
Neural Belief Reasoner

Haifeng Qian
IBM Research, Yorktown Heights, NY, USA

qianhaifeng@us.ibm.com

Abstract

This paper proposes a new generative model called
neural belief reasoner (NBR). It differs from pre-
vious models in that it specifies a belief function
rather than a probability distribution. Its implemen-
tation consists of neural networks, fuzzy-set oper-
ations and belief-function operations, and query-
answering, sample-generation and training algo-
rithms are presented. This paper studies NBR in
two tasks. The first is a synthetic unsupervised-
learning task, which demonstrates NBR’s ability to
perform multi-hop reasoning, reasoning with un-
certainty and reasoning about conflicting informa-
tion. The second is supervised learning: a robust
MNIST classifier for 4 and 9, which is the most
challenging pair of digits. This classifier needs no
adversarial training, and it substantially exceeds the
state of the art in adversarial robustness as mea-
sured by the L2 metric, while at the same time
maintains 99.1% accuracy on natural images.

1 Introduction
It is a widely held hypothesis that bridging the gap between
machine learning and rule-based reasoning would bring ben-
efits to both domains. For rule-based systems, this could pro-
vide an elegant solution to automatically discover rules from
observations, and could provide new approaches to reasoning
with uncertainty. On the other hand, despite the phenomenal
successes of deep learning, neural networks tend to have poor
robustness and interpretability, both of which are nonissue in
rule-based systems. The robustness issue has recently been
highlighted by the existence of adversarial examples in many
systems. For example, even for the well-studied MNIST task,
the state of the art inL2 robustness is far from satisfactory and
comes at a cost to accuracy on natural images.

Some of the works at the intersection of machine learn-
ing and reasoning will be reviewed in Section 5. A promi-
nent one is Boltzmann machine and its variants [Salakhutdi-
nov and Hinton, 2009], which combine neural networks and
Markov random fields. A recent example is differentiable in-
ductive logic programming [Evans and Grefenstette, 2018],
which combines neural networks and logic programs.

This paper presents a new approach called neural belief
reasoner (NBR), which combines neural networks and belief
functions. Belief functions are a generalization of probabil-
ity functions [Shafer, 1976], and have the advantage of mod-
eling epistemic uncertainty, i.e., the lack of knowledge, and
an elegant way of combining multiple sources of informa-
tion. Despite these advantages, belief functions have seen
much less adoption than mainstream methods like Bayesian
networks and Markov random fields. NBR is built on two in-
novations: 1) using neural networks to represent fuzzy sets,
and 2) using fuzzy sets to specify a belief function. From
the machine-learning perspective, NBR is a new generative
model that specifies a belief function rather than a probability
distribution. From the rule-based perspective, NBR is a new
method of reasoning with uncertainty that enables automatic
discovery of non-symbolic rules from observations and that
uses belief functions to model uncertainty.

The next section will define the model and present query-
answering, sample-generation and training algorithms. Then
Sections 3 and 4 demonstrate NBR’s capabilities through two
tasks. The first task is unsupervised learning: in a synthetic
11-bit world where only partial observations are available, an
NBR model is trained and then answers queries. The queries
involve multi-hop reasoning, reasoning with uncertainty and
reasoning about conflicting information. The second task is
supervised learning: a robust MNIST classifier for 4 and 9,
which is the most challenging pair of digits. It sets a new
state of the art in adversarial robustness as measured by the
L2 metric and maintains 99.1% accuracy on natural images.

2 Neural Belief Reasoner
Let’s start with a restricted framework of reasoning in Sec-
tion 2.1, which serves as a stepping stone towards NBR’s def-
initions in Section 2.2 and algorithms after that.

2.1 Prototype with Classical Sets
Let U denote the sample space, i.e., the set of all possibilities.
Consider a reasoning framework where a model is composed
of K sets, R1, · · · , RK ⊆ U , and each Ri is annotated with
a scalar 0 ≤ bi ≤ 1. Let’s interpret each Ri as a logic rule:
an outcome x ∈ U is said to satisfy Ri if and only if x ∈ Ri.
Let’s interpret bi as the belief in Ri.

Define vector y , (y1, · · · , yK) where entries are 0 or 1.
Define intersection sets Sy ,

⋂
1≤i≤K|yi=1Ri, and define

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4275

S(0,··· ,0) , U . Intuitively each Sy contains outcomes that
satisfy a subset of the K rules as selected by y. Define scalar
function p (y) ,

∏K
i=1 (bi · yi + (1− bi) · (1− yi)).

Let 2U denote the power set of U . Define the following
function from 2U to R: m (∅) , 0; for A 6= ∅,

m (A) ,

∑
y|Sy=A p (y)

1−
∑

y|Sy=∅ p (y)
(1)

It is straightforward to verify that
∑

A⊆U m (A) = 1. There-
fore this function m (·) satisfies the requirements to be a ba-
sic probability assignment [Shafer, 1976]. Hence this func-
tion m (·) uniquely specifies a belief function over U [Shafer,
1976]: Bel (A) =

∑
B⊆Am (B) , ∀A ⊆ U .

Intuitively this framework considers 2K possible worlds:
each world corresponds to each y, and in each world a sub-
set of the K rules, as selected by y, exist. Each satisfiable
world, i.e., where Sy 6= ∅, is assigned a mass that is propor-
tional to p (y), the product of bi’s for rules that are present and
(1− bi)’s for rules that are absent. Each unsatisfiable world,
i.e., where Sy = ∅, is assigned a mass of zero. The total mass
is one, which is achieved through the denominator in (1) that
is essentially Dempster’s rule of combination [Shafer, 1976].

With a belief function defined, this framework is able to
answer queries. Similar to conditional probabilities in tradi-
tional models, it answers with conditional belief functions.
Given a condition C ⊆ U and a proposition Q ⊆ U , the
conditional belief and conditional plausibility are

Bel (Q | C) =
Bel

(
Q ∪ C

)
− Bel

(
C
)

1− Bel
(
C
)

= 1−
∑

y|Sy∩C∩Q 6=∅ p (y)∑
y|Sy∩C 6=∅ p (y)

Pl (Q | C) = 1− Bel
(
Q | C

)
=

∑
y|Sy∩C∩Q 6=∅ p (y)∑
y|Sy∩C 6=∅ p (y)

(2)

Intuitively, Bel (·) quantifies the evidence that supports a
proposition and 1− Pl (·) quantifies evidence against it.

2.2 Model Definitions
I now define the full form of NBR by generalizing the previ-
ous section in a number of ways: R’s are replaced by fuzzy
sets represented by neural networks; U becomes the latent
space which is separated from observation space.

An NBR model has the following components and Figure 1
illustrates the architecture.
• Function x = F (z) where vector x is the observation

variables and vector z is the latent variables.
• Function r = R (z) with output values in range [0, 1].
• Bernoulli variables Y = (Y1, Y2, · · · , YK), where K is

the dimension of r.
The F and R functions can be implemented by neural net-
works. The parameters of an NBR model are the parameters
of functions F and R, and bi = PYi

(1) for i = 1, 2, · · · ,K.

Figure 1: Architecture of NBR.

Each Ri (z) is interpreted as the membership function of
a fuzzy set over z space [Zadeh, 1965]. I consider the same
2K possible worlds as in Section 2.1, but the intersection set
Sy for each world now becomes the intersection of fuzzy sets
and has the following membership function:

µy (z) =
K
min
i=1

(yi ·Ri (z) + 1− yi) (3)

Consequently, the satisfiability of each world is no longer a
binary property, but a degree in [0, 1]: maxz µy (z). There-
fore, the mass assigned to each world should be proportional
to p (y)·maxz µy (z). I still need to ensure that the total mass
is one, and that leads to the following formula which replaces
(1) as the new basic probability assignment:

m
(
S′y
)
,

p (y) ·maxz µy (z)∑
y′ (p (y′) ·maxz µy′ (z))

(4)

where S′y is a fuzzy set with the membership function of
µy (z) /maxz′ µy (z

′): S′y is scaled Sy such that at least one
point in the z space is fully included. Considering that p (·)
is exactly the probability function of the Bernoulli vector Y,
the above has a more concise form:

m
(
S′y
)
,
p (y) ·maxz µy (z)

E [maxz µY (z)]
(5)

With this new m (·) function, a belief function is specified
over the z space: for any fuzzy set A,

Bel (A) ,
∑
y

m
(
S′y
)
·
(
1−max

z
µS′

y∩A
(z)
)

(6)

where µS′
y∩A

(z) , min (µy (z) /maxz′ µy (z
′) , 1− µA (z))

and where µA (z) is the membership function of A.

2.3 Query Answering
The general form of a query is a conditional belief function
given a condition function C (z) which outputs a scalar in
range [0, 1]. The condition may come as a function of x, and
since x is a deterministic function of z, C (z) is the general
form and is the membership function of a fuzzy set in z space.

To answer a query, I add C (z) as an extra entry to r, and
add an extra entry of constant 1 to Y. Intuitively, the NBR

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4276

has an additional rule that always exists. After such additions,
formulas (5)(6) specify a conditional belief function.

Let us consider a special type of queries that are the most
common in practice: given a Boolean function C (z) as con-
dition, compute the conditional belief and plausibility of an-
other Boolean function Q (z). In other words, I look for the
replacement of (2). The following formulas can be derived
from (5)(6) and the proof is omitted due to space limit.

Bel (Q (·) | C (·)) = 1−
E

[
max

z|C(z)=1,Q(z)=0
µY (z)

]
E

[
max

z|C(z)=1
µY (z)

] (7)

Pl (Q (·) | C (·)) =
E

[
max

z|C(z)=1,Q(z)=1
µY (z)

]
E

[
max

z|C(z)=1
µY (z)

] (8)

2.4 Sample Generation
A belief function allows sample generation only if it is also a
probability function. When combining two belief functions
where one of the two is a probability function, by Demp-
ster’s rule of combination [Shafer, 1976], the resulting belief
function is always a probability function. Therefore, to gen-
erate observation samples like traditional generative models,
I combine the belief function of an NBR with a probabil-
ity function over the x space. This probability function is
referred to as the prior-knowledge distribution. Intuitively,
the prior-knowledge distribution represents assumptions or
knowledge that are not included in this NBR. For example,
if one only knows the range of x, a uniform prior-knowledge
distribution can be used; if one knows the mean and variance
of x, a Gaussian distribution can be used. As will become ev-
ident later, I only require the ability to draw samples from
it. The flexibility to combine an NBR with various prior-
knowledge distributions is analogous to applying the same
knowledge in multiple environments.

For clarity of presentation, let us focus on the scenario
where the x space is discrete. For a sample value x̃, let P0 (x̃)
denote its probability in the prior-knowledge distributions. Its
probability after combining with an NBR is

P (x = x̃) =
P0 (x̃) · Pl (x = x̃)∑

x′ (P0 (x′) · Pl (x = x′))
(9)

where the plausibilities are given by (8) with C being always
true. To generate samples according to (9), I draw samples
from the prior-knowledge distribution and randomly keep or
discard a sample, such that the probability to keep sample x̃
is proportional to Pl (x = x̃). Note that the denominator in
(8) does not change with Q and hence is the same for all x̃
values; therefore I can simply use the numerator. In summary,
the probability to keep a sample x̃ is:

Pkeep (x̃) = E

[
max

z|F (z)=x̃
µY (z)

]
. (10)

When the x space is continuous, the generation proce-
dure is the same: draw samples from a continuous prior-
knowledge distribution and randomly keep or discard a sam-
ple according to the keep probability of (10).

2.5 Training
For unsupervised learning, an NBR is trained by maximizing
the likelihood of observations in the sample generation pro-
cess of the previous section. Therefore one needs to choose
a prior-knowledge distribution for training. This choice de-
fines what should be learned by the NBR: new knowledge
that is present in the observations yet that is not already en-
coded in the prior-knowledge distribution. For example, sam-
ples generated by an existing NBR can be used as the prior-
knowledge distribution to train a new NBR, and then this new
NBR would be trained to learn and only learn new knowl-
edge that is not in that existing NBR. Note that, after an NBR
is trained, the query-answering process of Section 2.3 is in-
dependent of the prior-knowledge distribution used in train-
ing. In other words, an NBR’s answers are based on only the
knowledge contained in itself, and this enables modular and
transferable knowledge representation.

Given observations x1, · · · ,xn, the likelihood loss is

L =− 1

n

n∑
i=1

logP (x = xi)

=− 1

n

n∑
i=1

log
P0 (xi) · Pkeep (xi)∑
x′ (P0 (x′) · Pkeep (x′))

=− 1

n

n∑
i=1

logP0 (xi)−
1

n

n∑
i=1

logPkeep (xi)

+ log
∑
x′

(P0 (x
′) · Pkeep (x

′))

(11)

The first term is a constant and can be removed; the last term
can be shortened by letting X denote a random vector that has
the prior-knowledge distribution. The loss function becomes:

L = − 1

n

n∑
i=1

logPkeep (xi) + log E [Pkeep (X)] (12)

Each training iteration uses a batch of observations to approx-
imate the first term and a batch of samples from the prior-
knowledge distribution to approximate the second term. One
implementation issue is that the expectation is before log in
the second term and small batch size causes bias in gradient
estimation. In practice, I use the following loss instead:

L = − 1

n

n∑
i=1

logPkeep (xi) + E [Pkeep (X)] /α (13)

where α is a constant that gets updated once every cer-
tain number of batches, and its value is an estimate of
E [Pkeep (X)] on a large number of samples. It is straight-
forward to verify that, with a large batch size, (12) and (13)
result in asymptotically the same gradients with respect to
model parameters. (13) is linear with respect to the expec-
tation in the second term and hence small batch size can be
used without causing bias in gradient estimation.

3 Unsupervised Learning: a Synthetic Task
This section gives a first demonstration of NBR on an
unsupervised-learning task. Source code for training and in-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4277

C Q belief plausibility

x0 = 1 x10 0 0.33
x0 = 0 x10 0.67 1
x0 = 1, x1−4 = 0 x5 0.89 1
x0 = 1, x1−4 = 0, x10 = 1 x5 0.67 1
x0 = 1, x1−4 = 0, x6−10 = 1 x5 0.67 0.75

Table 1: Answers to example queries by NBR.

ference is available at
http://researcher.watson.ibm.com/group/10228

Consider a world with 11 bits. Partial observations are
available that observe either the first 10 bits or the last 10
bits. In observations of the first 10 bits, the first bit is the ma-
jority function of the middle 9 bits for 90% of the cases, and
the inverse for 10% of the cases. In observations of the last
10 bits, the last bit is the majority function of the middle 9
bits for 20% of the cases, and the inverse for 80%.

An NBR is trained on these observations: K is 2; F (·)
is identity function; R (·) is two three-layer ReLU networks,
where each network is followed by a sigmoid unit, and where
one network takes the first 10 bits as input and the other takes
the last 10 bits. The loss (13) is used, and the prior-knowledge
distribution is uniform over the 211 possibilities. For a par-
tial observation xi, let xi,0 and xi,1 be the two possible full
observations. Substituting P (x = xi) = P (x = xi,0) +
P (x = xi,1) into (11) and following the same derivation to
(13), it is straightforward to see that I simply need to compute
Pkeep (xi) in (13) as Pkeep (xi,0) + Pkeep (xi,1).

Table 1 lists NBR’s answers to five queries. The belief val-
ues are computed by (7) and the plausibility values are by
(8). In the first query, the condition is the first bit being 1
and the query is on the last bit. NBR answers with belief
zero and plausibility 0.33, which means that it has some evi-
dence to support x10 being 0 but no evidence to support x10
being 1. This answer is intuitive: with x0 = 1, it is likely
that the majority of the middle 9 bits is 1, and consequently
it is likely that x10 is 0. Recall that during training the NBR
has never seen an observation that simultaneously shows x0
and x10, and it answers the query by performing multi-hop
reasoning with uncertainty. The second query is the opposite:
with x0 = 0, NBR has some evidence to support x10 being 1
but no evidence to support x10 being 0. There is an interest-
ing comparison between the third and fourth queries: NBR’s
belief decreases when x10 = 1 is added to the condition. The
reason is that x0 = 1 and x10 = 1 are two conflicting pieces
of information, and as a result the denominator in (7) is re-
duced to less than 1 for the fourth query, which in turn causes
the belief value to decrease. This is consistent with human in-
tuition when facing conflicting information. The fifth query
is a similar case of conflicting information where all bits but
x5 are fixed. NBR’s answer means that it has evidence to sup-
port both possibilities for x5 and that the evidence for x5 be-
ing 1 is stronger than the evidence for 0. This is again consis-
tent with human intuition based on observations of this world.
It’s worth noting that the gap between belief and plausibility
narrows for the fifth query, which reflects more information
about the world from the condition, however the gap still ex-

ists, which reflects epistemic uncertainty, – the fact that NBR
does not have complete knowledge about the world. The gap
only closes when an NBR has complete knowledge regarding
a query, in which case the answer is a probability function.

To demonstrate the separation between latent space and ob-
servation space, a second NBR model is trained with nontriv-
ial F (·). First an autoencoder is trained with a latent space
of dimension 8. I then use the decoder part as F (·) and fix it
as non-trainable during NBR training. When I need to evalu-
ate the max operation in (10), I feed x̃ into the encoder part
to compute z as a cheap surrogate operation. The resulting
NBR gives the same answers as in Table 1.

4 Supervised Learning: a Robust Classifier
This section demonstrates NBR for supervised learning, and
specifically discusses a robust MNIST classifier for 4 and 9.

4.1 Using NBR for Classification
It is possible to convert a classification task to unsupervised
learning by treating labels as part of the observation. How-
ever, that is not the most efficient way to use NBR for clas-
sification, and this section presents a better approach. Most
discussions are applicable to classification in general.

Given an MNIST image, consider a world with 10 possi-
bilities, – one of the ten labels is true. Recall from Section 2.2
that the role of each entry in r is to specify a fuzzy set. In a
world with 10 possibilities, a fuzzy set is defined by 10 grades
of membership, i.e., 10 numbers between 0 and 1. Therefore,
each entry in r can be implemented by an arbitrary MNIST
classifier, and I simply add 10 sigmoid units at the end to
convert logits to values in [0, 1]. Function F (·) is not used.
Therefore, an NBR classifier is composed of K classifiers
with sigmoids added and Bernoulli variables Y.

Now let’s define its outputs. With (7)(8), the belief and
plausibility of each label can be computed; let them be Belj ,
Plj , 0 ≤ j ≤ 9. The output vector in the implementation is:

o = (log Pl0, · · · , log Pl9) (14)

and its argmax is NBR’s output label. The values in (14)
are the negative of weights of evidence against each la-
bel [Shafer, 1976]. There are other choices: for example,
log Plj − log (1− Belj) is another reasonable choice which
combines weights of evidence for and against label j.

4.2 Distinct Bodies of Evidence
The intuition behind robust classification is to divide a clas-
sification task into simpler tasks, each of which is so simple
that it can be solved robustly by a singleRi (·), and then NBR
combines the K sources to solve the overall task. Dempster’s
rule requires that sources represent entirely distinct bodies
of evidence [Shafer, 1976]. I achieve this by using different
frames of discernment and dividing the training data.

To explain by example, consider a rule with this frame of
discernment: {0} {5,6} {7}. It is built as a classifier with 3
classes and specifies a fuzzy set with these grades of mem-
bership: v1, 1, 1, 1, 1, v2, v2, v3, 1, 1. Note that the grades
for {1,2,3,4,8,9} are always 1; intuitively this rule makes no
judgment about labels outside its frame of discernment. Also

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4278

http://researcher.watson.ibm.com/group/10228

note that the grades for 5 and 6 are always the same; in-
tuitively this rule does not distinguish between them. With
different frames of discernment, an NBR can gather enough
knowledge for the overall task.

However, some minimal frame of discernment, for exam-
ple {4} {9}, is still too complex to solve robustly with a sin-
gle neural network. I will focus on this pair and will build an
NBR with 2632 rules to classify 4 and 9. The first 14 rules
are neural networks that are trained on different subsets of the
training data, while the rest are memorization rules.

Let T4 be the set of training images with label 4, and let
T9 be that for 9. Let T4,i, 1 ≤ i ≤ 8 be mutually exclusive
and collectively exhaustive subsets of T4, and let T9,i, 1 ≤
i ≤ 8 be such subsets of T9. For 1 ≤ i ≤ 7, the ith rule
is a binary classifier that is trained to distinguish T4,i versus
T9. For 8 ≤ i ≤ 14, the ith rule is a binary classifier that is
trained to distinguish T9,i−7 versus T4.

All rules have the form of sigmoid (si ·Gi (image)) , 1 ≤
i ≤ 2632, where si is a trainable scalar and Gi (·) is
a trainable function that outputs a scalar. For the first
14 rules, Gi (·) is a L2-nonexpansive neural network
(L2NNN) [Qian and Wegman, 2019]. Each T4,1≤i≤7 is
{t ∈ T4|Gi (t) ≥ γ andGi (t) ≥ Gj (t) , ∀1 ≤ j ≤ 7},
where γ is a hyperparameter. Intuitively, each digit 4 is
assigned to the Gi (·) that classifies it the most robustly, and
it is assigned to T4,8 if none of the seven Gi (·)’s reaches
threshold γ. The T9,i subsets are similarly defined. All
subsets are periodically updated during the training process.

After the first 14 rules are trained, T4,8 contains 653 im-
ages and T9,8 contains 1965. These images are handled by
memorization rules1: 653 rules to distinguish each image in
T4,8 versus T9, and another 1965 rules for T9,8 against T4.
For these rules, Gi (x) , di − ‖x − ti‖2, 15 ≤ i ≤ 2632,
where ti is the image to memorize and di is a trainable scalar;
note that this function is nonexpansive with respect to L2.

A final adjustment is needed to produce Ri (·). Let T ′i
and T ′′i be the two sets of training images that the ith rule
is trained to distinguish. For example, T ′i may be one of the
T4,i’s while T ′′i may be T9. If the sigmoid outputs 0 for im-
age t, the knowledge obtained is that t is dissimilar to those
specific 4’s in T ′i , not all digits 4; hence this rule should
not put the plausibility of label 4 to zero. Therefore I have
Ri (t) , sigmoid (si ·Gi (t)) if Gi (t) ≥ 0, and otherwise

Ri (t) , 0.5− |T
′
i |
|T4| · (0.5− sigmoid (si ·Gi (t))).

4.3 Scaling Trick for Linear Complexity
Let us consider a single rule and let v , (v1, · · · , vJ) be
the grades of membership that this rule computes for a par-
ticular image over its frame of discernment. Let vmax and
vmin denote the max and min grades among them. Let b
denote the corresponding bi parameter. If I pretend that
this is a single-rule NBR and apply (5), I effectively replace
v with v′ , (v1/vmax, · · · , vJ/vmax) and replace b with

1Effects of the memorization rules: if they are removed, the nom-
inal accuracy of the NBR classifier drops from 99.1% to 98.0%,
while its robust accuracy increases from 55.3% to 59.1%.

b′ , b · vmax/ (1− b+ b · vmax). Note that the max grade in
v′ is always 1. These replacements do not modify the single-
rule NBR at all: (6) for any set A computes the same value
before and after the replacements.

Let us push one step further and also scale the min
grade to zero. Specifically, I replace v with v′′ ,(

v1−vmin

vmax−vmin
, · · · , vJ−vmin

vmax−vmin

)
and replace b with b′′ , b ·

(vmax − vmin) / (1− b+ b · vmax). These replacements sub-
tly modify the single-rule NBR: (6) is not affected for any
classical set A, however there is no guarantee if A is a fuzzy
set. It is arguable that such changes are acceptable.

The benefit of using v′′ and b′′ is that, if J = 2, i.e., if
the frame of discernment is binary, this rule becomes a clas-
sical rule. If all rules in an NBR are classical, (7)(8) be-
come the same as (2) and can be evaluated by the original
Dempster’s rule. Since Dempster’s rule is associative [Shafer,
1976], the worst-case complexity is O

(
K · 2L

)
where K is

the number of rules and L is the number of classes. Conse-
quently NBR can use a large K. If L is large, a classification
task can be done hierarchically. Note that using only binary
frames of discernments is not a strong restriction: for exam-
ple, {1,4,7,9} {2,3,5,8} is a binary frame and is expressive.

4.4 Loss Functions for Robustness
The training process has three steps. In the first step, Gi (·)
functions in the first 14 rules are learned. The first seven
Gi (·)’s are trained jointly with the following loss function:

L1−7 =−
7∑

i=1

∑
t∈T4,i

log (sigmoid (s · (Gi (t)− β)))

−
∑
t∈T9

log
(
1− sigmoid

(
s ·
(

7
max
i=1

Gi (t) + β
))) (15)

where s and β are hyperparameters. With the definition of
T4,1≤i≤7 from Section 4.2, (15) can be viewed as the cross-
entropy loss of the classifier of sigmoid

(
s ·max7i=1Gi (t)

)
with a twist: I reduce Gi (·)’s by β for digits 4 and in-
crease them by β for digits 9. Intuitively, because Gi (·)’s
are L2NNNs, these adjustments realize the worst-case sce-
nario of an adversarial attack of L2 distortion of β. This
technique is computationally much cheaper than adversarial
training, and I refer to it as poor man’s adversarial training.
Functions Gi (·) for 8 ≤ i ≤ 14 are trained with a similar
loss.

In the second step, si, 1 ≤ i ≤ 2632 and di, 15 ≤ i ≤ 2632
are learned. The loss function for the ith rule is:

Li =−
∑
t∈T ′

i

log (sigmoid (si · (Gi (t)− β)))

−
∑
t∈T ′′

i

log (1− sigmoid (si · (Gi (t) + β)))
(16)

where again T ′i and T ′′i are the two sets of training images
that this rule distinguishes. (16) is also the cross-entropy loss
with poor man’s adversarial training.

In the third step, parameters bi, 1 ≤ i ≤ 2632 are learned
jointly. I again use poor man’s adversarial training but, in-
stead of a fixed β, I apply an image-dependent amount of

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4279

natural PGD BA CW SCW robust

Vanilla 99.7% 48.8% 0% 0% 0% 0%
Madry et al. 98.6% 97.8% 10.6% 47.8% 17.6% 1.3%
Wong&Kolter 98.9% 97.7% 15.9% 60.4% 28.3% 12.0%
L2NNN 99.1% 94.4% 42.7% 41.3% 41.3% 41.3%
NBR 99.1% 92.5% 57.2% 55.5% 55.3% 55.3%

Table 2: Accuracies on natural and adversarial test images of 4 and
9 where the L2-norm limit of distortion is 2. Accuracies in the last
column are under the best of four attacks for each image.

adversarial adjustment on Gi (·)’s. Let βt denote the adjust-
ment amount for training image t. Let oori (t) denote (14)
without adjustment and let oadv (t) denote that with adjust-
ments of βt. The βt value is chosen such that oadv (t) barely
classifies correctly, and it is periodically updated during the
training process. The loss function of the third step is:

L =avgt (softmax-cross-entropy (oadv (t) , labelt))
+ ω · avgt (softmax-cross-entropy (oori (t) , labelt))

(17)

where ω is a hyperparameter. Intuitively, the image-
dependent adversarial adjustments cause a uniform push to
classify all images more robustly. It’s worth noting that, ap-
plying (9), it can be shown that the softmax cross entropy of
o (t) is equal to the log likelihood of generating the label of
t if assuming a uniform prior-knowledge distribution.

4.5 Results
The pre-trained NBR MNIST 4-9 classifier is available at
http://researcher.watson.ibm.com/group/10228

Table 2 compares the NBR MNIST classifier against those
in [Madry et al., 2018; Wong and Kolter, 2018; Qian and
Wegman, 2019], which are publicly available. I simply use
their two logits for 4 and 9 to form binary classifiers. Among
them, the L2NNN classifier from [Qian and Wegman, 2019]
is the state of the art in robustness as measured by L2 metric.

To choose a meaningful L2 ε, I measure d (t), which is the
distance from t to the nearest training image with a different
label, and the oracle robustness for t is L2 radius d (t) /2.
Over the MNIST training set, the oracle robustness radius is
above 3 for 51% of images, above 2.5 for 79%, and above 2
for 96%. Consequently ε = 2 is the meaningful L2 threshold
when quantifying robustness of MNIST classifiers.

Robustness is measured by running four attacks: projected
gradient descent (PGD) [Madry et al., 2018], boundary attack
(BA) [Brendel et al., 2018], Carlini & Wagner (CW) attack
[Carlini and Wagner, 2017b] and seeded CW (SCW). Fool-
box [Rauber et al., 2017] is used for PGD and BA; CW is
original code from [Carlini and Wagner, 2017b]; SCW is a
CW search with a starting point that is provided by a transfer
attack, and is a straightforward variation of the CW code. It-
eration limit is 100 for PGD, 50K for BA, and 10K for CW
and SCW. A classifier is considered robust on an image if it
remains correct under all four attacks. Table 2 shows that
the NBR classifier has the best robustness, and also the best
natural accuracy among all but the non-robust vanilla model.

Table 3 presents empirical comparisons between NBR and
other ensemble methods, by replacing belief-function arith-
metic with Markov random fields (MRF) and Gaussian naive

natural robust

NBR 99.1% 55.3%
Markov random field #1 97.6% 52.0%
Markov random field #2 90.0% 47.8%
Gaussian naive Bayes #1 98.6% 53.9%
Gaussian naive Bayes #2 69.4% 33.7%

Table 3: Accuracies of ablation-study models.

Bayes (GNB). The difference between MRF #1 and MRF #2
is that the former uses −sigmoid (si ·Gi (·)) as energy func-
tions while the latter uses − log (sigmoid (si ·Gi (·))); pa-
rameters si are re-trained together with MRF’s weight param-
eters; the same poor man’s adversarial training of (17) is ap-
plied in training MRF models. The difference between GNB
#1 and GNB #2 is that the former uses sigmoid (si ·Gi (·))
as features while the latter uses Gi (·).

5 Related Work
As a formalism for reasoning with uncertainty, belief func-
tions [Shafer, 1976] have two distinct advantages: explicit
modeling of the lack of knowledge and an elegant mecha-
nism of combining multiple sources of information. Reason-
ing frameworks based on belief functions have been proposed
[Gordon and Shortliffe, 1985; Baldwin, 1986; Lowrance et
al., 1986; Laskey and Lehner, 1988; D’Ambrosio, 1988;
Wan and Kifer, 2009], and they have varying degrees of sim-
ilarity to the restricted framework of Section 2.1. There are
another set of works that combine belief functions and fuzzy
sets [Zadeh, 1979; Yen, 1990; Denœux, 2000], and the com-
monality between them and NBR is that my equation (6), the
mapping from a basic probability assignment to a belief func-
tion, coincides with that in [Zadeh, 1979].

These early works share some common weaknesses: where
do rules come from, and where do uncertainty quantifica-
tions on the rules come from. Relying on manual inputs is
clearly not scalable. To be fair, mainstream methods based
on Bayesian networks [Pearl, 1988] or Markov random fields
[Kindermann and Snell, 1980] often have the same weak-
nesses. Some have addressed the second weakness: for ex-
ample, Markov logic networks [Richardson and Domingos,
2006] learn the weights on clauses. Attempts to address the
first weakness, e.g., by inductive logic programming [Mug-
gleton and De Raedt, 1994; De Raedt and Kersting, 2008],
are often limited.

Progresses in addressing the first weakness via automatic
discovery of rules have emerged from the machine learning
field. In [Hinton, 2002; Salakhutdinov and Hinton, 2009],
Markov random fields, which can be viewed as compositions
of non-symbolic rules, are learned from data. In [França et
al., 2014; Evans and Grefenstette, 2018], symbolic logic pro-
grams are learned from examples. Another example is [Ser-
afini and Garcez, 2016] which defines a formalism of real-
valued logic and thereby enables learning non-symbolic rules.
The training algorithm of NBR represents a new approach on
this front.

Adversarial robustness is a well-known difficult problem
[Szegedy et al., 2014; Goodfellow et al., 2015; Carlini and

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4280

http://researcher.watson.ibm.com/group/10228

Wagner, 2017b], and many remedies have been tried and
failed [Carlini and Wagner, 2017a; Athalye et al., 2018].
For MNIST, if distortion is measured by the L∞ distance,
there are a number of approaches [Wong and Kolter, 2018;
Raghunathan et al., 2018; Schott et al., 2019] and in particu-
lar [Madry et al., 2018] achieves good L∞ robustness by ad-
versarial training. For L2 robustness which is less understood
and perhaps more difficult, before this work the state of the art
is an L2NNN from [Qian and Wegman, 2019] with adversar-
ial training. It’s worth noting that adversarial training alone
does not work well for L2 robustness [Schott et al., 2019;
Qian and Wegman, 2019; Tsipras et al., 2019]. My hypoth-
esis is that reasoning is a missing piece in previous works,
and the NBR classifier is a demonstration that it’s possible to
break a classification task into simpler and smaller tasks, each
of which is robustly solvable by an L2NNN, and that NBR
can reason about the resulting many sources of evidence to
reach a robust conclusion.

6 Conclusions and Future Work
This paper presents neural belief reasoner, which is a new
generative model and a new approach to combine learning
and reasoning. Its properties are studied through two tasks:
an unsupervised-learning task of reasoning with uncertainty,
and a supervised-learning task of robust classification. In the
latter task, the MNIST classifier for 4 and 9 sets a new state of
the art in L2 robustness while maintaining over 99% nominal
accuracy.

An important future direction is improving the scalability
of unsupervised learning. For example, the first task uses an
NBR with F (·) being identity function, and the complex-
ity of exact calculus in unsupervised learning is exponential
with respect to the number of rules. To unlock its full poten-
tial, innovations would be needed for efficient inference and
training algorithms, including but not limited to Monte Carlo
methods, as well as efficient constraint-programming solvers.
There are also open questions from the application perspec-
tive, e.g., how to take advantage of NBR’s sample-generation
capability and how to leverage NBR for interpretability.

References
[Athalye et al., 2018] Anish Athalye, Nicholas Carlini, and

David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples.
In International Conference on Machine Learning, 2018.

[Baldwin, 1986] James F. Baldwin. Support logic program-
ming. In Fuzzy sets theory and applications, pages 133–
170. Springer, 1986.

[Brendel et al., 2018] Wieland Brendel, Jonas Rauber, and
Matthias Bethge. Decision-based adversarial attacks: Re-
liable attacks against black-box machine learning models.
In International Conference on Learning Representations,
2018.

[Carlini and Wagner, 2017a] Nicholas Carlini and David
Wagner. Adversarial examples are not easily detected: By-
passing ten detection methods. In Proceedings of the ACM

Workshop on Artificial Intelligence and Security, pages 3–
14. ACM, 2017.

[Carlini and Wagner, 2017b] Nicholas Carlini and David
Wagner. Towards evaluating the robustness of neural net-
works. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 39–57, 2017.

[D’Ambrosio, 1988] Bruce D’Ambrosio. A hybrid approach
to reasoning under uncertainty. International Journal of
Approximate Reasoning, 2(1):29–45, 1988.

[De Raedt and Kersting, 2008] Luc De Raedt and Kristian
Kersting. Probabilistic inductive logic programming. In
Probabilistic Inductive Logic Programming: Theory and
Applications, pages 1–27. Springer, 2008.

[Denœux, 2000] Thierry Denœux. Modeling vague beliefs
using fuzzy-valued belief structures. Fuzzy Sets and Sys-
tems, 116(2):167–199, 2000.

[Evans and Grefenstette, 2018] Richard Evans and Edward
Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1–64, 2018.

[França et al., 2014] Manoel VM França, Gerson Zaverucha,
and Artur d’Avila Garcez. Fast relational learning us-
ing bottom clause propositionalization with artificial neu-
ral networks. Machine Learning, 94(1):81–104, 2014.

[Goodfellow et al., 2015] Ian Goodfellow, Jonathon Shlens,
and Christian Szegedy. Explaining and harnessing adver-
sarial examples. In International Conference on Learning
Representations, 2015.

[Gordon and Shortliffe, 1985] Jean Gordon and Edward H.
Shortliffe. A method for managing evidential reasoning
in a hierarchical hypothesis space. Artificial Intelligence,
26(3):323–357, 1985.

[Hinton, 2002] Geoffrey E. Hinton. Training products of ex-
perts by minimizing contrastive divergence. Neural Com-
putation, 14(8):1771–1800, 2002.

[Kindermann and Snell, 1980] Ross Kindermann and J. Lau-
rie Snell. Markov Random Fields and Their Applications.
American Mathematical Society, 1980.

[Laskey and Lehner, 1988] Kathryn B. Laskey and Paul E.
Lehner. Belief maintenance: An integrated approach to
uncertainty management. In AAAI Conference on Artificial
Intelligence, pages 210–214, 1988.

[Lowrance et al., 1986] John D. Lowrance, Thomas D. Gar-
vey, and Thomas M. Strat. A framework for evidential-
reasoning systems. In AAAI Conference on Artificial Intel-
ligence, pages 896–901, 1986.

[Madry et al., 2018] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on
Learning Representations, 2018.

[Muggleton and De Raedt, 1994] Stephen Muggleton and
Luc De Raedt. Inductive logic programming: Theory and
methods. The Journal of Logic Programming, 19:629–
679, 1994.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4281

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[Qian and Wegman, 2019] Haifeng Qian and Mark N. Weg-
man. L2-nonexpansive neural networks. In International
Conference on Learning Representations, 2019.

[Raghunathan et al., 2018] Aditi Raghunathan, Jacob Stein-
hardt, and Percy Liang. Certified defenses against adver-
sarial examples. In International Conference on Learning
Representations, 2018.

[Rauber et al., 2017] Jonas Rauber, Wieland Brendel, and
Matthias Bethge. Foolbox: A python toolbox to bench-
mark the robustness of machine learning models. arXiv
preprint arXiv:1707.04131, 2017.

[Richardson and Domingos, 2006] Matthew Richardson and
Pedro Domingos. Markov logic networks. Machine Learn-
ing, 62(1-2):107–136, 2006.

[Salakhutdinov and Hinton, 2009] Ruslan Salakhutdinov
and Geoffrey E. Hinton. Deep Boltzmann machines. In
International Conference on Artificial Intelligence and
Statistics, 2009.

[Schott et al., 2019] Lukas Schott, Jonas Rauber, Matthias
Bethge, and Wieland Brendel. Towards the first adversar-
ially robust neural network model on MNIST. In Interna-
tional Conference on Learning Representations, 2019.

[Serafini and Garcez, 2016] Luciano Serafini and Ar-
tur d’Avila Garcez. Logic tensor networks: Deep learning
and logical reasoning from data and knowledge. arXiv
preprint arXiv:1606.04422, 2016.

[Shafer, 1976] Glenn Shafer. A Mathematical Theory of Ev-
idence. Princeton University Press, 1976.

[Szegedy et al., 2014] Christian Szegedy, Wojciech
Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. In International Conference on Learning
Representations, 2014.

[Tsipras et al., 2019] Dimitris Tsipras, Shibani Santurkar,
Logan Engstrom, Alexander Turner, and Aleksander
Madry. Robustness may be at odds with accuracy. In Inter-
national Conference on Learning Representations, 2019.

[Wan and Kifer, 2009] Hui Wan and Michael Kifer. Be-
lief logic programming: uncertainty reasoning with cor-
relation of evidence. In Logic Programming and Non-
monotonic Reasoning, Lecture Notes in Computer Science,
pages 316–328, 2009.

[Wong and Kolter, 2018] Eric Wong and Zico Kolter. Prov-
able defenses against adversarial examples via the convex
outer adversarial polytope. In International Conference on
Machine Learning, 2018.

[Yen, 1990] John Yen. Generalizing the Dempster-Shafer
theory to fuzzy sets. IEEE Transactions on Systems, Man,
and Cybernetics, 20(3):559–570, 1990.

[Zadeh, 1965] Lotfi A. Zadeh. Fuzzy sets. Information and
Control, 8(3):338–353, 1965.

[Zadeh, 1979] Lotfi A. Zadeh. Fuzzy sets and information
granularity. Advances in Fuzzy Set Theory and Applica-
tions, 11:3–18, 1979.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4282

	Introduction
	Neural Belief Reasoner
	Prototype with Classical Sets
	Model Definitions
	Query Answering
	Sample Generation
	Training

	Unsupervised Learning: a Synthetic Task
	Supervised Learning: a Robust Classifier
	Using NBR for Classification
	Distinct Bodies of Evidence
	Scaling Trick for Linear Complexity
	Loss Functions for Robustness
	Results

	Related Work
	Conclusions and Future Work

