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ABSTRACT 

The role of parallel processing in heuristic search is examined by 
means of an example (cryptarithmetic addition). A problem solver is 
constructed that combines the metaphors of constraint propagation 
and hypothesize-and-test. The system is capable of working on many 
incompatible hypotheses at one time. Furthermore, it is capable of 
allocating different amounts of processing power to running 
activities and changing these allocations as computation proceeds. It 
is empirically found that the parallel algorithm is, on the average, 
more efficient than a corresponding sequential one. Implication* of 
this for problem solving in general are discussed. 

1. Introduction 

Many AI systems that perform a "heuristic search" (i.e. they can be 
thought of as searching some space of possibilities for an answer) are 
based upon one or both of two programming techniques known as 
constraint propagation and hypothesize-and-test. 

In a system based on constraint propagation, internal data structures 
represent (implicitly or explicitly) potentially acceptable points in 
the search space. Computation proceeds in narrowing down these 
possibilities by employing knowledge of the domain in the structure 
of the computation. There is not enough space here to properly 
introduce the concepts involved in constraint propagation. The 
reader is referred to some systems described in the literature [1 , I I ) 
for an introduction. One point we wish to emphasize about pure 
constraint propagation is that at any time the internal data structures 
wi l l be consistent with any solution to the problem. Thus, if more 
than one solution is possible, pure propagation of constraints will be 
unable to select only one of them. Further, even if a unique 
solution exists, a constraint propagation system may not be able to 
f ind it. 

The hypothesize-and-test methodology allows the program to make 
assumptions that narrow the size of the search space; there is no 
guarantee that the assumption is consistent with any solution to the 
problem. The program continues to make hypotheses until a 
solution is located, or it has been determined that no solution is 
possible with the current set of assumptions. There is no 
requirement that any hypothesis be correct and so mechanisms must 
be available that prevent commitment to any hypothesis until it has 
been demonstrated to be acceptable. The most commonly available 
mechanism is known as backtracking. Backtracking allows the 
program to return to an environment that would exist had that 
assumption not been made. 

As long as the search space is enumerable (a very weak assumption)' 
hypothesize-and-test can be easily seen to be logically more 
powerful. If there are several consistent solutions, a pure constraint 
propagation system has no way to establish preference for one of 
them. Even if only one solution is possible a constraint propagation 
system wi l l not necessarily find it; this will be demonstrated later by 

example. The proponents of constraint propagation point out that 
hypothesize-and-test is grossly inefficient in situations where 
constraint propagation can function (see for example Waltz [13]). 
The example in this paper bears out this claim, though one recent 
study [4] suggests there are situations in which pure backtracking is 
more efficient than constraint propagation. 

One can, however, imagine a composite system that has aspects of 
both constraint propagation and hypothesize-and-test. In such a 
system, constraint propagation can be used to prune the search 
space, yet allowing hypothesize-and-test to continue the search 
where constraint propagation is not able to. A constraint language 
that can support the creation of such systems has been constructed 
by Steele [12]. Steele allows assumptions to be made and 
backtracking performed. The current work discusses another such 
system in which the hypothesize-and-test methodology allows more 
than one assumption to be pursued concurrently. It is an extension 
of earlier work discussing parallel problem solving systems [7, 8] and 
a language, Ether, for implementing these systems. Here we examine 
one particular kind of search problem, cryptarithmetic addition, of 
the sort used by Newell and Simon [10} We study this problem, not 
because it is interesting in itself, but because it is well-defined and 
test cases are relatively easy to come by. This allows us to test the 
efficiencies of algorithms empirically. We have constructed a 
parallel problem solver for doing these cryptarithmetic problems. 

There are two main points we wish to make: 

1. That a system combining both constraint propagation and parallel 
hypothesize-and-test methodologies can be constructed. The code is 
simple to read, write, and understand. Example code is presented. 

2. That, on the average, a parallel program for solving these puzzles 
can be constructed that requires less average run time when the 
parallel program is executed by time-slicing on a single processor than 
a sequential program executed on the same processor. Obviously, it 
matters which sequential and which parallel program we compare: 
the benchmarks for this comparison will be explained later and are, I 
think, quite reasonable. The speedup we are talking about here is 
not large, but is noticeable. The important point is that it is present 
at all. A similar effect has been noticed in other suidies for various 
problems [6, 8J. It suggests that concurrency may be a useful for the 
design of heuristic search algorithms whether or not the programs 
are executed on concurrent hardware or a conventional sequential 
computer. 

The remainder of this paper consists of a discussion of the problem 
being solved and the nature of the parallel solution. We show how 
the efficiency of the parallel program depends on the use of 
heuristic information for allocating resources of the parallel 
program. We then develop a series of allocation strategies, each one 
improving on the previous one. We finally discuss the importance 
of this experiment for a general theory of problem solving. We 
show how the allocation strategies represent a use of what has been 
celled mcta-lefcl knowledge in the literature, i.e. knowledge about 
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how to guide the search process to gain efficiency. In this study, 
concurrency is necessary to make use of this mete-level knowledge. 

2. The problem 

We ere given three strings of letters, t.g. "DONALD", "OKRALD", and 
" R O B K M " that represent integers when substitutions of digits are 
made for each of the letters. There is at least one possible 
assignment of digits for letters so that the numbers represented by 
the first two ( " D O N A L D " and " o r R A H / ) , when added, yield the 
number represented by the third ("ROttt-RT"). Any one of these 
assignments is a solution. In the problems we will be looking at, 
each wi l l contain exactly ten letters. A solution consists of a 
mapping from these ten letters onto the ten digits 0 through 9. 

3. A Constraint Propagation Solution 

In our construction of the constraint network wt will use the actor 
model of computation.. We find it a very natural formalism for 
bui lding these sorts of systems. In this formalism nodes of the 
network are implemented as actors. Constraint propagation between 
nodes is implemented by sending of messages containing the new 
constraints to the node being constrained. For our cryptarithmetic 
problem solver we have three kinds of nodes: letters, digits, and 
columns. They are arranged as shown: 

Arcs in the diagram indicate flow of constraints. Thus column 
nodes can constrain their left and right neighbor columns and 
certain letter nodes (the ones representing letters contained within 
the column). Letter nodes can constrain digit nodes and column 
nodes that contain their respective letters. Digit nodes can 
constrain letter nodes. In the initial configuration, before constraint 
propagation begins, we store at each letter node a list of possible 
digits that contains all ten digits. Similarly, each digit node contains 
• "possible letters list" containing all ten letters. We will give a short 
description of what each node has to do when it receives a message 
informing it of a new constraint. 

C o l u m n ! . A column can receive messages informing it of new 
constraints on letters it contains and on possible values for its 
carry-in and carry-out If a column node receives any such 
messages, it computes possible new constraints on its letters, carry-in, 
and carry-out. If any one of these has no possible values a 
C O N T R A D I C T I O N is asserted. When a CONTRADICTION is asserted the 
code implementing hypothesize-and-test is invoked to take an 
appropriate action. New constraints on letters are sent to the 
respective letter nodes. New constraints on carry-in and carry-out 
are sent to the right and left neighbor columns respectively. 

Letter.. Letters receive messages 
subsets of the digits 

0 through 9 that they can possibly be. If they learn of digits that 
they cannot be, nodes representing those digits are sent messages. 
Also, each column that contains the letter receives a new message 
informing it of the new restrictions on the value of the particular 
letter. If the set of possible digits becomes null, a CONTRADICTION is 
asserted. 

D ig i t s . These receive messages from letter nodes indicating that 
they are or are not the respective letter. If the set of possible letters 
is reduced to a singleton, a message is sent to the particular letter. If 
the set of possible letters is reduced to null, a CONTRADICTION is 
asserted. 

We can observe some things about the ability of this system to 
satisfactorily derive a unique solution. First, if there is more than 
one possible solution it wil l not find any of them. Since the letter 
and digit assignments of each possible solution are certainly possible 
assignments, they wil l appear on the possibility lists attached to each 
node. Even if there is only one possible solution (or no possible 
solutions) the system may not find it (or discover that no solutions 
exist). For example, the "DONALD" + "OKRALD" - and "RODF.RT" 
puzzle has only one solution: the constraint network described will 
quiesce before finding it. Nevertheless, the knowledge can be said 
to be "present" in the network: if the nodes of the network are 
instantiated with an assignment of leters to digits, the network will 
assert a CONTRADICTION iff the assignment is not a solution. Our 
constraint network, then, needs the ability to make assumptions and 
test them if it is to be able to solve these puzzles. 

4. Hypothesize and Test in Ether 

The constraint network and hypothesize-and-test methodologies 
were written in the Ether language [7, 8). We will only give enough 
details about the implementation to support the ensuing discussion. 
The interested reader is referred to [9] for a more detailed 
discussion of the implementation. 

The primitive operations of the Ether languages are based around 
the notion of an assertion rather than message passing. Rather than 
coding in a message passing formalism "Send the node for the letter 
D that is 5" we instead say "Assert that D is 5" and a process of 
compilation turns this assertionai code into a message passing 
implementation. For certain problems this process of compilation is 
important because certain ideas can be expressed quite naturally in 
the assertionai form that compile into very complex message passing 
code. These issues wil l be discussed in [9\ 

Because we are interested in the possibility of pursuing more than 
one instantiation of the constraint network in parallel, we need the 
ability to have more than one available for processing. For this we 
introduce the notion of a viewpoint. Each viewpoint tags a mutually 
compatible collection of assumptions about the possible values of 
letters and digits together with the constraints that derive via 
propagation from these assumptions, (i.e. a viewpoint is one 
particular instantiation of the network). Viewpoints are related to 
each other by an inheritance mechanism. The viewpoint in which A 
is assumed to be 5 and B is assumed to be 4 might be a subviewpoint 
of the one in which A is assumed 5 and no other assumptions have 
been made. Viewpoints are the repositories of assumptions and facts 
derived from these assumptions. 

In order to be able to hypothesize and test we need to introduce 
some control primitives. These primitives are built around a 
construct known as an activity. A l l processing that happens during 
execution happens under the auspices of some activity. There are 
language constructs for conveniently grouping parts of a related task 
into a single activity. For example, we can create an activity, make a 
new assumption in a viewpoint, and cause all further work within 
the viewpoint (i.e. all further constraint passing in the instance of the 
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network defined by the sumpt ion) to be part of the activity. 

Activi t ies are of interest because they give us ways to control 
quantities of system resources available for the execution of 
alternative explorations. If we itiflt an activity, all execution with 
the activity stops; a stifled activity cannot be restarted. We also have 
the ability to control the rates that non-stifled activities run. 
Different activities can be assigned different amounts of processing 
power, the total amount of CPU time an activity will get during an 
interval of time is proportional to its processing power. The 
processing power of tn activity can be altered by the system 
asynchronously with the running of the activity. 

Systems using hypothesize-and-test can be constructed in Ether by 
using viewpoints to represent assumptions made, and octititics to 
cont ro l which parts of the search space are explored, and with what 
vigor. 

5. A Simple Parallel Solution 

In this treatment we wil l ignore many details of how both the Ether 
system and the crypt arithmetic system implemented within it are 
constructed. If we wish to "create a new instance of the constraint 
network" that inherits from another, we create a new viewpoint 
(using the new-viewpoint construct). To add an assertion about a 
letter being associated with a digit within the context of this 
viewpoint, we execute (assert (one-of -letter ( -d ig i t ) ) ) where 
l e t t t r and d i g i t are bound to the respective letter and digit which 
we want to assume are identified in this viewpoint. The second 
argument to one-or is a list of possible digits that the letter can be. 
So, for example, we could execute (essert (one-of s (l J s ; 9))) to 
indicate that S is odd. Ether syntax makes use of a quasi-quote 
convention in which symbols prefaced by the character V are 
substituted with the values of the associated symbols. If letter were 
bound to "D" and d ig i t were bound to T, the item actually asserted 
wou ld be (one-of D (S)). If the t i t e r t is executed within the 
context of a certain activity, then all. work propagating constraints 
that fol low from that assertion will happen within that activity. 

The implementation described in this section is quite simple. It first 
creates a viewpoint in which no assumptions are made and 
continues propagating constraints within this viewpoint until it has 
quicsccd, i.e. no more propagation can happen. When this state has 
been achieved, if each letter does not have a unique digit that it can 
be identified with, it is determined which letter has the least number 
of possible digits that it can be (excluding those letters that already 
have a unique assignment). For each one of these digits, a new 
viewpoint and a new activity are created. Within these (in parallel), 
the letter is asserted (assumed) to be the digit and propagation of 
constraints continues. If quiescence is reached in this new activity 
and the problem has not been solved, we recurse. 

The function shown below takes a letter, a list of alternative digits, 
and a viewpoint. It uses the environment contained in the 
viewpoint to create new subviewpoints in which the letter is 
assumed to be each of the alternative digits. We first check to see if 
there is at least one possible digit. If not, there cannot be a possible 
solution to this problem consistent with the parent viewpoint and so 
we assert that there is a contradiction within the parent viewpoint. 
Otherwise we iterate over each digit in the alternatives list and for 
each one we create a new viewpoint whose parent is the parent 
viewpoint and a new activity with parent start-act and assert the 
letter is the particular digit; this initiates propagation of constraints. 
If we discover there is a contradiction within the viewpoint (this is 
accomplished by the code, fragment beginning with 
"(when ((contradict ion)!") we assert within the parent viewpoint, 
that the letter cannot be the particular digit. We are justified in 
doing this because the only difference, in terms of assumptions 
made, between the current viewpoint and the parent viewpoint is 

the one assumption of the totter being identified with • particular 
digit that was a possible alternative in the parent viewpoint: if this 
assumption leads to a contradiction, we know that this is not a 
possible identification for the letter. In addition we stifle (stop from 
executing) the activity that was pursuing the now known to be 
inval id assumption. We further check to see if the activity quiesces 
in the section of code beginning with "(when ((eui t ic tnt * • ) ) " . If 
this has occurred, we first check to see if the problem has been 
solved. If so we are done: otherwise we determine the letter in the 
viewpoint with the least number of possible digits (but greater than 
I) and recursively call parallel-seiva on this. 

When a new activity has been created (and has something to do) it 
immediately begins executing concurrently with already existing 
activities. The default allocation of processing power, when no 
explicit allocation has been done, is such that each running activity 
gets approximately equal servicing (in terms of CPU seconds) by the 
scheduler. 

6. Alternative Parallel Program 

The simple parallel program described might well be reasonable if 
we had a large number of processors. With a small number of 
processors ( in particular, only one processor, the case actually 
studied) it is considerably less efficient in terms of average total run 
time than some other solutions. Al l the solutions we wilt examine 
are elaborations of, or simple modifications to the basic parallel 
program already presented. 

We observe that a traditional depth-first search (with backtracking) is 
but a trivial modification of the code above. When new alternative 
digits are proposed for a letter, instead of starting them up in 
concurrent viewpoints as was done above, they are placed on a list. 
Only the activity for the first one on the list is given any processing 
power. If it quiesces we recursively call parallel-solve. If it is 
discovered that the viewpoint is contradictory, the next one is begun 
( i f a next one exists); otherwise, the parent viewpoint is asserted to 
be inconsistent. Asserting that it u inconsistent will trigger the 
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activi ty monitoring the next higher viewpoint to pick the next 
possibility on its list. Depth-first b a degenerate case of parallel 
anarch in which only one activity at a time b given non-xero 
processing power. 

6.1 H e u r l f t l c I n fo rma t ion to Cont ro l I t aoa rce Al locat ion 

A simple elaboration wt can make to the parallel implementation 
presented that preserves to parallel character is to vary the 
processing power based on an assessment of how likely the 
assumptions we have made within its associated viewpoint are to 
lead to useful information (either leading to a solution or 
determining that the viewpoint is contradictory). We base the 
quantity of processing power allocated to the activity doing the 
explorat ion on the numerical value of this judgement. For this 
particular problem, we are more likely to learn in a short period of 
t ime whether a viewpoint contains a valid solution or is 
contradictory if it is already fairly well constrained, Le. if the letters 
in the viewpoint only have a few possible digits that they could be. 
Af ter some experimentation we came upon the following formula 
for determining relative processing power allocations for the 
various different activities participating in the search: 

where each ni is the number of possible digit assignments for the 
letter i in the v iewpoint If the letters tend to have fewer possible 
digi t possibilities, the sum terms ( l O ^ n j ) wil l tend to be large. 
Squaring this number, and squaring the final sum serves to 
accentuate the relative differences between the different viewpoints. 
When the system is first set up, a separate activity known as the 
manager activity continually monitors each of the other running 
activities and evaluates this function for each associated viewpoint. 
The processing power allocations to these activities are adjusted in 
proport ion to the numerical value of this formula. The Ether 
command we use for modifying the processing power allocations of 
an activity is called support-in-rat tot. It takes three arguments: an 
activity, a list of activities (that are children of the first) and a list of 
non-negative numbers with the same number of elements as the list 
of activities. The processing power assigned to the parent activity is 
(re)div ided among the children activities in proportion to the 
numbers in this l is t Thus, if a factor for a given activity is 0 the 
activi ty gets no processing power; if the factor associated with the 
activity is twice the factor associated with another, then the former 
act ivi ty gets twice as much processing power as the latter. The 
allocator described is implemented as follows: 

We create a separate activity at top-level called the nenaaer-activity 
and execute the fol lowing to have the allocation strategy continually 
cal led asynchronously with the activities doing the actual search: 

This scheme gives considerably better performance than the simple 
parallel solution. It does better than the backtracking solution on 
some examples with a single processor implementation, although on 
the average the back t r ie king solution is more efficient. It is 
important to understand the source of this improvement. We have a 
scheme for estimating the likelihood that a running activity wil l 
return useful information in a short period of time. We allocate 
more resources to those activities that we estimate wil l supply us 
wi th information for the least amount of resource expenditure. 
Assuming our heuristic is reasonable, the average time to complete 
the search is reduced. 

There are three more improvements we have made to the processing 
power allocation strategy before reaching the final strategy for 
which we have collected data in the next section. Each will be 
described in turn. 

6.2 Concurrency Factors 

We have observed in the allocation strategy discussed thus far that 
even though activities are running with different amounts of 
processing power that wt related to our estimate of the utility of 
getting useful information back from them, there still seems to be so 
many activities running that they tend to thrash against one another. 
We would like to limit the amount of concurrency so that the 
running activities can get something done. For this purpose we 
introduce the notion of a concurrency factor. Instead of letting all 
runnable activities run, we pick the n most promising activities 
(using the metric above), where n is the concurrency factor, and 
give only those activities processing power and in the ratios defined 
by the metric. The optimal value for the concurrency factor is 
picked experimentally and is discussed below. 

The value of the concurrency factor that yields the best result is a 
ref lect ion of two aspects of the problem: the quality of our heuristic 
knowledge and the distribution of computational expense for 
picking bad branches in the search. Obviously if our heuristic 
knowledge were perfect, i.e. it could always point to the correct 
branch to explore next, the optimal concurrency factor would be I 

it should simply explore this best branch. If we are less sure we 
are about which is the best, more branches should be explored. 
Also, if the computational cost of exploring a bad branch is always 
small, a small concurrency factor would be appropriate. If, however, 
the cost of a bad branch can bo vary largo wo would want to use a 
larger concurrency factor. With a small concurrency factor we 
increase the probability that the problem solver wil l become stuck 
for a very long time. A limiting case of this is with a search space 
that is inf inite (introducing the possibility of a bad branch that never 
runs out of possibilities) and a concurrency factor of I. If the 
problem solver happens to pick one of these branches it wil l diverge. 

Hayes-Roth has noted an analogy with portfolio theory, the purpose 
of which is to pick an investment strategy that wil l yield the greatest 
expected capital appreciation. Uncertainty about the future 
performance of certain industries and volatility in the market place 
argue for greater diversification of the portfolio. 
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6.3 Eettmati i ig Which Assumptions Are Moat Valuable 

Our strategy so far has been to use hypothesize-andtest on one tetter 
only in each viewpoint. We sprout one new viewpoint and activity 
to test the hypothesis that that letter is each one of the digits it could 
possibly be in the parent viewpoint This is not necessarily the best 
strategy. By hypothesizing a letter is a certain digit we may learn a 
lot or a little. We have "learned a lot" if we ( I ) discover quickly that 
a viewpoint is contradictory, or (2) cause a lot of constraint 
propagation activity that significantly increases our evaluation of the 
new viewpoint. One thing we have observed is that the amount we 
learn from assuming a letter is a particular digit does not significantly 
depend on which digit we use. In other words, if we assume the letter 
N is 2 and discover a contradiction, then we are likely to either 
discover a contradiction or signficantly constrain our solution by 
assuming N is any other digit on its list of alternatives. To take 
advantage of this phenomenon the program remembers what 
happened when it makes particular assumptions. When it creates a 
new viewpoint to study the result of assuming a letter is a particular 
digit the result is recorded in the parent viewpoint when it has 
completed. There are two possible results. If it led to a 
contradict ion this fact is recorded. If it led to a quiescent (but 
consistent) state it records the difference of the evaluation metric 
applied to the parent viewpoint and the evaluation metric on the 
quiescent viewpoint - our estimate of the amount of reduction that 
is likely to be obtained by assuming this letter to be a digit Our new 
evaluation metric attempts to take this information into 
consideration. When assuming a letter L is a specific digit we use 
the o ld evaluation metric if we do not have have never assumed L 
to be a particular digit from this viewpoint: otherwise, we use the 
average of the evaluations for each of the resultant viewpoint*. We 
then multiply this figure by the factor I 4 .5 • n where n is the 
number of letters that we have assumed L to be and determined that 
they lead to contradictions. 

N o w that we have a mechanism for taking advantage of information 
learned by making different assumptions we would like to ensure 
that a variety of choices are tried at each branching point We will 
slightly modify the technique for picking the activities to be run at 
any given time (in accordance with the concurrency factor). Where 
c is the concurrency factor, we. use the following algorithm to pick 
the c activities to run at a given time: 

1. The activity with the highest evaluation is scheduled. 

2. If n < c activities have been selected for running, the n+lst 
activity is (a) the one with the highest metric if it does not duplicate 
any of the first n activities in terms of which letter it is making an 
assumption about for a given viewpoint, or (b) the highest rated 
non-duplicated activity unless the highest rated activity has a rating 
at least three times higher in which case we use the highest rated 
activity. The factor three was picked experimentally and is based on 
the fol lowing argument. There is a certain advantage in having a 
diversity of letters being tested because this gives us a greater 
chance to discover assumptions that will cause significant shrinkage 
by constraint propagation. However, there is also an advantage to 
running the activity that we have estimated will give us the best 
result. The factor three is the ratio of estimates for expected gain 
for which we would rather run the higher estimated test than one 
that wi l l increase our diversity. 

7. An Experiment 

In order to test for the existence of a speed-up with concurrency we 
t imed 10 problems using the final parallel algorithm described above 
for several concurrency factors. The problems tested are: 

They were picked by • trial-end-error process of selecting possible 
problems and then running them to we if they have a solution. It Is 
not known whether they have one or more than one solution. The 
program finishes when it has found one solution. These tests were 
run on the M I T Lisp machine, a single user machine designed for 
efficient execution of Lisp programs. The times represent processor 
run time only and are adjusted for time lost due to paging. The 
manager activity, which continually monitors the state of the search 
activities and readjusts processing power accordingly, receives a 
processing power allocation of . 1 . We tested with concurrency 
factors between I and 7. Numbers 2 through 7 each gave some 
improvement with 4 being the best. Here we report the results for 
concurrency factors I and 4. Times reported are in seconds: 

With a concurrency factor of I the algorithm becomes, functionally, 
a depth-first search. A concurrency factor of 4 represents the value 
which yields least average run time for the problems examined. 
Concurrency factors larger and smaller yield higher average values. 
We caution the reader not to take the numbers too seriously. We 
only wish to demonstrate that the parallel algorithm runs with some 
improvement of efficiency ovtt the sequential algorithm. 

Some interesting facts can be learned by examining the data. 
Al though the parallel solution beat out the sequential solution in 
only 6 of the 10 cases, these six cases are the ones for which the 
sequential solutions take the longest. In particular, problems 6 and 9 
have show by far the longest times for the sequential solution and 
the time saving of the parallel solution is considerable. Similarly, for 
the cases in which the sequential solution finished quickly, the 
parallel solution tended to take longer. This phenomenon is fairly 
easy to explain. The parallel solution supplies "insurance" against 
picking bad branches in the search space. If the sequential solution 
happened to pick a bad branch (or several bad branches) there was 
no recourse but to follow it through. Similarly, if the sequential 
program found a relatively quick path to the solution, the extra 
efficiency of the parallel solution was not needed. 

b\ Conclusions 

We have demonstrated that cryptarithmetk puzzles can be solved 
wi th a certain increase in average efficiency by the parallel 
algorithm described over a more traditional depth-first search 
solution. While this result in and of itself is of little use it does 
demonstrate a tool that may be of great use in heuristic 
programming - the use of parallelism to control a heuristic search. 
Several writers have pointed to the use of mcto-letd knowledge (04. 
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Davis (2J) in controlling a March, Mete-level knowledge is 
knowledge about how to use the problem solving loob at hand in a 
way that increases overall search efficiency. The allocation 
strategies we have examined are mete-level knowledge for 
cryptarithmetic problems. By allowing a few to run in parallel, and 
with controllable amounts of processing power we art able to 
increase the efficiency of the search. Although the increase we 
gained is not dramatic there is reason to suspect that it would be 
more significant in more interesting problems. The silt of the 
search space in these problems is relatively quite small. Thus picking 
a "bad branch" in the search can't be too catastrophic. With a search 
space that is much larger, and possibly infinite (as is the case with 
many interesting problems), a bad branch using a parallel search can 
only do. a bounded amount of harm, bounded by the quantity of 
processing power allocated to it. Very similar results have been 
obtained in speech understanding research projects (14,3] in which 
competing hypotheses are used to control the allocation of resources 
for further investigation. 

We introduced several concepts that were used in the construction 
of the allocation strategy. Processing power b allocated in 
proportion to an. estimate of how likely we are to get useful 
information out of the exploration of a branch. Concurrency factors 
have been introduced to keep the problem solver reasonably 
focused. A certain amount of diversity b incorporated in the 
algorithm to increased the likelihood of discovering assumptions that 
can be made that will lead to valuable information quickly. 
Although the only problem we have examined b cryptarithmetic, 
there is nothing about these general strategies that b specific to 
cryptarithmetic. They contribute to a general theory of parallel 
problem solving. 

The form of the code is quite simple to write and understand. The 
algorithm consists of a mixture of constraint propagation and parallel 
hypothesize-and-test. The programs involve asynchronous, 
concurrent activities processing different sets of assumptions. 
Furthermore, the resources allocated to these activities can be 
altered asynchronously with the execution of the activities. 

We have demonstrated that introducing concurrency in the search 
process does actually increase overall efficiency, in particular it does 
no harm. This lends support to efforts to design a computing system 
for message passing languages that involves many 
intercommunicating autonomous processors (e.g. Hewitt (5]). It 
suggests there is inherent concurrency in search problems that could 
be gainfully run on multiple processors. We are interested in 
generalizing the control notions we have developed, such as 
processing power and quiescence, to be implementable on truly 
parallel architectures. 
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