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Abstract

The task of Grounded Video Description (GVD)
is to generate sentences whose objects can be
grounded with the bounding boxes in the video
frames. Existing works often fail to exploit struc-
tural information both in modeling the relationships
among the region proposals and in attending them
for text generation. To address these issues, we
cast the GVD task as a spatial-temporal Graph-to-
Sequence learning problem, where we model video
frames as spatial-temporal sequence graph in order
to better capture implicit structural relationships. In
particular, we exploit two ways to construct a se-
quence graph that captures spatial-temporal corre-
lations among different objects in each frame and
further present a novel graph topology refinement
technique to discover optimal underlying graph
structure. In addition, we also present hierarchical
attention mechanism to attend sequence graph in
different resolution levels for better generating the
sentences. Our extensive experiments demonstrate
the effectiveness of our proposed method compared
to state-of-the-art methods.

1 Introduction

The task of Grounded video description (GVD) [Zhou et al.,
2019] aims to generate more grounded and accurate descrip-
tions by linking the generated words with the regions in video
frames. Compared to conventional video description task that
generates a human-like sentence to describe the video con-
tents [Zhou et al., 20181, GVD has advantages of modelling
the video by objects and associating the generated text with
them to describe the video in a high-quality and grounded
way.

Howeyver, current state-of-the-art GVD methods often fail
to exploit structural information both in two aspects: i) mod-
eling the relationships among the region proposals; and ii) at-
tending them for text generation. On one hand, existing works
either encode region proposals independently or using self-
attention-based mechanisms [Zhou et al., 2019]. Therefore, it
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either fails to consider implicit structural information among
the region proposals or needs to handle noisy or fake relation-
ships among objects. In addition, the explicit structural fea-
tures of objects (eg. spatial, temporal, semantic) which are
potentially important to discover the true correlations among
the objects, are overlooked using self-attention only.

On the other hand, when generating sentences, most pre-
vious works adopted top-down attention (means the objects
are attended equally and individually) to focus on the rele-
vant objects directly, regardless whether the video frames that
these objects are located are semantically related in a high
level. Although it can reduce the loss of grounding, the struc-
tural correlations of the video frames are completely ignored.
However, for a specific word generation step, it is more rea-
sonable to focus on a certain segment of the video frames first
and then focus on the objects in these frames.

More recently, the graph-based method for video under-
standing started attracting more attentions in some close re-
lated fields such as image caption [Li ef al., 2019b]. How-
ever, due to the complexity of video understanding, there still
remains significant challenges to adapt these graph-based ap-
proaches into the GVD task. The first challenge comes from
the unique properties of video - how to model the spatial-
temporal correlations using a graph. So far, the existing way
of building a graph for visual contents, such as the scene
graph, only focuses on the single static image [Yang et al.,
2019]. The technology that can effectively construct a graph
for image sequences like a video is still unclear and worth
exploring. Even we can model a video with a graph, another
challenge still remains. Due to the temporal redundancy in
video frames, similar objects staying in many frames. As a
result, the constructed graph can be very noisy since there are
many useless edges in the graph. This will mislead the model,
and it may learn less discriminative features for downstream
tasks such as generating the description. Therefore, the con-
structed graph structure should be refined according to the
downstream tasks.

To address the aforementioned issues, we cast the GVD
task as a graph-to-sequence learning problem and pro-
pose Hierarchical Attention based Spatial-Temporal Graph-
to-Sequence Learning framework (HAST-Graph2Seq) for
Grounded Video Description. Specifically, we introduce
spatial-temporal sequence graph A to capture the implicit
correlations among region proposals, whose topology is ini-
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tially obtained in pre-processing with or without external
knowledge. Furthermore, we train a similarity metric to
construct a semantically implicit graph A;,piicit to refine
the noisy initial graph A ;,;; through an end-to-end training
for learning node (object) embeddings via graph neural net-
works. For the decoding procedure, we introduce hierarchical
graph attention on the refined sequence-graph for description
generation by first finding the regions of frames by attending
a certain segment of the given video frames and then finding
the regions of objects located in these related frames.
In summary, we highlight our main contributions below:

e We cast the GVD task as a spatial-temporal Graph-
to-Sequence learning problem, where we model video
frames as sequence graph to better capture implicit
spatial-temporal structural relationships. To the best of
our knowledge, this is the first time a spatial-temporal
Graph-to-Sequence model is presented for GVD task.

In particular, we exploit two ways to construct a se-
quence graph that captures spatial-temporal correlations
among different objects in each frames and further
present a novel graph topology refinement techniques to
discover optimal underlying graph structure.

We also present hierarchical attention mechanism to at-
tend sequence graph in different resolution levels for
better generating the sentences. The results demonstrate
the effectiveness of our proposed method.

2 Related Work

2.1 Visual Description

With the rapid development of deep learning in CV and
NLP, video description begins to generate the description
of a video using the attention-based encoder-decoder like
architectures [Venugopalan et al., 2015; Xu et al., 2018b;
Liu et al., 2016]. These methods are effective but they over-
look the fine-grained object clues that separated in frames.
Borrowing the ideas of spatial-attention in image caption do-
main [Anderson et al., 2018; Liu et al., 2018; Li et al.,
2019al, many works model the video in both global video fea-
tures and regional object features. In [Zhou et al., 20191, they
encode the objects with transformer[ Vaswani er al., 2017] and
then link the words of generated descriptions with the clues
in certain regions in the video to generate descriptions more
grounded. However, since not all objects are key for generat-
ing and not all objects have much to do with others, the meth-
ods like self-attention may confuse the model. Therefore,
graph-based methods which model the regions with abundant
semantic relations are introduced to this area. [Yao et al.,
2018] uses relation prediction methods to generate a seman-
tic graph to explore visual relations. [Yang er al., 2019] uses
scene graphs that have richer relation clues in image caption.
Further, [Zhang and Peng, 2019] constructs the bi-directional
temporal trajectory graph based on similarity and attend on
them hierarchically. Although these methods achieve great
success, they are constructed by link prediction methods in-
dependent of the description generation task so they are noisy
to it. [Wang and Gupta, 2018] defines the graph topology
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based on learned similarity. In [Tomei er al., 2019], they em-
ploy a self-attention based semantic graph to construct the
topology. Although they consider the implicit relations of the
objects, the semantic graphs are handling individually. Due
to the hardness of video understanding, it is hard to build a
proper topology by attention thoroughly.

2.2 Graph-to-sequence Learning

Graph-to-sequence learning has been surge of interests re-
cently in the NLP domain. The main goal for graph-to-
sequence learning is to generate sequential content from
graph structured data, which learns a mapping between graph
inputs to sequence outputs through attention-based mecha-
nisms [Xu et al., 2018a; Chen et al., 2020; Gao et al., 2019].
However, since there is no explicit graph structure for video,
it is hard to adapt these methods directly.

Unlike these previous methods, we propose a novel Hierar-
chical Attention based Spatial-Temporal Graph-to-Sequence
Learning framework considering both the modeling and the
usage of regions in encoder and decoder, including initial
graph construction, noisy initial topology refinement and at-
tending on the graph hierarchically.

3 HAST-Graph2Seq Framework for GVD

The GVD task aims to generate a text description Sy; from
a video segment denoted as V. In training stage, we will
uniformly sample F' frames from each video segment as
Vsample = {V1,Va, ..., vp}, and provide Ny, object regions
in Vgpmpie Which are corresponding to words in S,;. But ob-
ject regions will not be given in the inference stage.

To make the statement clear, we will give the mathematical
notations of the concept mentioned. The video segment is
denoted as v = {v;}?_, € V. The target sentence is s =
{si}™, € S, m is the length of the sentence. And we define
Ny object regions of each sampled frames in Vg4p1e Which
are denoted as R = {Ry, Ry, ....Rp} = {ry,ro,...,ry} €
RN where d is the dimension of the proposals and N =
Z?Zl Ny is the amounts of the proposals.

As Figure 1 illustrates, we encode the video in two streams.
Firstly, we encode the global video features in the Video
Global Encoder (Figure 1 a). Then we encode the regions
by spatial-temporal sequence graph whose topology will be
refined in Graph with Refinement Encoder (Figure 1 b). Fi-
nally, we adapt top-down attention by applying temporal at-
tention to global video features and hierarchical graph atten-
tion on the spatial-temporal sequence graph in the Language
Decoder (Figure 1 c).

3.1 Video Global Encoder

We model the video’s global level feature by a Bi-directional
LSTM network like most works[Zhou e al., 2019] given
by: h BiLSTM(v) = {hy,hg,...,h,,} where v €
R™*? js the global feature extracted by a pre-trained 3D-
ConvNet [Tran er al., 2015].

3.2 Graph with Refinement Encoder

In this section, we propose a novel visual representation
method from the perspective of regions. First of all, inspired



Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

a) Video Encoder

Pre-processing

Faster-RCNN

!

ﬁ
l C3D + LSTM

temporal
video feature

Temporal
attention

frame:k-1  frame: k

Region proposals
frame: k+1

Initial graph: KNN, p=3(frame k step)
frame: k

Temporal series

—

b) Graph Refinement Metric learning

c) Language Decoder

. v
Implicit graph: from frame k view Refined graph
[ J . © === 1
|
®e ° e e
A 00 |
L ) ® 1 .l“ |
| 1
frame: k | ] 1
- L@
Initial graph: from frame k view | | —
|
1
o3 | I
e e BEYE
[ _aar} { ] : ® 1
frame:k == === !

Hierarchical Graph Attention

Top-down Attention

graph feature| —>

1
'
'
'
'
'
'
'
'
'
'
'
i

temporal |}

video feature !
'
'
'
'
'
'
'
'
'
'
'

Figure 1: Overall framework of our HAST-Graph2Seq: (a) The video encoder. (b) The graph refinement module. (c) The language module.

by [Zhou et al., 2019], we enhance the proposal features by
adding the position and class features. As for proposal model-
ing, we propose a novel spatial-temporal sequence graph data
structure, whose initial topology is obtained before training
and refined in end-to-end manner. Notably, the initial topol-
ogy can be obtained with or without prior knowledge consid-
ering the generality.

Feature Enhancement
In this part, we follow [Zhou er al., 2019]’s work, which fus-
ing the spatial-temporal and class features with the original
features to enrich them.

(1) For each proposal, we define its’ spatial and temporal
information as a 5-D list, 4 values for normalized spatial lo-
cation and 1 value for the normalized frame index. Then we
project it to a d, dimension space. So, the spatial-temporal
features of region proposals are denoted as M.

(2) We assume that each region proposal r; has a class
label ¢; € {e1,ca,...,ck}. We transfer detection model’s
weight which is pre-trained on VG dataset to initialize the
class embedding denoted as W, € R¥** and B, € R'**,
where d is the embedding dimension. Then we use a attention
method to assign each region proposal a class representation:
M, (r;) = Softmaz(WXr; + B.I")

To sum up, the region feature will be given by:

R = W,[R|M,,|M,] 1)
where [ | ] denotes row-wise concatenation and W, €
RI*(d+k+dsp) jg the embedding weight. Then we will apply
feature aggregation on the enhanced feature R.

We adopt the same classification loss just as [Zhou er al.,
2019] do denoted as L.

Spatial-temporal Sequence-Graph Data Structure
Here we will define the data structure for region proposals.
We will view each proposal (r;) as a node (r;) in the video

943

graph. To make the problem easier, we will assume that the
graph holds the following principles.

(1) Instead of modeling it as a fully connected graph, we
assume that the graph hold the locality: each node 7; in sam-
pled frame v will only have connection (if exist) with nodes
invy_1, vy, Vvypq. Through this operation, we capture the lo-
cal spatial relations in single frames and the local temporal re-
lations between frames. What’s more, we define the nodes in
one single frame as a sub-graph, which consists of the whole
graph through temporal edges.

(2) For simplification, we assume the final graph topology
is undirected and weighted. However, since we introduce the
spatial-temporal information into the node feature space, this
assumption will not cause excessive loss of the key position
and temporal characteristics. And it is weighted because we
want the edges between nodes to be more meaningful.

Initial Graph Topology

By the constraints above, there are several potential methods
to form a graph. Since they are formed during pre-processing,
they may contain noise.

(1) Without external knowledge: KNN. If we have no prior
knowledge of the given regions, a way is to find the correla-
tions in feature space. For each node r; € vy, we will find p
nodes R, = {r1,r2, ..., Tp} S {Rf_l, Ry, Rf+1} by KNN
Algorithm and add edges between r; and R,,.

(2) With external knowledge method: Relation Graph.
Since the region features are extracted by a pre-trained model
trained on VG [Krishna et al., 2017] dataset, we can train a
semantic relation classifier [Li ef al., 2019b] on it. We adopt
almost the same operation except replacing the KNN step by
the classifier to find the related nodes set R,

Refinement Procedure
The graph A;,;; obtained above is noisy but can be refined
during the training process.
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Empirically, a powerful metric of relation should be
learned from specific task. Inspired by [Chen erf al., 2019;
Vaswani et al., 2017], we design a multi-head weighted co-
sine similarity metric function:

Aimplicit[i,j] = % Z COS(Wk @ f'i7 Wk @ f'j) (2)
k=1

where © denotes the Hadamard product, w € R™ is the
learnable weights, m is the heads number, ©; € R and
Aimplicit 1s the implicit graph. We assume that by highlight-
ing some specific dimensions of the region features, we can
find the implicit relations beneficial to the task.

Here we adopt the same principles as the initial graph. So
we drop the connections if they are against principles (1).

After that, we prune the implicit graph by a threshold e,
which means selecting the useful relations and drop the unim-
portant to make the graph sparse.

where I is the indicator function. Then we fuse the initial
graph with the implicit graph as follows:

Adir = Minitial + (1- )\)Aimplicit 4)

where )\ is the hyper-parameter to balance the trade-off be-
tween the initial graph and the learned implicit graph. The
Ainitial and the Aimplicit are normalized adjacency matrix
of the initial graph and implicit graph. The normalization is
defined as: A = D~/2AD~1/2 and D is the degree matrix.

To make the graph undirected, the final adjacency matrix is

given by: A = (Ag;, + Al)/2

Feature Aggregation

We adapt the classic spectral graph convolutional network to

aggregate the features of the nodes modeled by topology A.
Inspired by resnet architecture [He et al., 2016], we pro-

pose the basic module of our architecture as follows (the layer

normalization and dropout operations are omitted):

xout _ (O‘(AXMW) + X”')/\/§ (3)

where the X" is the input (R in Eq.1), A denotes the nor-
malized adjacency matrix, W is the trainable weights and o is
the non-linear activation function. And we will stack £ basic
modules to explore deep correlations of the graph. We denote

the regions after aggregation as R for further illustration.

3.3 The Language Decoder

In this section, we adapt the top-down attention language
model for description generation. The attention LSTM is
used to encode the visual features and the language LSTM
is used to generate words. Between these two LSTMs, we
attend on the global video features on temporal level and ap-
ply hierarchical graph attention on spatial-temporal sequence
graph to capture the visual object clues in different grains.

Attention LSTM

At time step t, we will fuse the hidden state in ¢ — 1 which
denoted as h;_; with the pooled frame features v, to gen-
erate a new hidden state h} € R".
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Temporal Attention

Firstly, we will attend the global frame features in a coarse-
grained way. When generating a new word, we should pay
different weights on different frames. We denote the results
as hyrgme € R,

Hierarchical Graph Attention

When handling the proposal regions, instead of attending
each region equally, we propose hierarchical attention on the
sequence-graph to hold the graph structure.

Firstly, we will attend on the sub-graph to capture the gen-
eral area of the video. The sub-graph l:N{Z can be represented
by R = {ﬁl,ﬁg, ,f{p} = {r1,T2,...,Tn }. And then we
apply mean-pooling to get the vector representation of each
sub-graph given by: f{Z = MeanPooling(Ty.). Ty de-

notes regions from T to T; belong to sub-graph R;. Thus
R € RP*! Then we execute graph-level attention:

(6)

where W, € R, W, € R°*". And W € R° is a row
vector. Then we apply softmax on M, given by:

M(R;, h}) = W tanh(W,R; + Wsh})

cep(M(R;, h}))
SF exp(M(R;, b))

Therefore, we can get the results denoted as «
{ag, a9, ...,ar} € RF

Secondly, we apply attention on each sub-graph parallelly.
For each sub-graph f{f € {ﬁl,ﬁg, ...,f{p}, we apply the
same operation as in Eq.6 and Eq.7. For each R £, We can get
a attention score 35 € RN#. So for all frames, the score are

represented as 3 = {831, B2, ..., Br} € RI*Ns
Finally, we fuse the regions given by:

F N,
hyitention = E % E Bi iR
=1 =1

where hyyention € RY. Then we apply linear projection to
project it to r dimension space.

We adapt the same attention supervision here on both
node (region) level and sub-graph (frame) level. Firstly, we
define the region is positive if it has over 0.5 IOU (intersec-
tion over union) with any ground-truth bounding box. Then
we apply cross-entropy loss on 3. Besides focusing the cor-
rect regions, we also want the visual-groundable word to fo-
cus on the correct frames. So, we define a frame is positive
if it has at least one positive region. Then we apply the same
cross-entropy loss on o too.

T

(0%

(7

®)

F Ny

Loyn = — Z Zli,jZOQBi,ja Lgttn =

i=1 j=1

F
=Y Jilogai, (9)

i=1

where I; ; = 1 only if this region is positive. .JJ; = 1 only if
this sub-graph is positive.
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Language LSTM
The language LSTM is adopted to generate the words
while absorbing the visual clues given by: h;
LSTM (0}, hframe + Nattention). h: is used to generate
descriptions. We adopt the same MLE loss as [Zhou er al.,
2019] which denoted by Lep;.

Finally, the overall loss function consists of four parts:

L = Lsent + XaL%y + MLl + AeLeis

attn

a
attn

(10)

4 Experiment

4.1 Dataset

We conduct our experiments on the Grounded ActivityNet-
Entities Dataset [Zhou et al., 2019] for evaluation. It contains
15k video with 158k spatially annotated bounding boxes from
52k video segments.

4.2 Implementation Details

In this section, we introduce some implementation details of
our HAST-Graph2Seq method.

Data processing. For a fair comparison, the data processing
procedure is the same to [Zhou et al., 2019]. For each video
segment in the dataset, we uniformly sample 10 frames. And
for each frame, we use a Faster R-CNN [Ren et al., 2015] de-
tector with ResNeXt-101 backbone to detect 100 region pro-
posals and extract the feature. The detector is pre-trained on
Visual Genome [Krishna ef al., 2017]. Finally, for the video
feature, the temporal feature map is a stack of frame-wise ap-
pearance and motion features.

Hyperparameter settings. We set the threshold € value in
Eq.3 to 0.4, A\, to 0.04, )y to 0.08, A\, to 0.5. and num-
ber of heads m in Eq.2 to 5. The KNN hyper-parameter
p € {5,10,20,30,40} vary in the experiments as a results of
model validation. The region proposal feature’s original di-
mension d is 2048, the region proposals’ embedding dimen-
sion [ is 1024, the word embedding size is 512, rnn hidden
size r is 1024 and GCN’s layer k is 3. The A in Eq.4 is 0.8.

4.3 Evaluation Criteria

To measure the performance of our HAST-Graph2Seq model
and other baselines, we consider two categories of evaluation
criteria from the description generation quality and grounding
accuracy respectively.

Description generation quality. We use 4 widely used
metrics to evaluate the description generation quality. They
are BLEU@4, METEOR, CIDEr and SPICE. These scores
are calculated by the official evaluation scripts'.

Grounding accuracy. Grounding accuracy is another met-
ric to measure if a model can correctly predict both object
words and their locations in video frames. It is measured
by Fl_all and Fl_loc. The F1_all score measures the ob-
ject words if they are correctly predicted and localized. And
the F1_loc score only measures the correctly predicted object
words. We also use the official evaluation scripts 2 3 to mea-
sure all of these scores.

"https://github.com/ranjaykrishna/densevid eval
Zhttps://github.com/facebookresearch/ActivityNet-Entities
*https://competitions.codalab.org/competitions/20537
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Method \ B@4 C M S \ Fl_all Fl_oc
M. Trans 241 46.1 10.6 13.7 - -
Temp-Attn 217 422 102 11.8 - -
ZhouGVD 235 455 110 147 | 7.59 25.0
KNN-HAST | 2.61 485 113 15.1 7.64 26.5
RG-HAST 265 493 112 152 | 7.66 26.1

Table 1: Results on Grounded ActivityNet-Entities test set. Nota-
tions: B@4-BLEU @4, C-CIDEr, M-METEOR, S-SPICE, M.Trans-
Masked Transformer, TempAttn-BiLSTM+TempoAttn. All accura-
cies are in %.

p (KNN) | B@4 C M S | Flaall  Flloc
5 270 494 112 152 | 7.04 23.5
10 280 496 113 153 | 7.22 24.9
20 276 494 113 152 | 691 234
30 271 493 112 149 | 6.89 23.5
40 268 489 11.1 151 | 6.70 232

Table 2: Results on Grounded ActivityNet-Entities val set.

4.4 Performance Comparisons

We compare HAST-Graph2Seq with the SOTA models,
i.e., Masked Transformer [Zhou et al., 2018], BiM-
STM+TempoAtnn [Zhou et al., 2018] and ZhouGVD [Zhou
et al., 2019] on Grounded ActivityNet Captions Dataset to
verify the effectiveness of our method. Moreover, since the
initial graph of the HAST-Graph2Seq can be constructed in
two different ways, we also create two variants of HAST-
Graph2Seq, i.e., KNN-HAST (the KNN initial graph with
p is set to 10) and RG-HAST (the relational initial graph)
to further investigate the relation between the different graph
initializations and the final performance. For a fair compari-
son, we use the same C-3D video feature and the same region
proposals extracted by Faster-RCNN pre-trained on Visual
Genome (VG). For all these methods we performed the same
experiments 3 times, and we reported their average scores.

As shown in Table 1, our methods outperform all the
state-of-the-art models on all metrics, especially on CIDEr,
BLEU@4, and SPICE, which highlights the importance of
modeling relationships among the region proposal and us-
ing these relations for video description generation. More-
over, we can observe that the RG initialization outperforms
the KNN initialization on most metrics. This suggests that an
initial graph with external commonsense knowledge is bene-
ficial to better modeling the relations among the regions and
further improve the generation performance.

We further investigate the effect of KNN initialization with
different number of neighbors by varying the KNN parameter
pin 5,10, 20, 30, 40 on the validate set (the test set is not re-
leased so conducting on it is time-consuming). Table 2 shows
how different KNN initialization effects on the final perfor-
mance. From Table 2, we note that the HAST-Graph2Seq
achieves the best performance when p lies around 5 — 20.
This suggests that for KNN initialization a proper p is cru-
cial. When the p is too small, the initial graph may contain
less useful relations, while when the p is too large, the graph
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Our method: A man is seen decorating a Christmas tree with a man beside him.

ZhouGVD: A man is decorating a Christmas tree.
GT: They are going around the tree adding lights to it.
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Figure 2: Qualitative differences between ZhouGVD and our proposed HAST with visualization of the discovered implicit graph structure.

Method | B@4 C M S | Flall Flloc
ZhouGVD | 259 475 112 151 | 7.11 24.1
KNN-HAST | 2.80 494 113 153 | 7.22 249
-init. | 260 474 110 147 | 6.65 224
-refine | 270 481 11.1 148 | 6.83 23.5
-hie. attn. | 270 488 112 150 | 691 23.7

Table 3: Results on Ablation Model on ActivityNet val set.

may contain too much noise to be refined.

4.5 Ablation Study

Next we conduct ablation studies to show how initial graph
construction, graph refinement, and hierarchical attention
contribute to the proposed method on the validate set. With-
out loss of generality, we consider KNN with p = 10 for ini-
tial graph construction. More concretely, we will discard one
component at a time to generate ablation models as follows:

(1) w/o. initial graph (abbr: -init.). We remove the initial
graph and use implicit graph generated by learned metrics.

(2) w/o. refinement (abbr: -refine). We remove the graph
refinement component and use the KNN with p = 10 as the
initial graph individually.

(3) w/o. hierarchical attention (abbr: -hie. attn.). We re-
move the hierarchical attention and replace it with the coarse-
grain proposal attention proposed by [Zhou et al., 2019].

Table 3 gives all ablation results on the validation set. As
shown in Table 3, the HAST outperforms all ablation models
on all metrics, which demonstrates that the initial graph con-
struction, graph refinement, and hierarchical graph attention
are all useful components for GVD.

Finally, by comparing among the ablation models, we find
that a model without the initial graph performs the worst.
This indicates that an good initial graph plays important role
when exploiting spatial-temporal correlations in the video
frames. The experiments also suggest that through refine-
ment, the noise contains in the initial graph can be further
reduced and the better graph topology can be discovered.

4.6 Qualitative Analysis

To qualitatively validate the effectiveness of our proposed
HAST-Graph2Seq network, we present one typical example.
Figure 2 shows the description results of our method, the best
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baseline ZhouGVD and the ground-truth on the Grounded
ActivityNet Caption dataset, respectively. We can find that
the baseline method misses the man B beside the man A,
while our method can find the correct relation between them.
The reason lies in two aspects. Firstly, when generating the
first man, our model focused on the second sub-graph and
then focused on the objects in it with the help of hierarchical
attention. Thus, the model can find the semantic relation with
the second man. Secondly, we visualize the initial KNN se-
quence graph and the refined sequence graph (we just show
the second sub-graph as the key role and the main nodes and
edges related to it for reasons of brevity). Through refine-
ment, we can see that the weights of the key edges (eg. the
man A with the man B) increase while the unimportant ones
decrease. Thus, through our graph refinement techniques, we
can discover optimal underlying graph structure that is im-
portant for video understanding.

5 Conclusion

In this paper, we propose a novel spatial-temporal sequence
graph topology refinement with hierarchical attention for
grounded video description task, which model the regions
with spatial-temporal sequence graph. Specifically, we pro-
pose several methods to build the initial topology and refine
it through end-to-end training. In addition, during decoding
we apply hierarchical attention on the graph to focus on the
regions in different gains. The extensive experiments demon-
strate the effectiveness of our proposed method.
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