
Greybox Automated Algorithm Configuration

Marie Anastacio
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

m.i.a.anastacio@liacs.leidenuniv.nl

Abstract
The performance of state-of-the-art algorithms is
highly dependent on their parameter values, and
choosing the right configuration can make the dif-
ference between solving a problem in a few minutes
or hours. Automated algorithm configurators have
shown their efficiency on a wide range of appli-
cations. However, they still encounter limitations
when confronted to a large number of parameters
to tune or long algorithm running time.
We believe that there is untapped knowledge that
can be gathered from the elements of the config-
uration problem, such as the default value in the
configuration space, the source code of the algo-
rithm, and the distribution of the problem instances
at hand. We aim at utilising this knowledge to im-
prove algorithm configurators.

1 Introduction
The internal behaviour of many algorithms depends on their
parameter settings. Choosing the right parameter values can
make the difference between poor and state-of-the-art perfor-
mance [Hutter et al., 2009]. To select the right values of those
parameters and to optimise the algorithm performance on a
specific set of problem instances is known as algorithm con-
figuration or hyper-parameter tuning. General-purpose au-
tomatic algorithm configurators, such as irace [Birattari et
al., 2010; López-Ibáñez et al., 2016], GGA++ [Ansótegui et
al., 2015], SMAC [Hutter et al., 2011], and more recently
GPS [Pushak and Hoos, 2020], are widely applied in domains
such as Machine Learning (see, e.g., [Kotthoff et al., 2017])
and NP-hard problem solving (see, e.g., [Hutter et al., 2017;
Hutter et al., 2010]).

The algorithm configuration problem is defined as follows
(see, e.g., [Hoos, 2012]): Given a target algorithm A; a con-
figuration space C containing all valid combinations of pa-
rameter values of A; a set of problem instances I; and a per-
formance metric m that measures the performance of a con-
figuration in C of target algorithm A on an instance of I; find
c∗ ∈ C that optimises the performance of A on instance set I ,
according to metric m. Each parameter pj have domain Dj of
possible values that can be of different types: categorical, or-
dinal or numerical. Categorical parameters have an unordered

finite set of possible values and are often used to select be-
tween several heuristic components or mechanisms. Ordinal
parameters have an ordered finite set of possible values. Nu-
merical parameters are real- or integer-valued and often con-
trol aspects of an algorithm or heuristic. Parameters can also
conditionally depend on each other, meaning that they are ac-
tive only when another parameter takes a specific value; as a
simple example, consider a Boolean parameter that activates
a mechanism, whose behaviour is adjusted using a numerical
parameter.

Algorithm configurators need to handle two main chal-
lenges. First, the time required to evaluate the performance of
each configuration can vary from seconds to hours, and it is
critical to reduce the number of evaluation for the algorithm.
To do so, a possible approach is to rely on an empirical per-
formance model that predicts how well a configuration will
perform without running the target algorithm (SMAC and
GGA++). Second, the possibility to configure their algorithm
afterwards leads programmers to expose more parameters. To
handle this large and complex search space, a critical mech-
anism is the sampling of new configurations to be evaluated.
They can be generated based on known good configurations
(irace and GGA) or improved according to predictions ob-
tained from a performance model (SMAC and GGA++).

Despite sophisticated approaches, configurators still en-
counter limitations when the search space grows or the run-
ning time is too long. We aim to improve them further and
tackle their limitations by exploiting information unused by
current configurators.

2 Contribution
To improve current configuration methods, we want to use
information already available to them but not yet used or only
partially.

2.1 Approach
We look more closely at the target algorithm A, the configura-
tion space C and the instance set I to extract knowledge that
can be used by the configurator. In particular, we note the fol-
lowing: current configuration approaches are considering A
as a black-box algorithm while in many cases its source code
is accessible; the search space C is considered as if all val-
ues had equal probabilities to be good and all parameters had
the same importance for performance, while this is known to
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be untrue [Fawcett and Hoos, 2016]; and problem instances
from I are considered equally when deciding on which in-
stance to evaluate the target-algorithm, while the time needed
to solve them can be predicted thanks to a set a characteristic
features to avoid wasteful evaluations.

2.2 Results and Ongoing Work

In most cases, C contains a default value for each parame-
ter, which is provided by the developers or based on prior
researches, and thus reveals a deeper understanding of the
mechanism behind the parameter or extensive testing on rel-
evant problem instances. We exploited this prior knowledge
from experts by focusing the sampling around those default
values with a truncated normal distribution. We achieved
a significant performance improvement over a set of well-
studied configuration scenarios [Anastacio and Hoos, 2020].
We think that the default values are only a small part of the
expert knowledge that can be gathered from the users. Hence
we are exploring more sophisticated ways of collecting this
information and integrating it into the configuration process.

Extracting the information contained in the source-code of
A can be done through metrics and features. Those algorithm
features further improve empirical performance models such
as the ones contained in SMAC or GGA++. A first paper ex-
ploring this avenue for Algorithm Selection is currently un-
der review in Artificial Intelligence Journal. Transforming
our algorithm features such that they describe a specific set
of parameter values is not trivial, but software engineering
methods, such as partial program evaluation or code slicing,
offer promising possibilities.

The instances contained in I have various running time and
often come with instance features that are used for example
by SMAC’s model to predict how long is needed to solve
them. However, when current configurators choose on which
instances to evaluate A, they sample them uniformly. We are
investigating methods to reduce the time spent on running the
algorithm by prioritizing instances that have an expected low
running time and high variance between configurations, such
that we can easily discriminate between configurations with-
out spending too much time on algorithm evaluations.

3 Conclusion

This research aims at improving current algorithm configura-
tors and is based on the key idea that the different elements
given to current configurators contain knowledge that so far
remains untapped. Our work on using the knowledge con-
tained in the default-value to bias the search toward a promis-
ing area of the configuration space has already led to signif-
icant improvements [Anastacio and Hoos, 2020], and we are
now exploring possibilities to use source-code features for the
algorithm and chose more wisely the instances on which to
run the target algorithm.

Based on this research, we will develop a new configurator
that leverages this new extracted knowledge. Moreover, ex-
isting configurators could implement our methods to improve
their own performance.
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