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Abstract
In various recommender system applications, from
medical diagnosis to dialog systems, due to obser-
vation costs only a small subset of a potentially
large number of context variables can be observed
at each iteration; however, the agent has a free-
dom to choose which variables to observe. In this
paper, we analyze and extend an online learning
framework known as Context-Attentive Bandit, We
derive a novel algorithm, called Context-Attentive
Thompson Sampling (CATS), which builds upon the
Linear Thompson Sampling approach, adapting it
to Context-Attentive Bandit setting. We provide a
theoretical regret analysis and an extensive empiri-
cal evaluation demonstrating advantages of the pro-
posed approach over several baseline methods on a
variety of real-life datasets.

1 Introduction
The contextual bandit (CB) problem has been extensively
studied in the past, and a variety of solutions have been pro-
posed. In LINUCB [Li et al., 2010; Abbasi-Yadkori et al.,
2011; Bouneffouf et al., 2019; Bouneffouf and Rish, 2019],
Neural Bandit [Allesiardo et al., 2014] and in linear Thomp-
son Sampling [Agrawal and Goyal, 2013; Balakrishnan et al.,
2019a; Balakrishnan et al., 2019b], a linear dependency is as-
sumed between the expected reward given the context and an
action taken after observing this context; the representation
space is modeled using a set of linear predictors.

Recently, a promising variant of contextual bandits, called
a Context Attentive Bandit (CAB) was proposed in [Bounef-
fouf et al., 2017], where no context is given by default, but
the agent can request to observe (to focus its ”attention” on)
a limited number of context variables at each iteration. We
propose here an extension of this problem setting: a small
subset of V context variables is revealed at each iteration (i.e.
partially observable context), followed by the agent’s choice
of additional U features, where V , U , and the set of V im-
mediately observed features are fixed at all iterations. The
agent must learn to select both the best additional features
and, subsequently, the best arm to play, given the resulting
V + U observed features. (The original Context Attentive
Bandit corresponds to V = 0.)

The proposed setting is motivated by several real-life appli-
cations where observing the full context is impossible and the
agent is allowed to observe just a small subset of information
at the onset.

For instance, in a clinical setting, a doctor may first take a
look at patient’s medical record (partially observed context)
to decide which medical test (additional context variables) to
perform, before choosing a treatment plan (selecting an arm
to play). It is often too costly or even impossible to conduct
all possible tests (i.e., observe the full context); therefore,
given the limit on the number of tests, the doctor must de-
cide which subset of tests will result into maximally effective
treatment choice (maximize the reward).

Similar problems can arise in multi-skill orchestration for
AI agents. For example, in dialog orchestration, a user’s
query is first directed to a number of domain-specific agents,
each providing a different response, and then the best re-
sponse is selected. However, it might be too costly to request
the answers from all domain-specific experts, especially in
multi-purpose dialog systems with a very large number of do-
mains experts. Given a limit on the number of experts to use
for each query, the orchestration agent must choose the best
subset of experts to use. In this application, the query is the
immediately observed part of the overall context, while the
responses of domain-specific experts are the initially unob-
served features from which a limited subset must be selected
and observed, before choosing an arm, i.e. deciding on the
best out of the available responses. For multi-purpose dia-
log systems, such as, for example, personal home assistants,
retrieving features or responses from every domain-specific
agent is computationally expensive or intractable, with the
potential to cause a poor user experience, again underscoring
the need for effective feature selection.

Overall, the main contributions of this paper include:
(1) a generalization of Context Attentive Bandit, and a first

lower bound for this problem.
(2) an algorithm called Context Attentive Thompson Sam-

pling for stationary and non-stationary environments, and its
regret bound in the case of stationary environment.

(3) an extensive empirical evaluation demonstrating advan-
tages of our proposed algorithm over the previous context-
attentive bandit approach [Bouneffouf et al., 2017], on a
range of datasets in both stationary and non-stationary set-
tings.
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This paper is organized as follows. In section 2 we re-
view related works. The section 3 introduces some back-
ground concepts. Then we introduce the Context-Attentive
Bandit, the proposed algorithms for both stationary and non-
stationary environments, and we provide a lower bound of
the proposed problem and a regret bound of the proposed al-
gorithm in the case of stationary environment. Experimental
evaluation on several datasets, for varying parameter settings,
is presented afterward. Finally, the last section concludes the
paper and points out possible directions for future works.

2 Related Work

In the contextual bandit problem [Langford and Zhang, 2008;
Agarwal et al., 2009; Auer et al., 2003], the objective of is
to learn the relationship between the context and reward, in
order to find the best arm-selection policy for maximizing cu-
mulative reward over time. Motivated by dimensionality re-
duction tasks, [Abbasi-Yadkori et al., 2012] studied a sparse
variant of stochastic linear bandits, where only a relatively
small and unknown subset of features is relevant to a multi-
variate function optimization. It presents an application to the
problem of optimizing a function that depends on many fea-
tures, where only a small, initially unknown subset of features
is relevant. Similarly, [Carpentier and Munos, 2012] also
considered high-dimensional stochastic linear bandits with
sparsity. There the authors combined ideas from compressed
sensing and bandit theory to derive a novel algorithm. In
[Oswal et al., 2020], authors explores a new form of the lin-
ear bandit problem in which the algorithm receives the usual
stochastic rewards as well as stochastic feedback about which
features are relevant to the rewards and propose an algorithm
that can achieve O(

√
T ) regret, without prior knowledge of

which features are relevant.
In [Bouneffouf et al., 2017] the authors proposed the novel

framework of contextual bandit with restricted context, where
observing the whole feature vector at each iteration is too
costly or impossible for some reasons; however, the agent can
request to observe the values of an arbitrary subset of features
within a given budget, i.e. the limit on the number of fea-
tures observed. This paper explores a more general problem,
and unlike [Bouneffouf et al., 2017], we provide a theoretical
analysis of the proposed problem and the proposed algorithm.

The Context Attentive Bandit problem is related to the bud-
geted learning problem, where a learner can access only a
limited number of attributes from the training set or from
the test set (see for instance [Cesa-Bianchi et al., 2011]). In
[Foster et al., 2016], the authors studied the online budgeted
learning problem. They showed a significant negative result:
for any δ > 0 no algorithm can achieve regret bounded by
O(T 1−δ) in polynomial time. For overcoming this negative
result, an additional assumption is necessary. Here, follow-
ing [Durand and Gagné, 2014], we assume that the expected
reward of selecting a subset of features is the sum of the
expected rewards of selecting individually the features. We
obtain an efficient algorithm, which has a linear algorithmic
complexity in terms of time horizon.

3 Context Attentive Bandit Problem
We now introduce the problem setting, outlined in Algo-
rithm 1. Let C be a set of N features. At each time
point t the environment generates a feature vector c(t) =
(c1(t), ..., cN (t), 1) ∈ RN+1, which the agent cannot ob-
serve fully, but a partial observation of the context is al-
lowed: the values of a subset of V < N observed features
CV ⊂ C, are revealed: cV = (cV1 (t), ..., cVN (t), 1) ∈ RN+1,
∀i ∈ C, cVi (t) = ci(t)1{i ∈ CV }. Based on this partially
observed context, the agent is allowed to request an addi-
tional subset of U unobserved features CU ⊂ C \ CV ,
V + U ≤ N . The goal of the agent is to maximize its total
reward over time via (1) the optimal choice of the additional
set of features CU , given the initial observed features cV (t),
and (2) the optimal choice of an arm k ∈ [K] = {1, ...,K}
based on cV+U (t) = (cV+U

1 (t), ..., cV+U
N (t), 1) ∈ RN+1,

∀i ∈ C, cV+U
i (t) = ci(t)1{i ∈ CV ∨ i ∈ CU}. We assume

Pr(r|c, k), an unknown probability distribution of the reward
given the context and the action taken in that context. In the
following the expectations are taken over the probability dis-
tribution Pr(r|c, k).

Algorithm 1 Context Attentive Bandit Problem (CAB)

1: for t := 1 to T do
2: Context c(t) is chosen by the environment
3: The values cV (t) of a subset CV ⊂ C are revealed
4: The agent selects a subset CU ⊆ C \ CV
5: The values cU (t) are revealed;
6: The agent chooses an arm k(t) := π(cV+U (t))
7: The reward rk(t) is sampled from distribution

Pr(r|c, k) and it is revealed
8: The agent updates the policy π ∈ ΠCV+U

9:
10: end for

The contextual bandit problem. Following [Langford and
Zhang, 2008], this problem is defined as follows. At each
time point t ∈ {1, ..., T}, an agent is presented with a context
(i.e. feature vector) c(t) ∈ RN+1 before choosing an arm k ∈
[K]. Let r(t) = (r1(t), ..., rK(t)) ∈ RK denote a reward
vector, where rk(t) is the reward at time t associated with the
arm k. Let π : RN+1 → [K] denote a policy, mapping a
context c(t) ∈ RN+1 into an arm k ∈ [K]. We assume that
the expected reward is a linear function of the context.

Assumption 1 (linear contextual bandit): Whatever the
subset of selected features CU ⊂ C \ CV the expected re-
ward is a linear function of the context: E[rk|cV+U (t)] =
cV+U (t)>µk, where µk ∈ RN+1 is an unknown parameter,
∀k ∈ [K] ||µk|| ≤ 1, and ||cV+U (t)|| ≤ 1.
Contextual Combinatorial Bandit. The contextual combi-
natorial bandit problem [Qin et al., 2014] can be viewed as a
game where the agent sequentially observes a context cV (t),
selects a subset CU (t) ⊂ C \ {CV } and observes the reward
corresponding to the selected subset. The goal is to maxi-
mize the reward over time. Let rU |cV (t), π ∈ R be the re-
ward associated with the set of selected features CU know-
ing the context vector cU+V (t) and the policy π. We have
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rU |cV (t), π = rk(t)|cV+U (t), where k(t) = π(cV+U (t)).
Each feature i ∈ CU is associated with the corresponding
random variable ri|cV (t), π ∈ R which indicates the reward
obtained when choosing the i-th feature at time t.

Assumption 2 (linear contextual combinatorial bandit):
the mean reward of selecting the set of features CU ⊂ C \
{CV } is: E[rU |cV (t), π] =

∑
i∈CU E[ri|cV (t), π], and the

expectation of the reward of selecting the feature i is a lin-
ear function of the context vector cV (t): E[ri|cV (t), π] =
cV (t)>θi, where θi ∈ RN+1 is an unknown weight vector
associated with the feature i, ∀i ∈ C \ CV ||θi|| ≤ 1, and
||cV (t)|| ≤ 1. Let ΠCV+U be the set of linear policies such
that only the features coming from CV+U are used, where
CV is a fixed subset of C, and CU is any subset of C \ CV .
The objective of Contextual Attentive Bandit (Algorithm 1) is
to find an optimal policy π∗ ∈ ΠCV+U , over T iterations or
time points, so that the total reward is maximized.
Definition 1 (Optimal Policy for CAB). The optimal policy
π∗ for handling the CAB problem is selecting the arm at time
t:

k∗(t) = arg max
k∈[K],CU∈C\CV

cU+V (t)>µk

= arg max
k∈[K]

cV+U∗
(t)>µk,

where

CU
∗

= arg max
CU⊂C\CV

rU |cV (t),µ1, ...,µK =

arg max
CU⊂C\CV

∑
i∈CU

cV (t)>θi

.
Definition 2 (Cumulative regret). The cumulative regret over
T iterations of the policy π ∈ ΠCV+U , is defined as R(T ) =∑T
t=1E[rπ∗(c(t))]−

∑T
t=1E[rπ(c(t))].

Property 1 (Regret decomposition). The cumulative regret
over T iterations of the policy π ∈ ΠCV+U can be rewritten
as following:

R(T ) =
T∑
t=1

E[rπ∗(c(t))]−
T∑
t=1

E[rπ(c(t))]

=
T∑
t=1

[
cV+U∗

(t)>µk∗(t) − cV+U (t)>µk(t)

]

=
T∑
t=1

[
cV+U∗

(t)>µk∗(t) − cV+U∗
(t)>µk(t)

]
+

T∑
t=1

[
cV+U∗

(t)>µk(t) − cV+U (t)>µk(t)

]

=
T∑
t=1

[
cV+U∗

(t)>µk∗(t) − cV+U∗
(t)>µk(t)

]
+

T∑
t=1

[
E[rU∗ |cV (t), π]− E[rU(t)|cV (t), π]

]

=
T∑
t=1

[
cV+U∗

(t)>µk∗(t) − cV+U∗
(t)>µk(t)

]
+

T∑
t=1

 ∑
i∈CU∗

cV (t)>θi −
∑

i∈CU(t)

cV (t)>θi

 .
Remark 1. CAB problem generalizes contextual bandit with
restricted context problem ([Bouneffouf et al., 2017]). Indeed,
when the subset of observed context CV is empty, the reward
of selecting the feature i is given by θi,N+1, which is the co-
ordinate N + 1 of the vector θi.

Before introducing an algorithm for solving the above
CAB problem, we will derive a lower bound on the expected
regret of any algorithm used to solve this problem.

Theorem 1. For any policy π ∈ ΠCV+U solving Context At-
tentive Bandit problem (Algorithm 1) under Assumption 1.1
and 1.2, there exists probability distribution Pr(r|c, k), such
that the lower bound of the regret accumulated by π over T
iterations is :

Ω
(√

(U + V )T + U
√
V T
)
.

Proof. The left term of the regret (see Property 1) is lower
bounded by the lower bound of linear bandits in dimension
U +V (Theorem 2 in [Chu et al., 2011]), while the right term
is lower bounded by the lower bound of U linear bandits in
dimension V .

4 Context Attentive Thompson Sampling
(CATS)

We now propose an algorithm for solving the CAB prob-
lem, called Context-Attentive Thompson Sampling (CATS),
and summarize it in Algorithm 2. The basic idea of CATS is
to use linear Thompson Sampling [Agrawal and Goyal, 2013]
for solving the U linear bandit problems for selecting the set
of additional relevant features CU

∗
knowing cV (t) ∈ CV ,

and for selecting the best arm knowing cV+U∗
(t) ∈ CV+U∗

.
Linear Thompson Sampling assumes a Gaussian prior for the
likelihood function, which corresponds in CAB for arm k
to µ̃k ∼ N (cV+U (t)>µ̂k, α

2), and for feature i to, θ̃i ∼
N (cV (t)>θ̂i, α

2). Then the posterior at time t + 1 are re-
spectively P (µ̃k|rk(t)) ∼ N (µ̂k, α

2A−1k) for arm k, and
P (µ̃k|rk(t)) ∼ N (θ̂i, α

2B−1k) for feature i.
The algorithm takes the total number of features N , the

number of features initially observed V , the number of ad-
ditional features to observe U , the set of observed features
CV , the number of actions K, the time horizon T , the distri-
bution parameter α > 0 used in linear Thompson Sampling,
and a function of time λ(t), which is used for adapting the
algorithm to non-stationary linear bandits.

At each iteration t the values cV (t) of features in the sub-
set CV are observed (line 4 Algorithm 2). Then the vector
parameters θ̃i are sampled for each feature i ∈ CV (lines 5-
7) from the posterior distribution (line 6). Then the subset of
best estimated features at time t is selected (lines 8-9). Once
the feature vector cU(t) is observed line 10, Linear Thompson
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Algorithm 2 Context Attentive Thompson Sampling (CATS)

1: Require: N , V , U , K, T , CV , α > 0, λ(t)
2: Initialize: ∀k ∈ [K], Ak := IN+1, gk := 0N+1, µ̂k :=

0N+1, and ∀i ∈ [N ], Bi := IN+1, zi := 0N+1, θ̂i :=
0N+1.

3: Foreach t = 1, 2, ..., T do
4: observe cV (t)
5: Foreach context feature i ∈ C \ CV do
6: Sample θ̃i from N (θ̂i, α

2B−1i )
7: End do
8: Sort (cV (t)>θ̃1, ...c

V (t))>θ̃N ) in decreasing order
9: Select CU (t) := {i ∈ C \ CV , cV (t)>θ̃i ≥
cV (t)>θ̃V }

10: observe values cV+U (t)
11: Foreach arm k = 1, ...,K do
12: Sample µ̃k from N (µ̂k, α

2A−1k ) distribution
13: End do
14: Select arm k(t) := arg maxk⊂[K] c

V+U (t)>µ̃k
15: Observe rk(t)
16: Ak := Ak + cV+U (t)cV+U (t)>, gk := gk +

cV+U (t)rk(t), µ̂k := A−1k gk
17: Foreach i ∈ CU
18: Bi := λ(t)Bi + cV (t)cV (t)>, zi := zi +

cV (t)rk(t), θ̂i := λ(t)B−1i zi
19: End do
20: End do

Sampling is applied in steps 11-15 to choose an arm. When
the reward of selected arm is observed (line 15) the parame-
ters are updated lines 16-19.

Remark 2 (Algorithmic complexity). At each time set, Algo-
rithm 2 sorts a set of size V and inverts U + 1 matrices in
dimensions N + 1 that leads to an algorithmic complexity in
O(V log V + (U + 1)(N + 1)2)T .

Due to assumption 2, CATS algorithm benefits from a lin-
ear algorithmic complexity, overcoming the negative result
stated in [Foster et al., 2016]. Before providing an upper
bound of the regret of CATS in Õ(

√
T ) (Õ hides logarith-

mic factors), we need an additional assumption on the noise
ηk(t).

Assumption 3 (Sub-Gaussian noise): ∀ CU+V ∈ C and
∀k ∈ [K], the noise nk(t) = rk(t)|cV+U (t) − cU+V (t)>µk
is conditionally ρ-sub-Gaussian with ρ ≥ 0, that is for all
t ≥ 1,

∀ λ ∈ R, E[eλnk(t)] ≤ exp

(
λ2ρ2

2

)
.

Lemma 1. (Theorem 2 in [Agrawal and Goyal, 2013]) When
the measurement noise nk(t) satisfies Assumption 2, ∀t ∈
{1, ..., T} ||ck(t) ≤ 1||, ||µ ≤ 1||, α = ρ

√
9N log T

δ , and

ε = 1
log T the regret R(T ) of Thompson Sampling in the Lin-

ear bandit problem withK parameters is upper bounded with
a probability 1− δ by:

O

(
N
√
KT logK(log T )3/2 log

1

δ

)
, where 0 < δ < 1.

We can now derive the following result.
Theorem 2. When the measurement noise ηk(t) satisfies As-
sumption 3, ∀t ∈ {1, ..., T} ||ck(t) ≤ 1||, ||µ ≤ 1||,
α = ρ

√
9N log T

δ , λ(t) = 1 and ε = 1
log T the regret R(T )

of CATS (Algorithm 2) is upper bounded with a probability
1− δ by:

O
((

(U+V )
√
KT logK+UV

√
(N−V )T log(N−V )

)
(log T )3/2 log 1

δ

)
.

Proof. For upper bounding the left term of the regret (see
Property 1), we apply Lemma 1, and for upper bounding
the right term, which is the regret of Thompson Sampling in
U linear bandit problems in V dimensions with respectively
N −V,N −V − 1, ..., N −V −U − 1 parameters, we apply
Lemma 1.

Theorem 2 states that the regret of CATS depends on the
following two terms: the left term is the regret due to select-
ing a sub-optimal arm, while the right term is the regret of
selecting a sub-optimal subset of features. We can see that
there is still a gap between the lower bound of the Context
Attentive Bandit problem and the upper bound of the pro-
posed algorithm. The left term of the lower bound scales in
Ω(
√

(U + V )T ), while the left term of the upper bound of
CATS scales in Õ((U +V )

√
KT logK), where Õ hides log-

arithmic factor. The right term of the lower bound scales in
Ω(U
√
V T ), while the right term of the upper bound of CATS

scales in Õ((U + V )
√

(N − V )T log(N − V )). These gaps
are due to the upper bound of regret of CATS, which uses
Lemma 1. This suggests that the use of linear bandits based
on an upper confidence balls, which scale in Õ

√
dT [Abbasi-

Yadkori et al., 2011] (d is the dimension of contexts), could
reduce this theoretical gap. As we show in the next section,
we choose the Thompson Sampling approach for its better
empirical performances.

5 Experiments
We compare the proposed CATS algorithm with:

(1) Random-EI: in addition to the V observed features, this
algorithm selects a Random subset of features of the specified
size U at each Iteration (thus, Random-EI), and then invokes
the linear Thompson sampling algorithm.

(2) Random-fix: this algorithm invokes linear Thompson
sampling on a subset of U + V features, where the subset V
is randomly selected once prior to seeing any data samples,
and remains fixed.

(3) The state-of-art method for context-attentive bandits
proposed in [Bouneffouf et al., 2017], Thompson Sampling
with Restricted Context (TSRC): TSRC solves the CBRC
(contextual bandit with restricted context) problem discussed
earlier: at each iteration, the algorithm decides on U +V fea-
tures to observe (referred to as unobserved context). In our
setting, however, V out of N features are immediately ob-
served at each iteration (referred to as known context), then
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TSRC decision mechanism is used to select U additional
unknown features to observe, followed by linear Thompson
sampling on U+V features.

(4) CALINUCB: where we replace the contextual TS in
CATS with LINUCB.

(5) CATS-fix: is heuristic where we stop the features ex-
ploration after some iterations T ′ = 10%, 20%....90% (we
report here the an average over the best results).

Empirical evaluation of Random-fix, Random-EI, CATS-
fix, CALINUCB, CATS 1 and TSRC was performed on sev-
eral publicly available datasets, as well as on a proprietary
corporate dialog orchestration dataset. Publicly available
Covertype and CNAE-9 were featured in the original TSRC
paper and Warfarin [Sharabiani et al., 2015] is a historically
popular dataset for evaluating bandit methods.

To simulate the known and unknown context space, we ran-
domly fix 10% of the context feature space of each dataset to
be known at the onset and explore a subset of U unknown
features. To consider the possibility of nonstationarity in the
unknown context space over time, we introduce a weight de-
cay parameter λ(t) that reduces the effect of past examples
when updating the CATS parameters. We refer to the sta-
tionary case as CATS and fix λ(t) = 1. For the nonstation-
ary setting, we simulate nonstationarity in the unknown fea-
ture space by duplicating each dataset, randomly fixing the
known context in the same manner as above, and shuffling
the unknown feature set - label pairs. Then we stochastically
replace events in the original dataset with their shuffled coun-
terparts, with the probability of replacement increasing uni-
formly with each additional event. We refer to the nonstation-
ary case as NCATS and use λ(t) as defined by the GP-UCB
algorithm [Srinivas et al., 2009]. We compare NCATS to
NCATS-fix and NCALINUCB which are the non stationary
version of CATS-fix and CALINUCB. we have also compare
NCATS to the Weighted TSRC (WTSRC), the nonstationary
version of TSRC also developed by [Bouneffouf et al., 2017].
WTSRC makes updates to its feature selection model based
only on recent events, where recent events are defined by a
time period, or ”window” w. We choose w = 100 for WT-
SRC. We report the total average reward divided by T over
200 trials across a range of U corresponding to various per-
centages of N for each algorithm in Table ??.

The results in Table ?? are promising, with our methods
outperforming the state of the art in the majority of cases
across both settings. The most notable exception is found
for CNAE-9 dataset, where CATS sometimes outperforms or
nearly matches TSRC performance. This outcome is some-
what expected, since in the original work on TSRC [Boun-
effouf et al., 2017], the mean error rate of TSRC was only
0.03% lower than the error corresponding to randomly fix-
ing a subset of unknown features to reveal for each event on
CNAE-9. This observation suggests that, for this particular
dataset, there may not be a subset of features which would
be noticeably more predictive of the reward than the rest of
the features. We also observe that the LINUCB version of

1Note that we have used the same exploration parameter value
used in [Chapelle and Li, 2011] for TS and LINUCB type algorithms
which are TS ∈ {0.25, 0.5, 1} and LINUCB ∈ {0.51, 1, 2}

CATS has comparable performance with CATS with slight
advantage to CATS. Another observation is that CATS-fix is
performing better than CATS in some situations, the explana-
tion could be that after finding the best features the algorithm
do not need to explore anymore and focus on finding the best
arms based on these featues. Note that there may not be a
subset of features which would be noticeably more predic-
tive of the reward than the rest of the features, which is the
underlying assumption of TSRC. On top of this assumption,
CATS also assumes that there exist relationships between the
known and unknown context features, which is likely to cause
a small compounding of error.

(a) Stationary Setting

(b) Nonstationary Setting

Figure 1: Total Average Reward for Covertype

We perform a deeper analysis of the Covertype dataset, ex-
amining multi-staged selection of theU unknown context fea-
ture sets. In CATS, the known context is used to select all U
additional context feature sets at once. In a multi-staged ap-
proach, the known context grows and is used to select each
of the U additional context features incrementally (one fea-
ture at a time). Maintaining λ(t) = 1, for the stationary case
we denote these two cases of the CATS algorithm as CATS
and CATS-Staged respectively and report their performance
when 10% of the context is randomly fixed, across various U
in Figure 1a.
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(a) Stationary setting

Warfarin
U 20% 40% 60%

TSRC 53.28 ± 1.08 57.60 ± 1.16 59.87 ± 0.69
CATS 53.65 ± 1.21 58.55 ± 0.67 60.40 ± 0.74

CATS-fix 53.99 ± 1.02 58.67 ± 0.65 60.07 ± 0.54
CALINUCB 52.17 ± 0.89 57.23 ± 0.53 60.29 ± 0.66
Random-fix 51.05 ± 1.31 53.55 ± 0.97 55.15 ± 0.83
Random-EI 43.65 ± 1.21 48.55 ± 1.67 50.40 ± 1.33

Covertype
U 20% 40% 60%

TSRC 54.64 ± 1.87 63.35 ± 1.87 69.59 ± 1.72
CATS 65.57 ± 2.17 72.58 ± 2.36 78.58 ± 2.35

CATS-fix 65.88 ± 2.01 72.67 ± 2.13 78.55 ± 2.25
CALINUCB 61.99 ± 1.53 72.54 ± 1.76 79.69 ± 1.82
Random-fix 53.11 ± 1.45 59.67 ± 1.07 64.18 ± 1.03
Random-EI 46.15 ± 2.61 52.55 ± 1.81 55.45 ± 1.5

CNAE-9
U 20% 40% 60%

TSRC 33.57 ± 2.43 38.62 ± 1.68 42.05 ± 2.14
CATS 29.84 ± 1.82 39.10 ± 1.41 40.52 ± 1.42

CATS-fix 29.82 ± 1.70 39.57 ± 1.23 41.43 ± 1.39
CALINUCB 28.53 ± 1.65 38.88 ± 1.35 39.73 ± 1.36
Random-fix 33.01 ± 1.82 37.67 ± 1.68 39.18 ± 1.52
Random-EI 32.05 ± 2.01 36.65 ± 1.90 37.47 ± 1.75

(b) Nonstationary setting

Warfarin
U 20% 40% 60%

WTSRC 55.83 ± 0.55 58.00 ± 0.83 59.85 ± 0.60
NCATS 59.47 ± 2.89 59.34 ± 2.04 63.26 ± 0.75

NCATS-fix 59.01 ± 3.09 59.14 ± 2.33 62.42 ± 0.98
NCLINUCB 58.64 ± 2.77 58.43 ± 1.89 63.01 ± 0.66
Random-fix 43.91 ± 1.17 47.67 ± 1.08 54.18 ± 1.03
Random-EI 47.78 ± 2.11 52.55 ± 1.83 55.45 ± 1.54

Covertype
U 20% 40% 60%

WTSRC 50.26 ± 1.58 58.99 ± 1.81 64.91 ± 1.38
NCATS 48.50 ± 1.05 68.17 ± 3.14 83.78 ± 5.51

NCATS-fix 49.87 ± 1.20 68.04 ± 3.24 82.98 ± 5.83
NCLINUCB 48.12 ± 0.99 68.20 ± 3.11 83.91 ± 5.21
Random-fix 43.11 ± 3.05 49.67 ± 2.77 53.18 ± 2.33
Random-EI 44.45 ± 4.44 46.65 ± 3.88 53.45 ± 3.61

CNAE-9
U 20% 40% 60%

WTSRC 19.91 ± 2.67 30.86 ± 2.92 36.01 ± 2.88
NCATS 30.88 ± 0.96 34.91 ± 1.93 42.04 ± 1.52

NCATS-fix 29.92 ± 1.06 33.43 ± 1.83 40.04 ± 1.51
NCLINUCB 31.07 ± 0.87 34.61 ± 1.73 41.81 ± 1.62
Random-fix 13.01 ± 3.45 21.77 ± 3.08 24.18 ± 2.43
Random-EI 16.15 ± 2.44 22.55 ± 2.18 25.45 ± 2.15

Table 1: Total average reward, V = 10%

Note that when the remaining 90% of features are re-
vealed, the CATS and TSRC methods all reduce to simple
linear Thompson sampling with the full feature set. Simi-
larly, when 0 additional feature sets are revealed, the meth-
ods all reduce to linear Thompson sampling with a sparsely
represented known context. Observe that CATS consistently
outperforms CATS-Staged across all U tested.

CATS-Staged likely suffers because incremental feature
selection adds nonstationarity to the known context - CATS
learns relationships between the known and unknown features
while CATS-Staged learns relationships between them as the
known context grows. Nonetheless, both methods outperform
TSRC. In the nonstationary case we use the GP-UCB algo-
rithm for λ(t), refer to the single and multi-staged cases as
NCATS and NCATS-Staged, and illustrate their performance
in Figure 1b. Here we observe that NCATS and NCATS-
Staged have comparable performance, and the improvement
gain over baseline, in this case WTSRC, is even greater than
in the stationary case.

5.1 Customer Assistant Evaluation
Next we evaluate our methods on Customer Assistant, a
proprietary multi-skill dialog orchestration dataset. Recall
that this kind of application motivates the CAB setting be-
cause there is a natural divide between the known and un-
known context spaces; the query and its associated features
are known at the onset and the potential responses and their
associated features are only known for the domain specific
agents the query is posed to. In this case, nonstationarity in
the unknown context space could reflect independent updates
to the underlying domain specific agents, perhaps improving
or expanding their responses. As a result, similar queries,
defining the known context, could elicit vastly different distri-
butions of response features, the unknown context, over time.

The Customer Assistant orchestrates 9 domain specific agents
which we arbitrarily denote as Skill1, . . . , Skill9 in the dis-
cussion that follows. In this application, example skills lie in
the domains of payroll, compensation, travel, health benefits,
and so on. In addition to a textual response to a user query,
the skills orchestrated by Customer Assistant also return the
following features: an intent, a short string descriptor that cat-
egorizes the perceived intent of the query, and a confidence,
a real value between 0 and 1 indicating how confident a skill
is that its response is relevant to the query. Skills have mul-
tiple intents associated with them. The orchestrator uses all
the features associated with the query and the candidate re-
sponses from all the skills to choose which skill should carry
the conversation.

The Customer Assistant dataset contains 28,412 events as-
sociated with a correct skill response. We encode each query
by averaging 50 dimensional GloVe word embeddings [Pen-
nington et al., 2014] for each word in each query and for each
skill we create a feature set consisting of its confidence and
a one-hot encoding of its intent. The skill feature set size for
Skill1, . . . , Skill9 are 181, 9, 4, 7, 6, 27, 110, 297, and 30
respectively.

We concatenate the query features and all of the skill fea-
tures to form a 721 dimensional context feature vector for
each event in this dataset. Recall that there is no need for
simulation of the known and unknown contexts; in a live set-
ting the query features are immediately calculable or known,
whereas the confidence and intent necessary to build a skill’s
feature set are unknown until a skill is executed. Because
the confidence and intent for a skill are both accessible post
execution, we reveal them together. We accommodate this
by slightly modifying the objective of CATS to reveal U un-
known skill feature sets instead of U unknown individual fea-
tures for each event. We perform a deeper analysis of the Cus-
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tomer Assistant dataset, examining multi-staged selection of
the U unknown context feature sets. Maintaining λ(t) = 1,
for the stationary case the results are summarized in Figure
2a. Here both CATS-Staged and CATS methods outperform
TSRC by a large margin.

(a) Stationary Setting

(b) Nonstationary Setting

Figure 2: Total Average Reward for Customer Assistant

For the nonstationary case we simulate nonstationarity in
the same manner as the publicly available datasets, except
using the natural partition of the query features as the known
context and the skill feature sets as the unknown context in-
stead of simulated percentages. We use the GP-UCB algo-
rithm for λ(t) and illustrate the performance of NCATS and
NCATS-Staged alongside WTSRC in Figure 2b. Here we ob-
serve that NCATS slightly outperforms NCATS-Staged, and
both outperform the WTSRC baseline.

6 Conclusions and Future Work
We have introduced here a novel bandit problem with only
partially observable context and the option of requesting a
limited number of additional observations. We also propose
an algorithm, designed to take an advantage of the initial par-
tial observations in order to improve its choice of which ad-
ditional features to observe, and demonstrate its advantages
over the prior art, a standard context-attentive bandit with no

partial observations of the context prior to feature selection
step. Our problem setting is motivated by several realistic
scenarios, including medical applications as well as multi-
domain dialog systems. Note that our current formulation
assumes that all unobserved features have equal observation
cost. However, a more practical assumption is that some fea-
tures may be more costly than others; thus, in our future work,
we plan to expand this notion of budget to accommodate more
scenarios involving different feature costs. Other directions
for future work include using non-bandit algorithms in the
context feature selection stage.

7 Broader Impact
This problem has broader impacts in several domains such as
voice assistants, healthcare and e-commerce.

• Better medical diagnosis. In a clinical setting, it is
often too costly or infeasible to conduct all possible
tests; therefore, given the limit on the number of tests,
the doctor must decide which subset of tests will result
into maximally effective treatment choice in an iterative
manner. A doctor may first take a look at patient’s med-
ical record to decide which medical test to perform, be-
fore choosing a treatment plan.

• Better user preference modeling. Our approach can help
to develop better chatbots and automated personal assis-
tants. For example, following a request such as, for ex-
ample, ”play music”, an AI-based home assistant must
learn to ask several follow-up questions (from a list of
possible questions) to better understand the intent of a
user and to remove ambiguities: e.g., what type of mu-
sic do you prefer (jazz, pop, etc)? Would you like it on
hi-fi system or on TV? And so on. Another example:
a support desk chatbot, in response to user’s complaint
(”My Internet connection is bad”) must learn to ask a se-
quence of appropriate questions (from a list of possible
connection issues): how far is your WIFI hotspot? Do
you have a 4G subscription? These scenarios are well-
handled by the framework we proposed in this paper.

• Better recommendations. Voice assistants and recom-
mendation systems in general tend to lock us in our pref-
erences, which can have deleterious effects: e.g., rec-
ommendations based only on the past history of user’s
choices may reinforce certain undesirable tendencies,
e.g., suggesting an online content based on a user’s with
particular bias (e.g., racist, sexist, etc). On the contrary,
our approach could potentially help a user to break out
of this loop, by suggesting the items (e.g. news) on addi-
tional questions (additional features) which can be used
to broaden user’s horizons.
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