
weight A € [0,1] as:

val () = 3w +A S 3 e

a*epu(e) a;€aff(e) e*ep(a;)

val, () = Y pra(e”).

e*€un(a)

And we say e or a prefers 1o ' (u = p' or p =4 i) if and
only if val, () > val.(u') or val, (i) > val,(u').

This function does not necessarily create a total order over
matchings, as an agent may have the same valuation for two
distinct matchings. Then it does not prefer one matching to
another. In the employer version, A parameterizes how em-
ployers weigh the value of their affiliates’ matches with re-
spect to their own matches. It may be agreed upon by em-
ployers or set by a centralized system in order to avoid po-
tential abuse of this parameter. If A = 1, then an employer
cares about each affiliate match as much as each of its own
matches. If A = 0, employers do not care about their affili-
ates” matches. If A\ = e for small € > 0, employers care about
their matches first and use affiliates’ matches as tiebreakers.

To understand the role of A, consider again our example
in Figure 1 and let A = 1. Then e5’s valuations of u and p/’
are: vale, (1) = 3 (since it likes one of its matches and both
of its affiliates’ matches) and val., (11') = 2 (since it likes
both of its matches). Therefore p ., p'. If A = ¢, then
es’s valuations of the matchings are: val., () = 1 + 2¢ and
vale, (') = 2. This means p <., p'. As we discuss later,
this illustrates how A can affect which matchings are stable.

2.2 Blocking Tuples and Stability

Next, we define the notion of stability in the DASM Prob-
lem. As in the standard stable marriage problem [Gale and
Shapley, 1962] and its many variants, our notion of stability
relies on the (non)existence of blocking tuples. The blocking
tuple—traditionally, blocking pair—is designed to identify
a set of unmatched individuals who might cheat in order to
match with each other. We formalize cheating as follows:

Definition 2. Consider an instance of the DASM Problem
with matching 1. An agent a € A U E cheats if they break a
match with some agent a' € u(a).
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Figure 1: An example matching problem. On the left are affiliations and preferences for each agent. The capacity of each agent is represented
with squares. For instance, ez has aff(e2) = {a2,as}, g(e2) = 2, and it approves of a; and a3 for itself, ey for affiliate az, and e; and es
for affiliate a3. On the right, we have a potential matching p with an alternate matching . Note that p’ is the swapped matching of u with

respectto 7 = (as, az, az, ez, e1,€1).

Like in the standard stable marriage problem, we would
like to ensure that no two agents' @ € A and e € E will
agree to cheat on their assigned match to (possibly) match
with each other assuming no other agents cheat. In stable
marriage, the only way (up to) two agents will cheat, and thus
cause instability, is if they prefer each other to their matches.

In our setting, stability is not as simple. Leta € A and e €
E be two agents who consider cheating on matches ¢’ € p(a)
and a’ € p(e) respectively. Once €’ and a’ lose their matches
with a and e, they could naturally consider filling that empty
space in their capacities by matching with each other (this is
not cheating). In stable marriage, we do not need to model
€”’s and a’’s reaction because this does not impact e’s and
a’s decisions to cheat. In the DASM Problem, however, e’s
preference profile is more complicated. For instance, if a’ €
aff(e), and e wants a’ to be matched with ¢/, e might decide
to cheat on a’ so that a’ will fill its new empty capacity by
matching with e’. Note that this still does not require a’ or
€’ to cheat, since they are only forming matches instead of
breaking them.

To this end, we define our notion of the blocking tuple to
capture not only the cheating between two agents, but also the
responses of those whose matches have been broken.

Definition 3. Consider an instance of the DASM Problem
with matching 1 and some tuple T = (aa,...,ay) where
a; € AUE foralli € [k]. Construct ' with the following
process:

1. Allow up to two agents in T to cheat on one match each.
If exactly two agents cheat, they then match with each
other. Otherwise, the sole cheater may match assuming
this new match does not violate any capacities.

2. All other agents in T are then allowed to form new
matches up to their capacity.

Then T is a blocking tuple if: (1) all cheating agents strictly
prefer ' to u, and (2) for any other agent a € T that forms
a match with o' € T, a strictly prefers p’ to ' \ {(a,a’)}.
An instance of the DASM Problem is stable if and only if it
contains no blocking tuples.

In stable marriage, this becomes the same standard notion
of cheating, and therefore this is a natural extension of the sta-
ble marriage blocking pair. In Definition 3, a cheating agent
would only cheat if they know other agents could respond in a
way such that the resulting matching is preferable to the orig-
inal matching. After cheating occurs, non-cheating agents
will respond with a match if they would prefer to have that

'In future work, this could be generalized to coalitions, or larger
sets of agents.
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match in the final matching. Thus, non-cheating agents are
not performing calculated activity; they are simply reacting.

Interestingly, we only need to consider certain blocking tu-
ples of size at most six to determine instability. See Propo-
sition 2 and the full version of our paper for reasoning and a
proof. These properties are captured by the potential blocking
tuple, a tuple of size at most six with the appropriate agents
such that, given the right preference profiles, they could be
blocking tuples. To accommodate the sextuplet notation, we
introduce the “empty agent”, ~, and a set £ = {~}, which rep-
resents the absence of an agent. Formally, +y is an agent in the
system with no side or affiliation and zero capacity. Addition-
ally, given a matching u, we must notate the agents who have
remaining capacity. Let N’f ={a€ A: |u(a)] < g(a)} and
Ny ={e€E:|u(e) <qle)}.

Definition 4. Consider an instance of the DASM Problem
with matching p. A tuple T = (a,ad’,d” e, €', €e") is a poten-
tial blocking tuple for (. if all the following hold:

1.ace A

e € B\ ju(a)

a' € u(e)UE, wherea' € Eonlyife € Nf

e € pla)UE, wheree' € Eonlyifac N;:‘

a’ € (N/? UEU{d'})\ u(e), wherea" € Eife’ € &£
e’ e (N/iE UEU{e'}) \ ula’), where e’ € Eifa’ € €
a"=d ¢ Eifandonlyife’ =¢e ¢ &

We now clarify the purpose of each condition respectively:

N S A BN

1. a must be an applicant.

2. e must be an employer that is not matched with a (else
they cannot form a blocking tuple).

a’ is e’s old match that is broken. If e simply has addi-
tional capacity, then a’ € £ is an empty agent.

€’ is a’s old match that is broken. If a simply has addi-
tional capacity, then ¢’ € £ is an empty agent.

. a” is €”’s new match. It must have unmatched capacity,
or (if ¢’ and o’ decide to match) is instead a’ itself. It
could be an empty agent if ¢’ does not rematch (and must
be if ¢’ is an empty agent). Additionally, we must ensure
it was not previously matched to e’.

e’ is a’’s new match. It must have unmatched capacity,
or (if ¢’ and a’ decide to match) is instead e’ itself. It
could be an empty agent if @’ does not rematch (and must
be if @’ is an empty agent). Additionally, we must ensure
it was not previously matched to a’.

3.

4.



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

7. If ¢’ matches with a’ (where o' = a” ¢ &), then o’ must

match with e’ (where ¢/ = ¢’ ¢ &).

Consider Figure 1 and tuple (as, as, as, e2,e1,€1). Some
agents are duplicated in this tuple; this is okay. This potential
blocking tuple describes the following changes: (1) a3 breaks
its match with ey, (2) e, breaks its match with ao, (3) as and
e match together, and (4) a and e; match together. Note
that the last part occurs because as and e; appear twice in
the tuple. If we rewrite the tuple as (as, as,a, ez, e1,¢€})
to distinguish duplicate instances, then a} indicates that e;
matches with as and €] indicates ay matches with e;.

Definition 4’s matching constraints ensure that broken and
formed matches in this process make sense (e.g., no two
agents will be matched to each other twice). When we con-
sider a blocking tuple, we must compare the matching to the
alternative matching that occurs after swapping as described.

Definition 5. Consider an instance of the DASM Prob-
lem with matching 11 and a potential blocking tuple T =
(a,a',a" e e e"). Let i be defined by starting at p, break-
ing the matches (a,e’) and (d',e), adding match (a,e), and
adding matches (o', ¢"") and (a”, €') if and only if those vari-
ables are not in € respectively. Then 1 is the swapped match-
ing of p with respect to T.

In Figure 1, p’ is the swapped matching of p with respect
to (as, ag, as, €2, €1, eq). Note that it is a valid matching.
Proposition 1. If u is a matching and 1 is the swapped
matching of | with respect to some potential blocking tuple
T, then 1/ is a matching.

See our full paper for a proof. Now we show that the set of
potential blocking tuples are sufficient consideration to show
that an instance of the DASM Problem is unstable.

Proposition 2. Consider an instance of the DASM Problem
with matching . Then i is unstable if and only if there ex-
ists a potential blocking tuple T = (a,d’,a” e, €', e") with
respective swapped matching 1 for p such that:

1op=<q

p=e !

Ifa ¢ &, then p' \ {(a’,€")} <o pt/
Ife ¢ & then '\ {(a”,€)} <o u’
Ifa" ¢ & then p' \ {(a”,€")} <ar p
CAfe" ¢ E, then p/ \ {(d, 6”)} <er

See our full paper for a proof. In the rest of the paper, we
assume all blocking tuples take this form. The first two con-
ditions ensure that a and e prefer the new match p’ to . The
next four state that in the context of 1/, all of a’, €', a”, and

" 'must actively desire the new match. In these conditions,
we only care if a’, a”, €/, and € are not in £ (i.e., they exist).

Consider again Figure 1 when A\ = 1. Recall that 7 =
(as,aa,as,eq,e1,e1) is a potential blocking tuple for y and
1 is the swapped matching of 1 with respect to 7. When A =
1, we already showed that ey prefers p’ to p. Additionally,
since a3 doesn’t like its match in g but likes its match in ',
it also prefers 11/. Once a3 and e; have broken their matches
with ay and e respectively, as and e; have an active interest
in matching. This implies that 7 satisfies all constraints in
Proposition 2 and is a blocking tuple. When A = ¢, since es
does not prefer 1 to , this is not a blocking tuple.

SNRVRF SN
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A=1
Scenario 1 2 3 4 5 6 7 8
Random 10% 5% 5% 3% 100% 10% 10% 3%
Observed Unprimed 41% 31% 30% 56% 100% 42% 25% 30%
Observed Primed 41% 44% 35% 55% 100% 51% 22% 45%
A=c¢€
Scenario 1 2 3 4 5 6 7 8
Random 3% 1% 1% 3%  20% 3% 3% 1%
Observed Unprimed 14% 15% 18% 56% 30% 17% 16% 17%
Observed Primed 18% 34% 20% 55% 37% 28% 10% 34%

Table 1: Percentage of respondents who followed a weighted valua-
tion function with A = 1 and A = ¢ for both primed and unprimed
subjects. These are compared to the expected percentage if individ-
uals were choosing randomly.

3 Evidence from a Human Experiment

This survey evaluates the applicability of our valuation func-
tion proposed for the DASM Problem. More details of meth-
ods and results can be found in the full version of our paper.

In the survey, participants were asked to identify as a uni-
versity in a DASM Problem instance with an affiliated grad-
uating student. Across multiple problem instances, the sur-
vey presented the user with binary preferences over relevant
matches and five possible matchings. It then asked the users
to rank the matchings. For each question, we found the pref-
erence profiles that emerge from our weighted valuation func-
tion when A € {¢, 1} and then computed: (1) the chance of
randomly selecting the profiles, and (2) empirical adherence
to the profiles. These results are depicted in Table 1.

Our results show that participants’ ranking adherence to
each valuation function is statistically significant, though not
consistent. For a deeper quantitative analysis, see our full
paper. More qualitatively, participants expressed differing
philosophies. Some participants were very direct with their

trategles even stating: “My needs first, then Ryan’s”, where
Ryan is the example affiliate. We see that our two valua-
tion function versions align with this general strategy. On the
other end of the spectrum, there were participants who were
uncomfortable with the ability to express a preference over
their affiliate’s match. One participant said, “If Ryan doesn’t
get matched with my school, why would I care what others he
matched with? Is it any of my business?” This indicates that
there are clearly different strategies, but also different philo-
sophical approaches to the affiliate matching problem.

4 DASM Solved in Quadratic Time

We now introduce a quadratic (in the number of agents) al-
gorithm, SmartPriorityMatch, to solve the DASM Problem.
Inputs are assumed to be a A of applicants and E of employ-
ers, where each agent reports all appropriate approval lists
(i.e., binary vectors). Let n = |A| and m = |E|. All proofs
and pseudocode can be found in the full version of this paper.

Theorem 1. SmartPriorityMatch solves the DASM Prob-
lem in O(nm) time for any X € |0, 1].

SmartPriorityMatch puts a “priority level” on each
applicant-employer pair. For instance, a pair (a,e) € A X E
where a € aff(e) and each agent is maximally interested in
the match (pré(a) = pre(e) = pr,(e) = 1) is a “highest”
priority edge. For each priority level, we construct bipartite
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graphs with partitions A and E where edges correspond to
pairs of that priority level. The edge sets for the different pri-
ority levels (from highest to lowest priority) are as follows:

Go- Edges between an e € E and a € aff(e) if they have
maximum interest for the match: pré(a) = 1, pr¢(e)
1,and pr (e) = 1.

Edges between an e € E and a € A\ aff(e) if they are
interested in each other: pré(a) = 1 and pr,(e) = 1.

G-

Go- Edges between an e € E and a € aff(e) if they are
interested in each other for their own match: pré(a) = 1

and pr,(e) = 1.

G3- Edges between ane € E and a € aff(e) if e is interested

in itself for a and « is interested in e: pr%(e) = 1 and
pr,(e) = 1.

Next, we would like to run simple maximal b-matchings
(i.e., many-to-many matchings) on these graphs in this order,
decreasing the quotas as matches are made. Unfortunately,
this method cannot ensure stability. Call this algorithm Prior-
ityMatch. While this does not provide us with the desired re-
sults, it will set a strong foundation for SmartPriorityMatch.

Lemma 1. There exists a DASM Problem instance where
PriorityMatch may not find a stable matching.

Intuitively, PriorityMatch’s fault is that it is not sufficiently
forward-looking. For instance, an employer e that can match
with one of two of its affiliates a; and as in Gy cannot greed-
ily distinguish between the two. Therefore it could arbitrarily
match with a1, and ay could match with another employer €’
in G1. If e likes the match (¢’,a1) and not (¢, az), then it
should have matched with ay and let a; match with ¢’. This
creates a blocking tuple (e, e, ¢’, as,a1,ar). This problem
only arises when an employer might match with its affiliates
who have the opportunity to match with other employers later
on, which only happens on G. However, we find that Pri-
orityMatch could find a stable matching for these examples
given a smart enough way to find the maximal b-matchings.

Lemma 2. PriorityMatch solves the DASM Problem with
parameter \ € [0,1] in O(nm) time if it can ensure that for
any potential blocking tuple T = (a,a’,a”,e, e’ e") such
that a,a’ € aff(e) and a prefers the swapped matching of
with respect to T, then:

pré (@) +Apre(e)+Aprd (€) > pre(a)+pra(e)+Apre (e”).

To achieve this, our maximal b-matchings must depend on
lower-priority graphs. Instead of running the matchings in
order, we will use reserved matchings, defined as follows.

Definition 6. Consider a graph G = (V, E,q,S, ), where
V, E, and q are the standard b-matching parameters, S C 2V
is the set of affiliations, and r : S — N is a reservation
Sunction such that r(S) < |S| forall S € S. A reserved
maximal b-matching 1 is a b-matching that is maximal under
the additional constraint that for each S € S, there are at
least 1(S) elements in S that have not met their capacity:

[{s €5 :|uls)l <a(s)} = r(S).
Consider an affiliation with 10 vertices, each with 100 ca-
pacity. The affiliation might have a reservation of 9 (of a max
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possible 10). We could match each vertex in the affiliation 99
times and one vertex 100 times. Only one vertex has reached
its capacity, thus satisfying the reservation. We defer to our
full paper for a simple greedy solution to this problem.

Our algorithm starts with a reserved matching on Gj,
where reservations ensure we can still find a maximal match-
ing on G afterwards. Since each ¢ € A may only be adjacent
to affﬁl(a) in Gy, Gy is a set of disjoint stars with centers
e € E. This allows e to match to any subset S C Ny(e) of
size exactly |S| = min(|No(e)|, qo(e)), where Ny(e) is the
neighborhood around e in G and go(e) is the capacity of e
in G (which is just its starting capacity). To ensure e can do
this after a reserved maximal b-matching in G, we must re-
duce the quota of e in G; to g1 = qo(e) —min(|Ny(e)|, go(e))
and ensure that at least min(|Ny(e)|, go(e)) of its neighbors
in Ny (e) have at least one capacity remaining via a reserva-
tion on Ny(e). Therefore, when we run the reserved maximal
b-matching on Gy, we use affiliations S; = {Ny(e),e € E}
with reservations r(Ny(e)) = min(|No(e)|, go(e)).

‘We now describe our algorithm. First, run a reserved maxi-
mal b-matching on GG;. Next, run the standard PriorityMatch
process on G, G, and G3. For more details, see the full
version of our paper. The four resulting matchings are dis-
joint, and we can show that SmartPriorityMatch is in fact an
intelligent implementation of PriorityMatch.

Lemma 3. SmartPriorityMatch’s output will always be
equivalent to that of PriorityMatch with a specific maximal
matching function.

Finally, we can show that SmartPriorityMatch satisfies
the conditions posed in Lemma 2. This concludes Theo-
rem 1. We briefly note that this algorithm solves the problem
for any weight A € [0, 1],2 however the algorithm itself does
not depend on A. Thus, there must exist a matching that is
stable for all \. We conjecture that increasing the value of
A simply makes stability more difficult to achieve (i.e., for
1> X > )\ >0, astable solution for ) is also stable for \').

5 Scalability Experiments

This section provides experimental validation for the
polynomial-time scalability of SmartPriorityMatch, as ana-
lyzed in Theorem 1. To the best of our knowledge, our model
is new, so there is no direct benchmark from the literature.
Because of this, following the path of others (e.g., recently
Cooper and Manlove [2020]), we instead model our prob-
lem as an integer linear program (ILP) and compare against
that baseline. As in Cooper and Manlove [2020] and other
works, we also use that ILP as a “safety check” to ensure
that our algorithmic approach and a general mathematical-
programming-based solution method align in their results.
The formulation of the ILP and its proof can be found in our
full paper. It translates the set of potential blocking tuples
(i.e., our blocking tuple search space) into ILP constraints.
Since there are O(n? - m?) potential blocking tuples on n ap-
plicants and m employers, the ILP has O(n3-m?) constraints.

To confirm the efficiency of SmartPriorityMatch, we
compare it to the baseline ILP described in the full version of

“We additionally note that with a slight modification to edge pri-
ority, our algorithm could work for A € [0, c0).
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Figure 2: Runtime of SmartPriorityMatch (versus the ILP in 2a)
while varying: number of employers (m), applicant capacities (q),
and number of affiliates per employer (n/m). Note that the number
of applicants is m and the capacity of the employers is ¢ - n/m.

our paper. We use similar runtime experiments used by Tzi-
avelis et al. [2019] adapted to the DASM setting. We have
four parameters: (1) m, the number of employers, (2) n/m,
the number of affiliates per employer, (3) ¢, the capacity for
each applicant, and (4) ¢ € (0, 1), a threshold parameter. This
means that the number of applicants is n, and we let employer
capacity be ¢ -n/m. We use Tziavelis et al. [2019]’s Uniform
data, where we find a uniform random total ranking for each
agent and we use the threshold parameter such that an agent
with ranking r is approved if » > ¢ - n. In other words, for
each agent, we assign a preference of 1 to the top 100t% of
its uniformly randomly ranked preferences. In Figure 2, we
run 50 trials for each setting and take the average runtime.

We then vary m from 5 to 20 and compare the perfor-
mances of SmartPriorityMatch and the ILP (Figure 2a) with
n/m = 2,q = 3,and t = 0.5 fixed. Since the ILP requires
O(n®-m?) constraints, its runtime is very large for even small
n. Due to our system’s space constraints, we were only able
to go up to n = 20. We plotted the performance of the ILP
with and without the time to initialize the ILP. We see that
SmartPriorityMatch exhibits much better performance, par-
ticularly when we include the time to initialize the ILP itself.
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Next we plot SmartPriorityMatch’s performance on
larger sets, varying parameters one at a time. With m from 10
to 4000 (Figure 2b), we further support its scalability over the
ILP. Varying ¢ from 5 to 500 (Figure 2c), we see SmartPrior-
ityMatch is dependent on capacity, but in practical ranges, it
has less of an impact than varying m. With n/m from 5 to 30
(Figure 2d), we see that increasing n/m has a significant im-
pact on runtime. Finally, varying ¢ from 0.10 to 0.90, smaller
thresholds appear to increase the runtime (i.e., when agents
have a lower bar for expressing interest in other agents).

6 Conclusions & Future Research

We propose a new model, the DASM Problem, that char-
acterizes Dooley and Dickerson [2020]’s affiliate matching
problem under dichotomous preferences. Dichotomous, or
approval-based, preferences are often more realistic for pref-
erence elicitation and their application to this model allows
for stronger theoretical results. To rank matchings, we use a
weighted function that computes agent matching valuations
based off their and their affiliates’ preferences. In a human
survey, we support the real-world value use of the valuation
function with different weights. We then develop (and prove)
a quadratic time algorithm to solve the DASM Problem, ex-
perimentally validating its efficiency against a baseline ILP.

This work could be extended by considering more general
valuation functions, particularly by giving employers more
freedom over the relative value of their and their affiliates’
matches. We may draw intuition from recent “same-class”
preference extensions to the stable marriage problem such
as the work of Kamiyama [2020] or from stable matching
work with constraints [Kawase and Iwasaki, 2020]. Simi-
larly, we should consider concerns of fairness (other than sta-
bility). Fair stable matching has a long history [Feder, 1995;
McDermid and Irving, 2014], with hardness results [Gupta et
al., 2019] for various forms of matching (e.g., with incom-
plete preferences [Cooper and Manlove, 2020] or other fair-
ness constraints such as median-ranked assignment [Sethura-
man et al., 2006], equitable matching [Tziavelis et al., 2019],
procedural fairness [Tziavelis et al., 2020], etc.), many of
which could be applied to the DASM setting.
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