
The Fewer the Merrier: Pruning Preferred Operators with Novelty

Alexander Tuisov1 , Michael Katz2
1Technion, Haifa, Israel

2IBM Research, Yorktown Heights, NY, USA
alexandt@campus.technion.ac.il, michael.katz1@ibm.com

Abstract
Heuristic search is among the best performing ap-
proaches to classical satisficing planning, with its
performance heavily relying on informative and
fast heuristics, as well as search-boosting and prun-
ing techniques. While both heuristics and prun-
ing techniques have gained much attention recently,
search-boosting techniques in general, and pre-
ferred operators in particular have received less at-
tention in the last decade. Our work aims at bring-
ing the light back to preferred operators research,
with the introduction of preferred operators pruning
technique, based on the concept of novelty. Con-
tinuing the research on novelty with respect to an
underlying heuristic, we define preferred operators
for such novelty heuristics. For that, we extend
the previously defined novelty concepts to opera-
tors, allowing us to reason about the novelty of
the preferred operators. Our experimental evalu-
ation shows the practical benefit of our suggested
approach, compared to the currently used methods.

1 Introduction
Classical planning is among the most important areas of ar-
tificial intelligence. The performance of satisficing heuristic
search based classical planners heavily relies on informative
and fast heuristics, as well as search-boosting and pruning
techniques. Recent advances in heuristics for classical plan-
ning [Keyder et al., 2014; Domshlak et al., 2015] allowed
to go beyond delete relaxation and were responsible for the
success of several satisficing planners such as Mercury [Katz
and Hoffmann, 2014], MERWIN [Katz et al., 2018], Cer-
berus [Katz, 2018], IBaCoP-2018 [Cenamor et al., 2018],
OLCFF [Fickert and Hoffmann, 2018], and Saarplan [Fick-
ert et al., 2018]. Search pruning techniques have also re-
ceived some attention recently, mostly due to the develop-
ment of novelty-based pruning techniques [Lipovetzky and
Geffner, 2012; Lipovetzky and Geffner, 2014; Lipovetzky
and Geffner, 2017b; Groß et al., 2020] and novelty-based
heuristics [Lipovetzky and Geffner, 2017a; Katz et al., 2017;
Groß et al., 2020]. Search boosting techniques, on the other
hand, mostly focused on introducing randomness into the
search [Valenzano et al., 2014; Xie et al., 2014], while the

research on preferred operators [Hoffmann and Nebel, 2001;
Richter and Helmert, 2009] was somewhat abandoned. To
our knowledge, the most recent work introducing new pre-
ferred operators dates back to 2011, introducing preferred
operators for an admissible heuristic, enabling the somewhat
successful use of these admissible heuristics in a satisficing
search [Bahumi et al., 2011]. The recent partial delete relax-
ation heuristics, despite significantly extending the famous
FF heuristic [Hoffmann and Nebel, 2001], when using pre-
ferred operators, use those of FF.

There is no doubt, however, in the practical usefulness of
preferred operators. Arguably the most famous satisficing
planners LAMA [Richter and Westphal, 2010] and FF [Hoff-
mann and Nebel, 2001] owe their success, at least in part,
to the use of preferred operators. The empirical investiga-
tion of Valenzano et al. [2014] provides additional evidence
of the importance of preferred operators. Thus, further re-
search on preferred operators is of high potential value. To
provide an anecdotal support for that claim, let’s look at one
of the most basic configurations with preferred operators, a
greedy best-first search with two queues, all nodes, ordered
by FF heuristic [Hoffmann and Nebel, 2001] and nodes ob-
tained from preferred operators of FF. In our preliminary ex-
periments, the configuration achieves a coverage of 1281 on
the satisficing suite of the International Planning Competi-
tion (IPC) domains, while if a minor modification is made
to the configuration, choosing each preferred operator with
probability 0.25, the coverage increases to 1387.6. Admit-
tedly, when moving to more complex configurations, such
as LAMA [Richter and Westphal, 2010], the effect of ran-
domly pruning preferred operators is reduced significantly,
and sometimes reduces the overall coverage. Choosing pre-
ferred operators with probability 0.25 for FF, landmark count,
or both results in coverage of 1581.4, 1603.0, or 1552.6, re-
spectively, compared to 1594 for LAMA. Our conjecture in
this work is, therefore, that a systematic method of pruning
preferred operators can significantly improve planning sys-
tems performance.

In this work we present for the first time such a method,
by introducing preferred operators for the novelty heuristic.
We build upon the work of Katz et al. [2017], which adapts
the concept of novelty to heuristic search, by specifying the
novelty of facts with respect to a heuristic. Here, we adapt
the concept of novelty with respect to the underlying heuris-
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tic to operators, introducing the notion of novelty score for
an operator. We exploit the new notion for systematically
pruning preferred operators, introducing multiple definitions
of preferred operators for the novelty heuristic. Our empirical
evaluation shows a clear benefit of using novelty for pruning
preferred operators of the underlying heuristic, compared to
using all preferred operators from the underlying heuristic, as
was done in previous work. Further, the empirical evaluation
shows that pruning preferred operators with novelty is prefer-
able to random pruning.

2 Preliminaries
In this work, we follow the notation of Bäckström and Nebel
[1995]. A SAS+ planning task is represented by a tuple
〈V , O, s0, s?〉, with V being a finite set of state variables and
O being a finite set of operators. Each state variable v ∈ V
has a finite domain dom(v) of values. A pair 〈v, ϑ〉 with
v ∈ V and ϑ ∈ dom(v) is called a fact. A (partial) assign-
ment to V is called a (partial) state. Often it is convenient
to view partial state p as a set of facts with 〈v, ϑ〉 ∈ p if and
only if p[v] = ϑ. A partial state p is consistent with a state s
if p ⊆ s. We denote the set of all states of a planning task by
S . s0 is the initial state, and the partial state s? is the goal.
Each operator o is represented by a pair 〈pre(o), eff (o)〉 of
partial states called preconditions and effects. An operator
cost is a mapping C : O → R0+. An operator o is applica-
ble in a state s ∈ S if and only if pre(o) is consistent with
the state s. Applying o changes the value of v to eff (o)[v], if
defined. The resulting state is denoted by sJoK. An operator
sequence π = 〈o1, . . . , on〉 is applicable in s if there exist
states s1, · · · , sn+1 such that (i) s1 = s, and (ii) for each
1 ≤ i ≤ n, oi is applicable in si and si+1 = siJoiK. We
denote the state sn+1 by sJπK. π is a plan for the state s iff π
is applicable in s and s? is consistent with sJπK. The cost of a
plan π, denoted by C(π) is the summed cost of the actions in
the plan. Classical planning deals with the problem of finding
a plan for the initial state s0.

A heuristic function is a mapping h : S → R0+, with h(s)
estimating the cost C(π) of some plan π for s. In addition to
providing estimates for states, heuristics can identify a sub-
set of applicable operators as preferred. The term preferred
operators was coined by Helmert [2006], but was preceded
by the term helpful actions [Hoffmann and Nebel, 2001], de-
fined for the FF heuristic. For FF, helpful actions for a state s
are defined as the operators from the relaxed plan that are
applicable in s. Similarly, preferred operators are defined
for the additive [Bonet and Geffner, 2001] and the causal
graph heuristics [Helmert, 2004], as well as for their gen-
eralization, the context-enhanced additive heuristic [Helmert
and Geffner, 2008]. Preferred operators were also devel-
oped for the landmarks count heuristic [Richter et al., 2008;
Richter and Helmert, 2009; Richter and Westphal, 2010].
Landmarks are formulas that must be made true along any
plan. Preferred operators for landmarks are applicable op-
erators from a relaxed plan that achieves some next achiev-
able landmark. For implicit abstraction heuristics [Katz and
Domshlak, 2010], preferred operators are those that start an
abstract plan for at least one abstraction [Bahumi et al., 2011].

Given a heuristic function h, the preferred operators of h
in state s are denoted by POh(s) ⊆ O.

A search history H is a set of pairs of operators and states
that these operators lead to, starting with 〈∅, s0〉. For each
〈o, s〉 ∈ H such that 〈o, s〉 6= 〈∅, s0〉, there exists another
pair 〈o′, s′〉 ∈ H such that s = s′JoK. Given an operator
o ∈ O, the set of all states in the search history that o leads to
is denoted by H(o) := {s | 〈o, s〉 ∈ H}. The set of all states
in the search history is denoted by Ĥ := {s | 〈o, s〉 ∈ H, o ∈
O}, and the set of states in the search history that contain the
fact f is denoted byH(f) := {s ∈ Ĥ | f ∈ s}.

For the concepts of novelty, we follow the notation of Katz
et al. [2017], slightly adapting their definitions to the notion
of search history defined above. We start with the definition
of the novelty score of a fact.
Definition 1 (heuristic novelty). Given a heuristic function
h : S 7→ R0+ and a search history H, the novelty score of a
fact f is defined as

N(f,H, h) =
{

min
s∈H(f)

h(s), H(f) 6= ∅
∞, otherwise.

Given a state s, the novelty score of a fact f in state s is
defined as N(f, s,H, h) = N(f,H, h)− h(s) if f ∈ s.

To simplify the notation, we sometimes do not mention the
search historyH and the heuristic hwhen these are clear from
the context. A fact is novel in state s if its novelty score in s
is strictly positive. A state is novel if it contains at least one
novel fact. Katz et al. [2017] define a variety of novelty based
heuristics, starting with the most basic one, separating novel
states (that obtain the value 0) from the non-novel states (that
obtain the value 1). Formally,

hBN (s) =

{
0, ∃f ∈ s,N(f, s) > 0

1, otherwise.

Going beyond this dichotomy, let N+(f, s) be 1 when
N(f, s) > 0 and 0 otherwise. Similarly, let N -(f, s) be 1
when N(f, s) < 0 and 0 otherwise. Then, the second heuris-
tic function also separates novel states, based on the number
of novel facts. Formally,

hQN (s) = |V| −
∑
f∈s

N+(f, s).

Another heuristic function also separates non-novel states,
based on the number of strictly non-novel facts.

hQB(s) =

hQN (s), hQN (s) < |V|
|V|+∑

f∈s

N -(f, s), otherwise.

While Katz et al. [2017] define additional heuristics, hQB

was found to be best performing overall in their experiments.

3 Preferred Operators of Novelty Heuristics
We start by presenting a running example, a SAS+ planning
task with three binary variables A,B,C and four operators
O = {oc, o1, o2, o3} as follows.
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Figure 1: The state transition system of our running example.

• oc = 〈{B = 0, C = 0}, {C = 1}〉,
• o1 = 〈{B = 0, C = 1}, {B = 1, C = 0}〉,
• o2 = 〈{A = 0, B = 1}, {A = 1, B = 0}〉, and
• o3 = 〈{A = 1, B = 0}, {B = 1}〉.

For the brevity of presentation, a triplet abc denotes the
state A = a,B = b, C = c. The initial state is there-
fore 000, and the goal state is 110. The full transition sys-
tem, as well as the heuristic values of states are depicted
in Figure 1. Finally, consider the following history H =
{〈∅, 000〉, 〈oc, 001〉, 〈o1, 010〉, 〈o2, 100〉}. The current state
is 100, and assume that POh(100) = {oc, o3}.

Following the notation and the definitions presented in the
previous section allows us to directly define heuristic novelty
of operators, analogously to how a novelty of a fact is defined
in Definition 1 [Katz et al., 2017].
Definition 2 (operator novelty score). Given a heuristic func-
tion h : S 7→ R0+ and a search history H, the novelty score
of an operator o is defined as

N(o,H, h) =
{

min
s∈H(o)

h(s), H(o) 6= ∅
∞, otherwise.

Further, given a state s, the novelty score of an operator o
in state s is defined as N(o, s,H, h) = N(o,H, h)− h(s).

In words, the novelty score of an operator in a state is the
difference between the (best) heuristic value of a state previ-
ously reached by the operator during search and the heuris-
tic value of the current state. Using our running example,
N(o3, 100,H, h) = N(o3,H, h) − h(100) = ∞− 0 = ∞,
whileN(oc, 100,H, h) = N(oc,H, h)−h(100) = 2−0 = 2.
Intuitively, larger (positive) novelty values correspond to sit-
uations where the operator, if previously applied, was applied
in states further away from the goal, according to the heuris-
tic. Negative values mean that the operator was already ap-
plied during search to states closer to goal than the current
state, according to the heuristic. The heuristic, however, can
be misleading, and therefore the boundary between consider-
ing an operator to be novel or not does not have to be at 0. A
finer control of the threshold on novelty score for considering
an operator to be novel may be beneficial. We say that an op-
erator is b-novel in state s if its novelty score in s is greater
than some predefined parameter b: N(o, s) > b. Since the
novelty scores can be negative, we allow b to be negative as
well. Setting b = −∞ allows us to ignore the threshold when
necessary.

We can now proceed with formally defining preferred op-
erators for the novelty heuristic.

Definition 3 (b-novel preferred operators). Given a heuristic
function h and a novelty score threshold b, the b-novel pre-
ferred operators of h are defined as

POb(s,H) = {o ∈ POh(s) | N(o, s,H, h) > b}
As per our running example, PO2(100,H) = {o3}, but

PO1(100,H) = {o3, oc}.
Definition 3 allows to select a subset of the preferred op-

erators reported by the heuristic h based on their novelty at
that step of the search. However, it can be overly permis-
sive, especially for small values of b. To overcome the issue,
we suggest to select top elements (according to the novelty
score) of the set POb(s,H). Assuming that the set POh(s)
is given, we can select k elements as follows.

Definition 4 (k-top b-novel preferred operators). Given a
heuristic function h, a natural number k, and a novelty score
threshold b, POk

b (s,H) ⊆ POb(s,H) is the set of k-top b-
novel preferred operators of h if

(i) for all operators o ∈ POk
b (s,H), if there exists o′ ∈

POb(s,H) such that N(o, s,H, h) < N(o′, s,H, h),
then o′ ∈ POk

b (s,H), and

(ii) |POk
b (s,H)| ≤ k, with |POk

b (s,H)| < k implying
POk

b (s,H) = POb(s,H).
On the other hand, Definition 3 may also be overly restric-

tive, since setting a finite threshold on novelty score may re-
sult in an empty subset of a non-empty set POh(s). To over-
come the issue, we suggest to take the best operators in terms
of novelty score, ignoring the threshold.

Definition 5 (max-novel preferred operators). Given a
heuristic function h, the max-novel preferred operators of h
are defined as

POmax(s,H) = argmax
o∈POh(s)

{N(o, s,H, h)}

As per our running example, POmax(100,H) = {o3}.
Note that the Definitions 3 - 5 are invariant under the nov-
elty heuristic selected.

The use of preferred operators for search in classical plan-
ning is mainly for deriving an additional queue, consisting
of a subset of successors, reached by these preferred opera-
tors. Search algorithms are then alternating between a com-
plete queue with all successors and the preferred operators
queue. The rationale behind the approach is that greedily
following preferred operators may lead to the goal quicker,
without the need to explore all successors. Our conjecture is
that in many cases, further limiting the incomplete subset of
successors may lead to the goal even quicker.

The rationale behind our approach of using the novelty
score is that, for a particular preferred operator o, if a state
reached by o was not already explored during search or that
state is further away from the goal (according to the heuristic
function used) than the current state, then o should be pre-
ferred over other preferred operators. When queues are or-
dered by states’ heuristic values, as in the case of greedy best
first search, the novelty score of the preferred operator o in the
current state s and the heuristic novelty of the state s′ = sJoK
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Domains hFF
QB PO-3 PO-2 PO-1 PO0 PO1 PO2 PO3 POmax

agricola18 (20) 12 11 12 10 11 12 12 12 12
airport (50) 47 47 47 47 46 47 47 47 45
barman14 (20) 19 20 20 20 20 20 20 20 20
childsnack14 (20) 1 1 3 3 0 4 3 3 2
data-network18 (20) 14 14 14 16 16 17 17 17 16
depot (22) 19 21 21 21 21 22 21 21 22
floortile11 (20) 8 8 7 7 7 7 6 6 7
floortile14 (20) 3 2 2 3 3 2 2 2 2
logistics98 (35) 30 30 30 30 31 32 33 34 34
nomystery11 (20) 18 18 17 16 15 17 17 17 15
openstacks11 (20) 20 20 20 20 20 20 18 18 20
openstacks14 (20) 20 20 20 20 20 18 14 14 20
openstacks (30) 30 30 30 30 30 30 30 28 30
organic-synthesis-split18 (20) 12 14 14 14 13 14 13 13 13
parking14 (20) 6 7 6 6 7 8 9 9 9
pathways (30) 28 27 26 27 26 25 26 27 30
pipesworld-notankage (50) 43 43 44 44 47 47 45 45 44
pipesworld-tankage (50) 43 42 44 46 45 45 46 46 44
satellite (36) 28 28 28 26 28 28 29 28 28
scanalyzer08 (30) 29 30 30 30 30 30 28 29 30
scanalyzer11 (20) 19 20 20 20 20 20 18 19 20
snake18 (20) 6 6 7 6 8 7 9 7 7
spider18 (20) 16 19 19 19 19 18 18 17 17
storage (30) 28 27 28 27 28 28 27 28 30
termes18 (20) 14 16 16 16 14 15 16 15 15
tetris14 (20) 15 16 16 16 17 19 17 18 17
thoughtful14 (20) 19 18 17 18 17 16 17 17 18
tidybot11 (20) 17 17 17 17 18 17 18 17 18
transport11 (20) 15 16 18 19 17 18 18 19 16
transport14 (20) 11 10 8 11 11 14 9 10 10
trucks (30) 21 23 23 23 22 21 21 21 23
visitall14 (20) 18 19 18 18 19 17 18 18 20
woodworking11 (20) 19 19 19 19 19 19 19 19 20
Fully solved (883) 883 883 883 883 883 883 883 883 883
Sum other (100) 70 70 70 70 70 70 70 70 70
Sum (1816) 1601 1612 1614 1618 1618 1627 1614 1614 1627

Table 1: Coverage comparison: novelty heuristic, tie breaking by FF, preferred operators from FF (hFF
QB), compared to the preferred operators

pruned by novelty.

that results from applying o to s are somewhat independent.
Thus, there are cases when o is novel (that is, has a high nov-
elty score), while s′ is not, and vice versa. In such cases,
preferring less novel states that are reached by more novel
operators may be beneficial. Going back to our running ex-
ample, applying o3 in 100 will result in a state 110, which,
although non-novel, is a goal state (novelty heuristics are not
necessary goal aware). Applying the less novel operator oc
will transition the system to 101, which is a novel state, but
further away from the goal. However, if all these operators are
considered preferred, the search will explore the more novel
resulting states before the less novel ones. Thus, to allow to
greedily prefer more novel operators with less novel resulting
state, we do not consider the less novel operators as preferred.

4 Experimental Evaluation
To empirically evaluate our approach, we implemented it on
top of the Fast Downward planning system [Helmert, 2006].
The experiments were performed on Intel(R) Xeon(R) Gold

6248 CPU @2.50GHz machines, with the time and memory
limit of 30min and 4GB, respectively 1. The benchmark set
consists of all STRIPS benchmarks from the satisficing tracks
of International Planning Competitions (IPC) 1998-2018, a
total of 1816 tasks in 64 domains. All tested configuration
perform a greedy best-first search with delayed evaluation
and multiple queues.

To empirically validate our conjecture that systematic
pruning of preferred operators with novelty can improve per-
formance, we take as a baseline the best performing variant of
Katz et al. [2017], hFF

QB. We enhance it with a second queue,
defined by preferred operators of its underlying heuristic, hFF,
with both queues being ordered by hFF

QB, ties broken by hFF.
Our first experiment compares the baseline to the config-

urations where the preferred operators of hFF are pruned ei-
ther according to Definition 3, taking all preferred operators
whose novelty score is above the threshold b ∈ [−3, 3] (de-
noted by POb), or according to Definition 5, taking all pre-

1The code is at https://github.com/IBM/FD-Novelty-PO
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Figure 2: Per-task comparison of the number of evaluated states,
greedy best-first search with two queues, heuristic values from hQF

and preferred operators. The preferred operators POmax are com-
pared to the preferred operators from hFF (hFF

QB).

ferred operators with the maximal novelty score (denoted by
POmax). Table 1 depicts a domain-wise comparison of the
coverage for these configurations. There is a large portion
of domains where all tasks are solved by all tested config-
urations. These domains are summarized in the row ”Fully
solved”. Additionally, the row ”Sum other” summarizes the
domains where all configurations achieve the same coverage,
but the domain is not fully solved. The remaining 33 domains
are shown in the table. Finally, the last row summarizes the
coverage for all domains.

While the overall coverage is improved for all tested con-
figurations, on a per-domain level the baseline achieves the
top performance on 9 out of the 33 domains. In one of these
cases, on THOUGHTFUL14, all other configurations achieve
strictly lower coverage. Focusing on POb, while the best
performing configuration overall is PO1, the best threshold
varies for different domains. In fact, for some domains, there
can be more than one best threshold. While we expected to
observe a ”parabolic” behavior, some domains exhibit mul-
tiple peaks (e. g. AGRICOLA, CHILDSNACK, NOMYSTERY,
TERMES18, and TRANSPORT11). In some other domains,
larger thresholds are better (e. g. DATANETWORK18, LOGIS-
TICS98, and PARKING14). In some, smaller thresholds work
better (e. g. FLOORTILE11, OPENSTACKS, and TRUCKS).
Thus, determining the best novelty score threshold for a plan-
ning task or even a domain can be beneficial. Switching our

hFF
QB PO-3 PO-2 PO-1 PO0 PO1 PO2 PO3 POmax

All 1601 1612 1614 1618 1618 1627 1614 1614 1627

TL 1600 1609 1611 1616 1615 1625 1614 1611
TM 1599 1607 1612 1619 1619 1624 1617 1615
TS 1598 1616 1616 1626 1623 1629 1627 1626

RL 1599 1609 1613 1614 1620 1621 1615 1611 1627
RM 1599 1611 1614 1618 1619 1625 1618 1621 1626
RS 1601 1613 1621 1627 1632 1629 1623 1625 1629

Table 2: Overall coverage comparison: novelty heuristic, tie break-
ing by FF, preferred operators from FF (hFF

QB), compared to the pre-
ferred operators pruned by novelty. The full set (All) is compared
to selecting (i) top elements according to operator novelty score,
large (TL), medium (TM), and small (TS) subsets, or (ii) randomly
large (RL), medium (RM), and small (RS) subsets, values rounded
to nearest integer.

attention now to POmax, note that choosing only the most
novel operators in each state performs as well overall as the
best threshold. Comparing these two configurations, their
strengths seem to be complementary, and a simple portfo-
lio of these two approaches might significantly increase the
overall coverage.

Going beyond pure coverage, Figure 2 shows a per-task
comparison of the number of evaluated states betweenPOmax
and the baseline configuration, grouped by domains. The do-
mains where the median ratio of the number of evaluations
was above 100 are emphasized, while the rest are aggregated
under other. Out of the entire set of 1816 tasks, POmax dom-
inates in terms of evaluated states on 1064 tasks, while hFF

QB

on 383 tasks. There are 19 tasks on the upper border, and
45 tasks on the right border (tasks solved by one approach
but not the other). Although for most of the tasks the differ-
ence is within one order of magnitude, there are several cases
where the difference is even more profound.

While the results of our first experiments are encourag-
ing, our second experiment tests the conjecture behind Defi-
nition 4, that our configurations above can be overly permis-
sive. Thus, we select top k elements and test three bounds,
k ∈ {10, 100, 1000}, denoting these by small, medium, and
large, respectively2. Table 2, rows TL, TM, and TS show the
overall coverage results, comparing to the results from our
first experiment, depicted in the first row.

First, note that taking the top (according to the novelty
score) from all preferred operators, without imposing any
threshold (column hFF

QB) does not significantly change the
coverage. If the threshold is imposed, on the other hand,
the coverage increases consistently across our configurations
when a small subset is chosen. When choosing a large or
medium subsets, the coverage sometimes decreases, com-
pared to choosing the entire set as in the first experiment.
Focusing on the small subset and looking at the per domain
results3, probably the most notable change is in the OPEN-

2We have also experimented with relative bounds of 25%, 50%,
and 75%, as well as minimal among the absolute and relative
bounds, obtaining similar results.

3Detailed results can be found in the supplementary material.
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Domains Cerberus POhFF POmax PO1

agricola18 (20) 12 11 13 11
airport (50) 42 42 44 43
childsnack14 (20) 3 1 3 1
data-network18 (20) 14 13 15 16
depot (22) 21 20 22 22
floortile11 (20) 8 7 7 7
floortile14 (20) 3 2 2 2
hiking14 (20) 18 17 19 18
nomystery11 (20) 20 19 20 19
openstacks11 (20) 16 20 20 20
openstacks14 (20) 8 20 20 20
organic-synthesis-split18 (20) 12 14 15 15
parking14 (20) 13 20 20 20
pathways (30) 28 26 29 27
pipesworld-notankage (50) 43 43 45 47
pipesworld-tankage (50) 41 42 44 43
rovers (40) 40 40 40 39
scanalyzer08 (30) 29 29 30 30
scanalyzer11 (20) 18 19 20 20
snake18 (20) 9 10 8 10
sokoban11 (20) 17 18 18 17
spider18 (20) 18 16 19 18
storage (30) 26 26 29 29
termes18 (20) 12 13 13 13
tetris14 (20) 19 19 17 19
thoughtful14 (20) 16 16 20 18
tidybot11 (20) 17 19 19 18
trucks (30) 24 18 21 21
Fully solved (1024) 1024 1024 1024 1024
Sum other (80) 50 50 50 50
Sum (1816) 1621 1634 1666 1657

Table 3: Coverage comparison to the state of the art.

STACKS domains, for b = 2 and b = 3, where all instances
are now solved.

Our third experiment is intended to check whether the nov-
elty score plays a significant role when selecting a subset of
operators out of the novel operators POb or POmax. For that,
we compared the selection of operators according to the nov-
elty score to randomly choosing a subset, running each con-
figuration 5 times and taking mean results. The overall cov-
erage of these configurations, rounded to the nearest integer,
is depicted in Table 2, rows RL, RM, and RS, where the first
column depicts random pruning of operators. Focusing again
on the best performer, the small subset, out of 7 thresholds,
3 achieve better mean performance, with the most notable
change being in PO0, from 1623 for choosing a subset ac-
cording to the top scores to 1632.2 for randomly choosing a
subset. For POmax, since all operators in that set have the
same novelty score, we can only compare to choosing the en-
tire set (top row). The most notable gain is in PARKING14
(from 9 to 11.8) and in SATELLITE (from 28 to 32.4).

Finally, in order to evaluate the contribution of the new pre-
ferred operators to a state-of-the-art configuration, we com-
pare to a state-of-the-art planner that uses the novelty heuris-
tic, Cerberus [Katz, 2018]. Cerberus runs a greedy best-first

search with two heuristics, novelty of the red-black planning
heuristic and landmark count heuristic, with preferred opera-
tors from the red-black planning heuristic (that are essentially
preferred operators from FF) and from the landmark count
heuristic. For a cleaner comparison, we also compare to the
variant that uses preferred operators from the red-black plan-
ning heuristic only, not using the preferred operators from the
landmark count heuristic, denoted by POhFF . Our two sug-
gested configurations replace the preferred operators POhFF

with POmax and PO1, respectively. Table 3 depicts the per-
domain coverage.

While there is now an even larger portion of domains where
all tasks are solved by all three approaches (summarized in
the row ”Fully solved”), there is still a sufficient number of
domains where performance in terms of coverage can still be
improved (or reduced), 28 out of the total 64 domains. Out
of these, Cerberus achieves top performance in 7 domains,
with 3 of them not being matched by other approaches. Note
that simply switching off preferred operators from the land-
mark count heuristic (column POhFF in the table) improves
the overall coverage by 13 tasks. Comparing POhFF now to
the two configurations that prune its list of preferred opera-
tors, note that both configurations improve the overall cover-
age, with POmax increasing it by additional 32 tasks (over-
all, 45 tasks more than Cerberus). There are only 2 domains
where POhFF achieves a better coverage than POmax. Look-
ing at the runner-up configuration PO1, note that it was able
to obtain a better coverage than POmax in 4 domains. Over-
all, the experiments clearly show the benefit of systematically
pruning preferred operators, significantly improving the per-
formance of even a state-of-the-art planning system.

5 Discussion and Future Work
We have shown in this work how to define preferred oper-
ators for the novelty heuristic, extending the notion of nov-
elty with respect to an underlying heuristic to operators. Our
experimental evaluation shows that the approach works well
in practice, increasing the coverage in many domains, some-
times significantly. The notion of operator novelty is some-
what orthogonal to the notion of novel states. Non-novel op-
erators can lead to novel states and novel operators can lead
to non-novel states. Not considering non-novel operators as
preferred allows us to better focus the greedy exploration and
obtain better results. Our experiments also show that the best
novelty score threshold can vary from one domain to another.

It is worth mentioning that our approach does not require to
know operators preconditions or effects, only whether an op-
erator is applicable in the state. Therefore, it can potentially
be applied to formalisms where no action model is avail-
able, such as black-box planning [Jinnai and Fukunaga, 2017;
Lipovetzky et al., 2015]. Additionally, we intend to explore
ways of obtaining a novelty score threshold on a per-domain
or per-instance basis. Further, additional possible definitions
of preferred operators for the novelty heuristic can be ob-
tained. Finally, we would like to further investigate the rea-
son behind the improved performance, attempting to extend
our understanding of the novelty based approaches in heuris-
tic search for classical planning.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

4195



References
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hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

[Bahumi et al., 2011] Roei Bahumi, Carmel Domshlak, and
Michael Katz. On satisficing planning with admissible
heuristics. In ICAPS 2011 Workshop on Heuristics for
Domain-Independent Planning, pages 37–42, 2011.

[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner.
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