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Abstract

We consider the problem of distinguishing two ma-
chine learning (ML) models built for the same task
in a human-interpretable way. As models can fail or
succeed in different ways, classical accuracy met-
rics may mask crucial qualitative differences. This
problem arises in a few contexts. In business appli-
cations with periodically retrained models, an up-
dated model may deviate from its predecessor for
some segments without a change in overall accu-
racy. In automated ML systems, where several ML
pipelines are generated, the top pipelines have com-
parable accuracy but may have more subtle differ-
ences. We present a method for interpretable com-
parison of binary classification models by approxi-
mating them with Boolean decision rules. We intro-
duce stabilization conditions that allow for the two
rule sets to be more directly comparable. A method
is proposed to compare two rule sets based on their
statistical and semantic similarity by solving as-
signment problems and highlighting changes. An
empirical evaluation on several benchmark datasets
illustrates the insights that may be obtained and
shows that artificially induced changes can be re-
liably recovered by our method.

1 Introduction

There is growing recognition of the multi-faceted nature of
trust in machine learning (ML) systems. Considerations such
as bias, fairness, explainability, adversarial robustness, and
out-of-distribution generalization need to be better under-
stood before deployment. Accuracy is therefore not the sole
determinant of model performance.

Within this context, we consider the problem of human-
interpretable comparison of two ML models built for the
same task. This problem has been less studied compared to
explanation of a single ML model. As models can fail or suc-
ceed in different ways, classical accuracy metrics and other
summary statistics may mask qualitative differences that are
crucial to understand.

An important application of model comparison occurs in
the overall ML lifecycle when models are updated. A great
deal of focus has been placed on understanding and analysing
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an ML model when it is being initially developed, and on ex-
plaining predictions to end users. In deployment however, it
is common to re-train the model with more up-to-date data
points and ensure that accuracy holds. Considering accu-
racy alone provides no insight into what has changed. Meth-
ods to provide interpretable summaries of changes before re-
deployment are therefore vital in building understanding and
trust.

A similar problem arises in a model selection context. In
automated ML (autoML) pipeline generation procedures, for
example, top performing pipelines may be hard to distinguish
on accuracy alone. AutoML systems tend to have a trust
deficit with users [Wang et al., 2019] and previous studies
have found [Drozdal er al., 2020] that including transparency
features helps to reduce the gap. In this setting, interpretable
model comparisons can serve to highlight model differences
and aid with model selection.

Given two ML models, one problem is to identify whether
there is a (statistically) significant change [Bu er al., 2019;
Geng ef al., 2019; Harel et al., 2014]. While our proposed
method does detect changes, our focus is on the next step
of characterizing what has changed between the models. In
particular, our aim is to support model developers and end-
users in understanding model differences, beyond summary
statistics.

Research has shown that ML model developers as well as
end-users develop a mental model of Al solutions [Kulesza
et al., 2012]. In a real-world example on predicting hospi-
tal readmissions, [Bansal et al., 2019] documents how, over
time, end-users trusted the system for elderly patients where
the system was very accurate. A model update that improved
overall accuracy also introduced errors for elderly patients.
This change could lead to poorer decisions overall. The
example highlights the importance of preserving the mental
model that end users have formed about the decision making
process.

The core idea pursued in this paper is as follows. An ML
model is approximated by a directly interpretable model. This
approximation, also referred to as a surrogate model, provides
a compact rule set to describe model behaviour globally. We
focus herein on binary classification tasks related to tabular
data, due in part to the choice of rule sets as the surrogate
model. Updates to the model are also approximated simi-
larly, however with stabilization conditions called grounding.
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Grounding seeks to preserve rule structure such that the rule
sets from the two model versions are more directly compara-
ble and also aids in persisting the end user mental models of
an ML system.

The final step is to compare the two rule sets and highlight
changes. We develop a method for this that solves an assign-
ment problem to map rules from one set to those in the other
set. We propose two ways of measuring similarity between
rules: semantic, based on interpreting the conditions in the
rules, and statistical, based on the data samples covered by
the rules. To our knowledge, quantifying similarity between
rule sets has been little studied and may be of independent
interest.

The main contributions of the paper are therefore (1) draw-
ing attention to the problem of interpretable model compar-
ison, and providing a solution, (2) a mechanism to stabilize
rule generation via grounding, and (3) a rule set comparison
algorithm to highlight changes.

2 Related Work

There is considerable literature on model change in general
that studies changes in data distributions [Tsymbal, 2004] ei-
ther in the features or target variables. Concept drift detec-
tion seeks to detect changes in the relationship between fea-
tures and targets over time [Gama er al., 2014]. A variety of
methods exist, e.g. using empirical loss in data streams [Harel
et al., 2014], empirical difference tests between two sets of
model parameters [Bu ef al., 20191, or specific methods for
linear regression models [Geng et al., 2019].

In contrast to the above works that aim to detect whether
a change has occurred, the focus of this paper is in under-
standing what has changed. In this, our work is closest to
Demsar and Bosni¢ [2018] where model explanations are
used to study concept drift. Their method determines feature
contributions over time and observes the changes in contribu-
tions. In this work we leverage rule set explanations which
can readily identify feature interactions.

From the explainability side, the approximation of a su-
pervised ML model by a simpler, more interpretable model
likewise has a considerable history and many variations. In
more recent literature, it has been called model distillation,
extraction, compression, or global post hoc explanation.

Distillation/compression methods [Hinton et al., 2015;
Lopez-Paz et al., 2016; Bucild et al., 2006; Ba and Caru-
ana, 2014] have mainly considered simpler neural networks,
which are generally still hard to interpret. Closer are methods
that extract decision trees [Bastani et al., 2017; Frosst and
Hinton, 2017; Craven and Shavlik, 1995], which are related
to rule sets. Domingos [1997] uses ordered rule sets (i.e. rule
lists) and restricts the original model to be an ensemble of
rule lists (we do not have such a restriction). The “distill-
and-compare” approach of [Tan et al., 2018] is most simi-
lar conceptually to our proposal but uses generalized additive
models (GAMs) and fits one GAM to a black-box model and
a second GAM to ground truth outcomes, not a second model
as in our case. Sanchez er al. [2015] investigate logic rules
and Bayesian networks to provide descriptive representations
of matrix factorization models.
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Figure 1: Method overview

In terms of rule set learning algorithms, we have chosen
that of [Dash et al., 2018] (and its computationally simpler
variant [Arya et al., 2019]) because it explicitly optimizes the
trade-off between accuracy (fidelity to the original model in
our case) and rule set complexity and does so in a way that
facilitates our addition of grounding. It is moreover repre-
sentative of the state of the art. Recent alternatives that also
control rule set complexity include [Lakkaraju et al., 2016;
Wang et al., 2017], in contrast to older algorithms such as
RIPPER [Cohen, 1995] that do not minimize complexity.

3 Methods

We are given two ML models, A and B, trained on two
sets of training data and ground truth (“raw”) labels. As
shown in Figure 1, for each ML model, we learn an in-
terpretable model as a surrogate using labels from the ML
model (as opposed to the ground truth) and the correspond-
ing training data. We leverage the method of Boolean
Rules via Column Generation (BRCG), first presented in
[Dash et al., 2018] and later simplified and open-sourced
[Arya et al, 2019]. The algorithm generates a Boolean
rule of the form 1f (condition) then True else
False, where condition is in disjunctive normal form
(DNF, OR of ANDs). Such a DNF rule constitutes an (un-
ordered) rule set for the positive class. Following com-
mon terminology, we interchangeably refer to the conjunctive
clauses within the DNF as “rules” or “conjunctions” within
the rule set. It is equally possible to learn a DNF rule/rule
set for the negative class, which is equivalent to a conjunc-
tive normal form (CNF) rule for the positive class [Su et al.,
2016]. Rule sets generated for the two models being com-
pared are processed by a rules comparator algorithm to de-
termine differences. This algorithm produces an assignment
of rules in one set to similar rules in the other set, or to none
if the second set has fewer rules. Differences between corre-
sponding rules can then be highlighted.

One challenge in such comparison in practice is that minor
changes in training data, for example due to sampling vari-
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ability, can yield rules that have very different structure. Even
for the same training data, one can have several clauses that
use different variables but have similar fidelity due to strong
correlations between the variables. We devise a mechanism,
termed grounding, to stabilize the structure of the rule sets.
To do this, we modify the BRCG formulation by introducing
a penalty term in the objective function to make previously
generated rules more likely to persist in the new rule set. To-
ward this end, we first summarize the BRCG method and then
present the grounding and rule set comparison elements novel
to this paper.

3.1 Boolean Rules Via Column Generation
(BRCG)

[Dash et al., 2018] formulate the search for an accurate
(i.e. faithful) and interpretable rule set as a mixed-integer lin-
ear programming (MILP) problem based on training samples

To describe the formulation, let P denote the set of positive
samples, in our case the observations classified as ; = 1 by
the ML model, and Z denote negative samples. All features in
X are assumed to be binarized as in a decision tree, by thresh-
olding with multiple thresholds for continuous features, and
by the usual one-hot encoding for categorical features. Let K
be the set of (exponentially many) possible clauses, namely
conjunctions of the binary features in X. Define K;, K; C K
as the subset of clauses satisfied by observation <.

The main decision variables are wy, for all k£ in set K — a
binary variable indicating whether conjunction k is selected
for the model. Each conjunction k£ in K has an associated
complexity c;. We take cj; to be the degree of the conjunction,
i.e. the number of participating literals. The formulation also
defines &; for ¢ € P (i.e. for all positive samples) to indicate
incorrect classification, i.e. a false negative.

The objective looks to minimize total Hamming loss,
where the Hamming loss for each sample is the number of
conjunctions that must be added or removed to classify it cor-
rectly. Specifically, this can be written as

min Y&+ YD w )

i iEP i€Z keK;
—— —_———
false negatives  false positives

False positives add more than ‘one unit’ if they satisfy multi-
ple selected conjunctions, all of which must be removed. The
objective is subject to constraints:

§i+zwk21 & >0, Vie P Q)
keK;
> cwp < C 3)
keK
wy, € {0,1} Vke K 4)

Constraint (2) identifies false negatives. It states, for each
positive sample, we either have a false negative (§; = 1) or
include a rule that correctly represents this observation (i.e.
a conjunction from the set K;). Constraint (3) bounds the
total complexity of the selected rule set by a parameter C.
Constraint (4) restricts the decision variables wy, to be binary.

Problem (1)-(4) is intractable as written, even with capa-
ble MILP solvers, because the set K is very large and it is
prohibitive to generate the entire set of conjunctions. In any
case, only a few wy, tend to be selected in the final solution.
The authors [Dash ef al., 2018] use a column generation (CG)
procedure, which is an iterative algorithm by which candidate
conjunctions are generated at each iteration only if they can
improve the overall objective. The method to generate a new
candidate is called the pricing problem and the original model
(1)—(4) is called the master problem. The CG procedure can
be summarized by the following steps:

1. Restrict the master problem to a small subset of conjunc-
tions J C K and solve its linear programming (LP) re-
laxation, obtained by relaxing the constraint wy, € {0, 1}
to wy, > 0.

2. Solve the pricing problem to find conjunctions omitted
from J that can improve the objective. Add these con-
junctions to J.

3. Repeat steps 1 and 2 until no improving conjunctions
can be found.

4. Solve the unrelaxed master problem (wy € {0,1}) re-
stricted to the final subset J.

We refer to [Dash et al., 2018] for the formulation of the pric-
ing problem and more details in general.

3.2 Rule Sets With Grounding (BRCG+)

We now deal with the case where we use external information
to guide the rule set generation procedure. The primary rea-
son is the practical necessity for ‘stabilization’. Decision rule
sets learnt at increments as training data accumulates should
be relatively stable to allow for comparison. There are other
reasons as well when such grounding can be useful. Users
may have domain knowledge that is not reflected in the data
or may have formed mental models around existing ML mod-
els [Kulesza er al., 2012]. Conjunctions generated by the al-
gorithm may also have errors that need to be corrected.

Assume we are given a known set of conjunctions U where
U C K. We seek to ground the subsequent search for con-
junctions in this known set of rules. We consider this as a
soft constraint, where each time an externally provided rule
is violated we incur a small penalty.

To do this, we modify the objective (1) as:

r?glz&—i-zz:wk—&—cunz:(l—wk) (5)
7 iep

i€Z keK; keU

penalize violated
user constraints

subject to constraints (2)—(4). The additional term serves as
regularization and ¢,, is the regularization parameter as a frac-
tion of the dataset size n. Since the first two terms in the ob-
jective represent the Hamming loss, ¢,,n can be interpreted as
the additional Hamming loss that needs to be incurred before
a user provided constraint is dropped from the model.

This grounded problem can be solved by a similar CG pro-
cedure as above. First, a restricted master problem is solved
by optimizing objective (5) subject to constraints (2) and (3).
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It is naturally assumed that the grounding set U C J, the set
considered in each iteration. In step 2, the pricing problem
defined in [Dash ef al., 2018] (eq. (6)-(10) therein) can be
used directly without modification (i.e. it is specified in the
same way using the dual variables from the restricted master
problem). The reason is that the new penalty term in (5) ap-
plies only to the grounding set U C J and therefore does not
alter the search for candidate conjunctions in K\ J.

The BRCG algorithm is sensitive to class imbalance and
needs relatively balanced samples to generate rule sets. In
practice sampling can be used to overcome this. Alterna-
tively, the weights of the two terms in the objective (1) can
be changed. Further, the feature vector X needs to be bina-
rized. This can be accomplished by feature thresholding or by
supervised approaches to determine optimal thresholds, such
as by learning a decision tree.

A simple example of rule sets generated by BRCG and the
BRCG+ extension can be seen for the mushroom dataset.
For this case, the rule set generated consists of a single con-
junction

(odor # almond) A (odor # anise) A (odor # none).

An if-then-else decision rule using this clause alone
has a fidelity of 98.5%, i.e. correctly classifies if a mushroom
is poisonous or not for 98.5% of training data.

3.3 Rule Comparisons

Rule sets can be similar in two distinct ways. On one hand,
two rules may have few or no features in common but may be
satisfied by very similar populations due to strong correlation.
The reverse is also true: for example, the populations satisfy-
ing (age > 26 AND education = ‘Masters’) and (age < 26
AND education = ’Masters’) have no overlap but the rules
are semantically similar. Therefore, we consider two mecha-
nisms, one statistical and another based on rule semantics to
compare rule sets. A rule set similarity score between 0 and
1 (1 for identical rule sets) is computed using the following
procedure.

Given two rule sets Ry with m/ rules and R, with n’ rules,
and a similarity function S : Ry x Ry — [0, 1], we solve an
assignment problem where the objective is to find the max-
imum similarity matching f : R; +— Ro that maximizes
z = Y er, S(r, f(r)). As the rule sets can be of differ-
ent lengths, m’ # n’, this can be an imbalanced assignment
with some rules not matched, i.e. some rules in R; can be
mapped to a “null rule” indicating no match. Computing f is
a well studied problem and we use the algorithm described in
[Crouse, 2016] as available in the scipy package.

The rule set similarity score, z*, is normalized to [0, 1]
by taking ﬁ This normalization is inspired by the
Serenson-Dice coefficient and penalizes unmatched rules.
The largest possible value of z is min{m’, n'}, correspond-
ing to all rules in the shorter rule set being perfectly matched.
A denominator of max{m’,n'} would fully penalize un-
matched rules. Our choice of the average (m' + n')/2 for
the denominator is therefore intermediate.

We now describe two methods to compute the similarity
function S, which is the pairwise similarity of all rules within
rule sets R; and Rs.
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Statistical similarity. Two rules can be considered similar
if they cover a similar subset of a dataset X. If X (r) denotes
a subset satisfying rule r, then a statistical similarity measure
can be computed as the Jaccard Index

_ X () N X (1)

ST S X UX )l

(6)

This measure is straightforward to compute but requires
knowledge of the underlying dataset X. For datasets with
primarily categorical features, this similarity measure tends to
be conservative as the intersection may be low. On the other
hand, rules involving different features that are correlated can
exhibit high statistical similarity.

Semantic similarity. To compare rule semantics, we regard
a rule as an unordered set of literals where each literal is a
triple (variable, comparison operator, value) Two literals can
differ by any of these 3 elements. In order to take into ac-
count the semantic meaning of the literals, we define a lit-
erals similarity function L which assigns a similarity score
between two literals based on the four cases: (a) 0.0 if they
have different variables, (b) 0.25 if they have the same vari-
ables but different comparison operators, (c) 0.5 if they share
the same variable and comparison operator but different val-
ues, (d) 1.0 if they are identical. We note that although these
values (0.0, 0.25,0.5, 1.0) are arbitrary and adopted for con-
creteness, only relative magnitudes are of importance as they
are used for comparison. We also have one exception to case
(b). The literals produced by BRCG use 6 different compar-
ison operators (=, #, <, <, >, >). The two pairs (<, <) and
(>, >) are operators that have similar meaning and are con-
sidered to be the same, falling in case (c).

As done for matching of rule sets, to find a match be-
tween the literals of two rules, we first compute pairwise lit-
erals similarity scores and then solve an assignment problem.
Given two conjunctions, A; consisting of n literals and A5 of
m literals, we define a rules similarity function between the
two rules/conjunctions as follows:

1. Interpreting A; as a set of n literals and A5 as a set of
m literals, and given the literals similarity function L :
Ay x As — [0,1], we define an assignment problem
where the objective is to find a matching f : A; — Ag
50 as to maximize the similarity v = 3 1 L(a, f(a))

2. Given v* as the maximum value of the cost function
from the assignment problem in step 1, we compute the
rules similarity score as fjm The same discussion as

before applies to the choice of normalization.

This rules similarity function is taken as the semantic sim-
ilarity cost function for computing the pairwise similarity
S(ry,re) of all rules within two rule sets. We emphasize
that semantic similarity scores can be computed without any
knowledge of the underlying data.

4 Experiments

An empirical evaluation of the proposed methods is per-
formed on seven binary classification datasets. The datasets
range from 569 observations to 1.3 million observations. Full
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details are in the supplementary material. The experiments
support four claims around (a) stability of rules generated by
the grounding mechanism, (b) recovery of artificially induced
perturbations by our method, (c) comparison of semantic and
statistical similarity computation, and (d) qualitative insights
from interpretable model comparison.

Data binarization. For all datasets, categorical features
were one-hot encoded with negations (i.e. both = and #).
Numerical features were compared to decile thresholds in
both directions (<, >) and encoded for all thresholds. Only
for the largest dataset on lending, a supervised data binariza-
tion method was used, where optimal splits were determined
by a decision tree. This method yields considerably fewer
splits than using decile thresholds and significantly reduces
run times. Additional details are included in the supplement.

Algorithms. We used three base ML models - a standard
logistic regression classifier with ¢5 regularization, Random
Forest, and XGBoost. These are the models we seek to ex-
plain for all experiments. For the BRCG method, we used the
open source implementation' described in [Arya et al., 2019]
as “BRCG-light”. The rule comparator and BRCG+ method
were implemented in Python 3.7 using CPLEX 12.10 as the
solver for linear and integer programs.

Rule comparisons. We take 80% of each dataset as the
training data. The ML model is used to generate labels for
the training data, which is then input to the BRCG explainer
to derive an initial rule set, referred to as “A”. The remain-
ing 20% of data is used for testing of model accuracy and
rule set fidelity (accuracy of rules in predicting base learner
labels). These, along with clause complexity metrics, are re-
ported in the supplement. The training data is then artificially
perturbed using the procedure described below. For this per-
turbed dataset, we learn a revised ML model and learn two
versions of the explainer - BRCG and BRCG+, to get two
rule sets, termed “B” and “B with grounding”. The resulting
rule sets are compared with the rule comparator (Section 3.3),
i.e. we compare A-B and A-B with grounding.

Perturbation. We artificially induce a known change to the
underlying data and see if our rule comparison procedure can
recover the change as an interpretable clause. We pick an ar-
bitrary rule from set A and change target labels for instances
in the training data that satisfy the rule, with a perturbation
probability p. As an instance can satisfy several rules we
impose an additional criterion that perturbed data points be
covered by the chosen rule exclusively. Without this, the per-
turbation can influence several rules all at once.

Complexity considerations. For BRCG-light, the com-
plexity of explanation is controlled by two parameters \y and
A1 as opposed to a complexity bound C' in Eq. (3). These
parameters were determined by grid search. The parameters
were changed in the mushroom case to provide larger rules,
as the optimal rule had only three literals. The complexity
of the rule sets resulting from BRCG-light was computed as
the total number of literals in the rule set. This varied from
7 to 52 in our experiments. This complexity was input to the
BRCG+ model as the complexity bound C.

"https://github.com/Trusted- AI/AIX360
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Figure 2: Fraction of instances for which perturbed rule was success-
fully recovered using statistical (left) and semantic (right) similarity

Experiments. We perturb each dataset with perturbation
probabilities p € {0.5,0.6,..,1.0}, which denotes the like-
lihood that an instance label is changed. We vary the ground-
ing penalty ¢, € {0.0001,0.001,0.01,0.1} to see its impact.
Overall, we analyze 7 datasets, 3 base ML models, 6 values
of p, and 4 grounding penalties. For each run, we run both
the BRCG and BRCG+ algorithms on 5 random perturbations
for all datasets, except for the ‘lending’ dataset, where we run
one draw.

4.1 Results

Change detection. For each perturbation run, if the per-
turbed rule (from A) was identified by the rule comparison as
a change, we count this as being a successful recovery of the
change. We are interested in the fraction of cases for which
the induced change was recovered. The strength of the pertur-
bation depends, in part, on the perturbation probability, and
recovery rates were also found to depend on the regularization
parameter c,, used. In Figure 2, we see that as the perturba-
tion probability increases, the fraction of recovered changes
also increases, to almost all cases when c,, is small enough.
The change is thus successfully recovered if the perturbation
is large enough compared to the regularization c,,.

The recovery rate is clearly impacted by the choice of the
regularization parameter c,,. High values, e.g. ¢, = 0.1,
make the rules in A persist in B even when the data no longer
support them. For lower values, the algorithm accounts for
both grounded rules and changes in the underlying ML model
as evidenced by the recovery fraction. One might think that a
very low penalty ¢, would cause grounded rules to be lost in
set B. The generally high similarity scores with grounding in
our current experiments (Figure 3) suggest otherwise.

Grounding. To see the difference grounding makes in gen-
erating stable rule sets, we compute the similarity measures
between rule sets A and B (the perturbed data) using the
BRCG and BRCG+ algorithms. While BRCG+ is grounded
in rules from A, BRCG is not. Figure 3 shows that similar-
ity scores are higher when the rule sets are grounded. This is
regardless of if we use rule semantics or statistical compar-
isons.

Model comparison example. We conclude by highlighting
the qualitative benefits of interpretable model comparisons
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through an example. We compare two ML models, Random
Forest (RF) and Gradient Boosted Trees (XGB), for the in-
come classification task of the ‘adult’ dataset, this time with-
out artificial changes. The model comparison, summarized
in Figure 4, shows that RF and XGB have test accuracies of
0.80 and 0.84 respectively. However, the statistical similar-
ity score (z*) of 0.44 between their rule set approximations
suggests a low similarity between the models. The low sim-
ilarity can be explained by the matching of the two rule sets,
computed as described in Section 3.3 and depicted in Fig-
ure 4. The bottom two rules indicate a cohort in the training
data for which the models behave similarly. The XGB model
additionally captures four additional cases which are not cov-
ered by the RF model. Rule fidelity, i.e. the accuracy of the
rule sets in explaining the two models, is 0.81 (RF) and 0.94
(XGB). The top row of the plot shows the “missed samples”,
the fraction of data for which the rule set infers the wrong
label compared to the base learner. There is some overlap in
the missed samples which is 1.0 minus the fidelity in each
case. The high fidelity for XGB shows the rule set generated
by our method serves as a meaningful surrogate for highly
non-linear models. Additional model comparison examples
for other datasets are provided in the supplement.

5 Conclusions

We present a solution to the problem of interpretable model
comparison. The solution seeks to describe an ML model by
compact Boolean rules. Subsequent versions of the model
are similarly described using an explainer that aims to pre-
serve rule structure across model versions. The algorithm is

demonstrated on seven benchmark datasets to show that it can
recover artificially induced perturbations and uncover quali-
tative changes.

The work has the following limitations. The BRCG+ al-
gorithm is computationally intensive, particularly for large
datasets. Faster heuristics or search methods for generating
new conjunctions using rule based models like in [Arya et
al., 2019] could be leveraged to address this. The selection of
regularization parameter c,, is important. Large c,, values can
cause rules to persist that may no longer be valid. Low values
do not appear to harm the stabilization of rules in our experi-
ments. We have not systematically addressed the problem of
a suitable choice for this parameter. Finally, the perturbation
experiments performed in this paper are a surrogate endpoint
and may not fully capture model change dynamics in real-
world applications.

We believe nevertheless that this work makes a contri-
bution in advancing interpretability in the context of model
change. We have demonstrated that our solution can not only
identify when a model has changed but is also able to un-
cover what has changed. Given the increasing reliance on
Al solutions for real world problems, providing insights on
changes beyond accuracy measures is important in support-
ing end users and model developers alike.
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