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Abstract
The (group) no-show paradox refers to the unde-
sirable situation where a group of agents have in-
centive to abstain from voting to make the winner
more favorable to them. To understand whether
it is a critical concern in practice, in this paper,
we take a computational approach by examining
the computational complexity of verifying whether
the group no-show paradox exists given agents’
preferences and the voting rule. We prove that,
unfortunately, the verification problem is NP-hard
to compute for some commonly studied voting
rules, i.e., Copeland, Maximin, single transferable
vote, and all Condorcetified positional scoring rules
such as Black’s rule. We propose integer linear
programming-based algorithms and a search-based
algorithm for the verification problem for differ-
ent voting rules. Experimental results on synthetic
data illustrate that the former is efficient when the
number of unique rankings in a profile is not too
high, and the latter is efficient for a small number
of agents. With the help of these algorithms, we
observe that group no-show paradoxes rarely occur
in real-world data.

1 Introduction
In social choice theory, the no-show paradox, first ob-
served by Fishburn and Brams [1983], generally refers to the
counter-intuitive event where a group of agents has the incen-
tive to abstain from voting to make the winner more favorable
to them. This is undesirable because when it occurs, agents
can manipulate the result just by not showing up, which is
much easier (thus more threatening) than strategic manipula-
tion [Gibbard, 1977; Satterthwaite, 1975]. The no-show para-
dox also discourages voters from participating in the election,
reducing turnout and undermining democracy.

The significance of the no-show paradox urges researchers
to study its existence under different voting rules. Unfortu-
nately, even the single-voter no-show paradox,which means
that there exists a single voter with the incentive to abstain
from voting, always exists under a wide range of voting rules,
including all Condorcet rules [Moulin, 1988]. There is an ex-
tensive literature on verifying the frequency of various kinds

of no-show paradoxes. For example, Ray [1986] studied
the likelihood of a group no-show paradox for three alter-
natives under single transferable vote (STV). Lepelley and
Merlin [2001] generalized the concept from Ray [1986] and
studied various kinds of group no-show paradoxes for scoring
run-off methods. Brandt et al. [2021] characterized the likeli-
hood of the no-show paradox on Condorcet rules via Ehrhart
theory. Xia [2021] characterized the likelihood of the single-
voter no-show paradox existing under a semi-random model.

We can verify the existence of a single-voter no-show para-
dox for many commonly-studied voting rules in polynomial
time by simply enumerating the possible absentee. But we
have multiple open questions for the group no-show paradox:
How likely is the occurrence of the group no-show para-
dox under commonly studied voting rules? What is the
computational complexity of verifying the paradox?

The question of computational complexity is interesting
from a theoretical perspective and significant from a practical
viewpoint. A high complexity of verifying the existence of a
paradox can be advantageous for voting rules as that will dis-
allow manipulation from voters. However, a low complexity
can be advantageous from a mechanism designer’s perspec-
tive because it would allow us to verify which voting rules are
more robust against group abstention in practice.

Our contributions. We characterize the computational
complexity of verifying group no-show paradox (GNSP) un-
der several common voting rules: Copeland, Maximin, STV,
and all Condorcetified positional scoring rules, including
Black’s rule (Section 3). We prove that, unfortunately, the
verification problem is NP-complete under all of them (Theo-
rem 1–4). To computationally solve the problem, we propose
integer linear program (ILP)-based algorithms and a breadth
first search search-based algorithm for verifying GNSP for
these voting rules (Section 4). We perform experiments on
both synthetic data and PrefLib election data [Mattei and
Walsh, 2013] (Section 5). The results on synthetic data illus-
trate that the search algorithm works well for a small number
of agents, outperforming the ILP algorithms only when the
number of alternatives is high. On the other hand, the ILP al-
gorithms work well even for a large number of agents, as long
the number of unique rankings in a profile is not too large.
The results on PrefLib data suggest that no-show paradoxes
rarely occur in real-world elections.
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1.1 Related Works and Discussion
The no-show paradox. Although it is widely acknowl-
edged that the no-show paradox refers to agent(s) having in-
centives to abstain from voting, its mathematical definition
varies in the literature. Fishburn and Brams [1983], who in-
troduced the paradox, described it as a group of agents having
incentive to abstain from voting, but restricted the votes to be
“identical” and the full-vote winner being “ranked last”. On
the other hand, Moulin [1988] restricted the no-show para-
dox to a single agent while relaxing the “ranked last” con-
straint, and call the non-existence of such single-agent no-
show paradox satisfaction of participation. Similarly, Felsen-
thal and Nurmi [2016] investigated two versions where ab-
stentions of winners being ranked first or other alternatives
being ranked last can change the result. Finally, Lepelley and
Merlin [2001] investigated the group version as Fishburn and
Brams did, while further redefining the paradox to four spe-
cific types. In this paper, we adopt a definition that inherits the
spirits of all of these papers. We consider the group version
of the no-show paradox, but we do not require the votes to be
identical or the alternative to be ranked at specific places.

There is a large body of literature on the likelihood of no-
show paradox under general assumptions such as impartial
culture [Ray, 1986; Lepelley and Merlin, 2001; Plassmann
and Tideman, 2014]. Kamwa et al. [2021] revisited Lepel-
ley and Merlin [2001]’s setting under a single-peaked pref-
erence and found a much lower likelihood under this restric-
tion. Pérez [2001] and Duddy [2014] studied strong versions
of no-show paradox’s likelihood in Condorcet rules. Brandt
et al. [2021] also analyzed no-show paradox for Condorcet
rules using Ehrhart Thoery. Brandl et al. [2015] showed
that every Pareto Optimal majoritarian voting rule will suffer
from the no-show paradox for some voting profiles. Brandt et
al. [2017] followed Moulin [1988] and tightened the bound
of the number of agents in a no-show paradox in Condorcet-
consistent rules. Brandt et al. [2022] presented an ILP-based
method for finding minimal voting paradoxes, including the
no-show paradox to occur. But their work focused on prefer-
ence profiles limited to 10 alternatives and 20 agents, whereas
we explore larger ranges of preference profiles. Also, their
ILP formulation depend on individual agents’ preferences,
which is different from our formulation.

The notion of the no-show paradox has also been extended
beyond regular voting rules, e.g., social choice correspon-
dences where the output is a set of alternatives [Jimeno et
al., 2009; Pérez et al., 2012; Brandl et al., 2019], and proba-
bilistic or randomized voting rules [Brandl et al., 2017].

Manipulation and control. The no-show paradox is
closely related to manipulation in voting, particularly “ma-
nipulation by abstention” [Brandt et al., 2021], which is
a special case of “sincere truncation”, where agents par-
tially reveal their truthful preference [Fishburn and Brams,
1984]. Technically, verifying GNSP is similar to the COALI-
TIONAL MANIPULATION (CM) problem in voting [Bartholdi
and Orlin, 1991; Conitzer and Walsh, 2016]. where we are
asked whether the manipulators can cast votes to make c
the winner. One might be tempted to think that verifying
GNSP is easier than CM. However, we do not see a for-

mal relationship between the two problems. Because, first,
when verifying GNSP, the group of “manipulators” is not
fixed; and second, all absentees must prefer the new win-
ner to the old winner. The no-show paradox is also related
to control in voting, or more specifically, control by delet-
ing agents [Bartholdi et al., 1992; Rothe and Schend, 2013;
Faliszewski and Rothe, 2016], where an adversary aims at
achieving a goal, e.g., make a favorable alternative win or an
unfavorable alternative lose, by deleting agents. The main
differences between GNSP and control again stem from the
fact that the size of the “deleted” agents is unbounded, and
only agents who prefer the new winner to the old winner can
be deleted.

2 Preliminaries
For any m ∈ N, let A denote the set of m ≥ 3 alterna-
tives. Let L(A) denote the set of all linear orders or rank-
ings over A. Let V = {V1, . . . , Vn} be the set of agents for
n ∈ N. Each agent uses a linear order R ∈ L(A) to represent
their preference, called a vote, where a ≻R b means that the
agent prefers alternative a to alternative b. The vector of n
agents’ votes, denoted by P , is called a (preference) profile.
In this paper, we focus on resolute voting rules, which always
choose a unique winner. A voting rule is anonymous if the
winner is insensitive to the identities of agents.
(Un)weighted majority graphs and Condorcet winners.
For any profile P and any pair of alternatives a, b, let P [a ≻
b] denote the total number of votes in P where a is preferred
to b. Let WMG(P ) denote the weighted majority graph of
P , whose vertices are A and whose weight on edge a → b is
wP (a, b) = P [a ≻ b]−P [b ≻ a]. The Condorcet winner of a
profile P , denoted by CW(P ), is the alternative that only has
positive outgoing edges in WMG(P ). Note that a Condorcet
winner will not exist for all profiles.
Integer positional scoring rules. An (integer) positional
scoring rule rs⃗ is characterized by an integer scoring vec-
tor s⃗ = (s1, . . . , sm) ∈ Zm with s1 ≥ s2 ≥ · · · ≥ sm
and s1 > sm. For any alternative a and any linear order
R ∈ L(A), let s⃗(R, a) = si, where i is the rank of a in
R. Given a profile P where nR agents have R as their vote,
the positional scoring rule rs⃗ chooses the alternative a with
maximum

∑
R∈P nR · s⃗(R, a), using a tie-breaking mech-

anism when necessary. For example, the scoring vector is
(1, 0, . . . , 0) for plurality and (m−1,m−2, . . . , 0) for Borda.
STV. The single transferable vote (STV) rule chooses the
winner in at most m − 1 rounds. For each 1 ≤ i ≤ m − 1,
in round i, a loser (an alternative with the lowest score) under
plurality is eliminated, applying a tie-breaking mechanism to
choose a single loser when necessary.
Copeland. The Copeland rule is parameterized by a number
0 ≤ α ≤ 1, denoted by Cdα. For any profile P , an alternative
a gets 1 point for each alternative it beats in head-to-head
competitions, and gets α points for each tie. Cdα chooses
the alternative with the highest Copeland score as the winner,
using a tie-breaking mechanism when necessary.
Maximin. For each alternative a, its min-score is defined to
be MSP (a) = minb∈A−{a} wP (a, b). Maximin, denoted by
MM, chooses the alternative with the maximum min-score as
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the winner, using a tie-breaking mechanism when necessary.
Condorcetified (integer) positional scoring rules. The rule
is defined by an integer scoring vector s⃗ ∈ Zm and is denoted
by Conds⃗, which selects the Condorcet winner when it ex-
its, and otherwise uses rs⃗ to select the winner. For example,
Black’s rule [Black, 1958] is the Condorcetified Borda rule.
Group no-show Paradox. As discussed in Section 1.1, we
adopt the following definition that inherits the spirits of [Fish-
burn and Brams, 1983] and [Moulin, 1988].

For a profile P with agents V , let V ′ ⊆ V be a subset of
agents and P ′ the profile when limited to the agents in V ′. We
further denote P − P ′ to be the profile of agents in V − V ′.
We now define the group no-show paradox as follows.
Definition 1 (Group no-show paradox). A group no-show
paradox (GNSP) occurs in profile P with agents V under a
resolute voting rule r if there exists a subset of agents V ′ ⊆ V
with corresponding profile P ′, all of whom prefer r(P − P ′)
to r(P ), incentivizing them to abstain from voting.

When the context is clear, we omit V and V ′ and say that
a GNSP occurs in profile P with abstaining profile P ′.

21

3
WMG(P)

2

WMG(P-P′)

−𝑃′

6

6

21

3

4

8

Figure 1: GNSP under Copeland0.5.

Example 1. Let P denote the profile of 14 votes with 6 votes
of [2 ≻ 1 ≻ 3], 4 votes of [1 ≻ 3 ≻ 2], and 4 votes of [3 ≻
2 ≻ 1]. As illustrated in Figure 1 (for simplicity, we only
show strictly positive edges in a WMG), Copeland0.5(P ) = 1
using the following order for tie-breaking 1 ✄ 2 ✄ 3. For
simplicity, only the edges with positive weights are shown in
the weighted majority graph. If group P ′ consisting of 2 votes
of [3 ≻ 2 ≻ 1] abstain from voting, then Copeland0.5(P −
P ′) = 2. Notice that 2 ≻ 1 for both agents in P ′. This means
that no-show paradox occurs in Copeland0.5 at P . ✷

3 Complexity of Verifying GNSP
In this section, we investigate the computational complexity
of computing the existence of group no-show paradox for
Copeland, Maximin, Condocetified positional scoring rules,
and STV. No-show paradoxes trivially do not occur for posi-
tional scoring rules. The problem is formally defined below:
Definition 2 (GNSP-r). Given a voting rule r, GNSP-r is
the computational problem that takes a profile P as an input
and outputs whether there exists a profile P ′ ⊆ P , each of
which prefers r(P − P ′) to r(P ).

The definition of GNSP-r immediately implies the follow-
ing easiness result for fixed m.
Proposition 1. For any fixed m and anonymous voting rule
r, GNSP-r can be solved in polynomial time if the winner of
r can be computed in polynomial time.

The proposition holds because the number of all possible
anonymous profiles after abstention is O

(
( n
m! )

)m!
(proof in

Appendix B). So, for constant m, all profiles can be enumer-
ated in polynomial time. Differing from the setting in Propo-
sition 1, in the remainder of this section, we assume a vari-
able m. We investigate the complexity of GNSP-r for voting
rules using the following common tie-breaking mechanisms
(see Appendix A for formal definitions and examples). The
lexicographic tie-breaking (LEX) breaks ties alphabetically.
Fixed-agent (FA) tie-breaking chooses a fixed agent’s prefer-
ence (w.l.o.g., agent 1) to break ties. Most popular singleton
ranking tie-breaking (MPSR) [Xia, 2020] first tries to use the
linear order that uniquely occurs most often in the profile,
and if such linear order does not exist, a backup tie-breaking
mechanism is used. For example, MPSR+LEX uses LEX as
the backup. Since the work focuses on resolute voting rules,
we must consider tie-breaking mechanisms, and our theoret-
ical results hold under these common mechanisms. Never-
theless, this does not mean that the existence of the group
no-show paradox relies on ties. Theorem 3 holds under any
tie-breaking mechanism, and its proof contains a group no-
show paradox without ties.

We are now ready to present the theoretical results of this
paper. Due to the space constraint, we only present the proof
or a sketch under LEX, with the full proofs in Appendix B.

Theorem 1 (Copeland). For any 0 ≤ α ≤ 1, GNSP-Cdα is
NP-complete to compute, where the tie-breaking mechanism
is LEX, FA, MPSR+LEX or MPSR+FA.

Proof sketch. It is easy to check that the problem is in NP—
given a profile P ′ ∈ P , we run the voting mechanism with
and without the group to check if they have the incentive to
abstain from voting. The NP-hardness is proved by a reduc-
tion from RXC3, which is a restriction of EXACT 3 COVER
that requires every element to be in exactly three sets and is
proved to be NP-complete [Gonzalez, 1985].

Definition 3 (RXC3). RXC3 is a computational problem
taking two sets as input: (1) a finite set of elements X =
{x1, x2, · · · , xq} (q is divisible by 3) and (2) a set of 3-
element subsets of X , S = {S1, S2, · · · , Sq} such that every
element xi appears in exactly three subsets in S . The prob-
lem outputs whether S has an exact cover for X , i.e. a subset
S∗ ⊆ S such that every xi occurs in exactly one subset in S∗.

W.l.o.g. we assume that q is an even number. If q is odd,
then we can use an instance with duplicate X and S . We also
assume that q is sufficiently large (for example, q ≥ 10). We
show the hardness of GNSP-Cdα here for α < 1. The full
proof, including the hardness for α = 1 is in Appendix B.1.
For any RXC3 instance (X,S) with α < q−4

q−3 , we construct
a GNSP-Cdα instance with q + 2 alternatives as follows.

The construction of the GNSP-Cdα instance. There are
q+2 alternatives {1, 2, 3, . . . , q+2}, where for every 3 ≤ i ≤
q+2, alternative i corresponds to xi−2. For convenience, we
will use i and xi−2 interchangeably and denote alternatives
{3, 4, · · · , q + 2} as X .

Let profile P = P1∪P2∪P3∪P4 consist of the following
four parts, whose WMGs are illustrated in Figure 2.
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Figure 2: WMG of P for for Cdα with α < 1.

• P1 consists of q votes that correspond to the sets in S: for
every j ≤ q, there is a vote RSj

defined as follows

RSj
= (X \ Sj) ≻ 2 ≻ 1 ≻ Sj ,

where alternatives in (X \Sj) and in Sj are ranked alphabet-
ically. More precisely, P1 = {RS : S ∈ S}; P2 consists of
2
3q − 3 copies of [1 ≻ 2 ≻ X]; P3 = {[1 ≻ X ≻ 2], [1 ≻
2 ≻ X]}; and P4 = q copies of {[1 ≻ X ≻ 2], [2 ≻ 1 ≻ X]}.

As illustrated in Figure 2, 1 gets a Copeland score of q by
beating every alternative in X , 2 gets a score of 1 by beating
1, and an alternative in X gets a score of at most q. Therefore,
Cdα(P ) = 1 due to the tie-breaking rule.
Suppose the RXC3 instance is a yes instance. There is an
exact cover S∗ for X . Then, GNSP-Cdα is a yes instance.
Let the abstention profile (denoted by P ∗) be those in P1 that
correspond to the 3-sets in S∗, i.e. P ∗ = {RSj

: Sj ∈ S∗}.
After P ∗ abstain from voting, alternative 2 becomes the Con-
dorcet winner as illustrated in Figure 2. Note that all votes in
P1 prefer 2 to 1. Therefore, this constitutes a GNSP.
Suppose the GNSP-Cdα instance is a yes instance. A
group of agents, whose corresponding profile is denoted by
P ∗, have an incentive to abstain from voting. We will show
that the RXC3 instance is a yes instance in four steps.

First, Cdα(P − P ∗) = 2. Suppose this is not true, and
the new winner is a ̸= 2. Then P ∗ ⊆ P1 because only votes
in P1 prefer a to 1. Therefore, after P ∗ is removed, 1 beats
all alternatives in X in head-to-head competition and gets a
Copeland score of at least q. But, a, beaten by 1, gets at most
q. Therefore, a cannot be the winner because the tie-breaking
mechanism favors 1, which is a contradiction.

Second, |P ∗| ≤ q
3 . Suppose this is not true. Then at least

q
3 + 1 votes are removed, all of which prefer 2 to 1. So, 2
cannot beat 1 in the head-to-head competition in P − P ∗.
Also, P ∗ ⊆ P1 ∪ P4 because abstaining agents must prefer 2
to 1. Therefore, 1 is not beaten by 2 and beats all alternatives
in X in WMG(P − P ∗), getting a Copeland score of at least
q + α. 2 gets a Copeland score of at most q + α. Therefore,
2 cannot be the winner, which is a contradiction.

Third, P ∗ ⊆ P1, and the 3-element subsets correspond-
ing to votes in P ∗ are non-overlapping. Alternative 2 can-

not lose to any alternative a ∈ X in head-to-head competi-
tion, otherwise, 2’s Copeland score is not strictly larger than
1’s (which is at least q). If there exists a ∈ X such that
2 ≻ a appears in more than one vote in P ∗, 2 is defeated
by a in head-to-head competition as WMGP−P∗(2 → a) ≤
(|P ∗|−2)−2− ( q3 −3) ≤ −1, and cannot be the winner. So,
all votes in P ∗ come from P1 (if P ∗ contains any vote in P4,
it cannot contain any other vote, which is impossible), and for
any two votes RSi

and RSj
in P ∗, whose corresponding sets

are Si and Sj , we have Si ∩ Sj = ∅.
Fourth, |P ∗| = q

3 and corresponds to an exact cover of
X , which implies the yes instance of RXC3. Suppose that
|P ∗| ≤ q

3 − 1. We show that 2’s Copeland score is lower than
1’ score (at least q), which is a contradiction.
• Case 1: |P ∗| = q

3 − 1. Therefore, 2 is tied with a such
that a ∈ Sj and RSj

∈ P ∗ for some j ≤ q. Since Sj is non-
overlapping in P ∗, there are 3|P ∗| = q−3 of such alternative
a. Therefore, the Copeland score of alternative 2 is at most
4+α(q−3). With α < q−4

q−3 , 2’s score is lower than 1’s score.
• Case 2: |P ∗| = q

3 − 2. In this case, 2 is defeated by all
a ∈ Sj for RSj ∈ P ∗, and there are q − 6 such a. Therefore,
the Copeland score of 2 is at most 7. Since we assumed that
q is sufficiently large, 2’s score is lower than 1’s score.
• Case 3: |P ∗| ≤ q

3 − 3. In this case, 2 is defeated by or tied
with every a ∈ X . Therefore, 2’s score is at most αq + 1 <
4 + α(q − 3), which is lower than 1’s score.

Therefore, we have |P ∗| = q/3. Let S∗ = {Sj : RSj ∈
P ∗}. Since these Sj are non-overlapping, every xi ∈ X ap-
pears in exactly one Sj ∈ S∗. Therefore, S∗ is an exact cover
of X , and RXC3 is a yes instance.

Theorem 2 (Maximin). GNSP-MM is NP-complete to
compute, where the tie-breaking mechanism is LEX, FA,
MPSR+LEX or MPSR+FA.

Proof sketch. The proof is similar to the proof of Theo-
rem 1. The problem is trivially in NP. Then, the NP-hardness
is proved by the following reduction to RXC3 (the full proof
is in Appendix B.2): Given a RXC3 instance (X,S), we
construct the following GNSP-MM with q + 4 alternatives
{1, 2, 3, 4, 5, . . . , q + 4}, where for every 4 ≤ i ≤ q + 4, al-
ternative i corresponds to xi−4. The profile consists of four
parts, whose WMG is illustrated in Figure 3.

Specifically, P1 consists of q votes that correspond to the
sets in S: for every j ≤ q, there is a vote R′

S defined as R′
S =

Sj ≻ 1 ≻ 2 ≻ (X \ Sj) ≻ 4 ≻ 3. It is not hard to verify that
MM(P ) = 2, whose min-score is 0 (via alternatives 1 and 3).

When the RXC3 instance is a yes instance with solution
S∗, let P ∗ ⊂ P1 denote the votes that correspond to S∗. Then
the WMG for (P − P ∗) is illustrated in Figure 3. It’s not
hard to find that 1, 2, and 3 share the max min-score of − q

3 .
Due to the lexicographic tie-breaking, MM(P − P ∗) = 1,
which implies a GNSP yes instance. When GNSP-MM is
a yes instance with abstention group P ∗, following similar
reasoning as in the proof of Theorem 1, we can find that this
happens only when MM(P − P ∗) = 1 and P ∗ corresponds
to a 3-cover of the RXC3 instance. ✷

The following theorem, stated without proof (the proof is
similar to that of Theorem 1 and can be found in Appendix
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Figure 3: WMG of P for Maximin.

B.3), shows that verifying group no-show paradox in Con-
dorcetified positional scoring rules is NP-complete under any
tie-breaking mechanism.
Theorem 3 (Condorcetified positional scoring rules). For
any Condorcetified positional scoring rule Conds⃗ and any tie-
breaking rule, GNSP-Conds⃗ is NP-complete to compute.
Theorem 4 (STV). For any 0 ≤ α ≤ 1, GNSP-STV is NP-
complete to compute, where the tie-breaking mechanism is
LEX, FA, MPSR+LEX or MPSR+FA.
Proof sketch. The hardness proof uses a reduction from
RXC3 and is similar to the hardness proof for the manipu-
lation problem under STV [Bartholdi and Orlin, 1991]. For
any RXC3 instance (X,S), where X = {x1, . . . , xq} and
S = {S1, . . . , Sq}, we construct the following GNSP-STV
instance. The full proof is in Appendix B.4.

Alternatives: there are in total 3q+3 alternatives {w, c}∪
{d0, d1, . . . , dq} ∪ {b1, b̄1, . . . , bq, b̄q}. We assume that bi ≻
b̄i and d1 ≻ d2 ≻ · · · ≻ dq in tie-breaking.

Profile: The profile P (shown in Table 1) consists of the
following votes, where the top preferences are specified and
the remaining alternatives (“others”) are ranked arbitrarily.
Both i and j in the table are in {1, 2, . . . , q}.

Number of votes Votes
P1 12q c ≻ w ≻ others
P2 12q − 1 w ≻ c ≻ others
P3 10q + 2q

3 d0 ≻ w ≻ c ≻ others
P4 12q − 2 for each j dj ≻ w ≻ c ≻ others

P5
6q + 4i− 2 for each i bi ≻ b̄i ≻ w ≻ c ≻ others
2 for each i bi ≻ d0 ≻ w ≻ c ≻ others

P6
6q + 4i− 6 for each i b̄i ≻ bi ≻ w ≻ c ≻ others
2 for each j ∈ Si b̄i ≻ dj ≻ w ≻ c ≻ others

P7 1 for each i b̄i ≻ bi ≻ c ≻ w ≻ others

Table 1: Profile P of STV.

Note that STV(P ) = w. In the first q rounds, the order
of elimination is b1, b2, . . . , bq (whose votes are transferred

to b̄1, . . . , b̄q and d0). At the beginning of round q + 1, dq
is eliminated, whose votes transfer to w. In the remaining
rounds, w is never eliminated and will become the winner.

Suppose the RXC3 is a yes instance (with solution S∗).
Let I = {i ≤ q : Si ∈ S∗}, then agents with corresponding
votes in P7 whose top choices are bi such that i ∈ I have an
incentive to (jointly) abstain from voting. After they abstain
from the voting, in the first q rounds, for each i ≤ q, b̄i is
eliminated if and only if i ∈ I , otherwise bi is eliminated. At
the beginning of round q + 1, the plurality scores of the re-
maining alternatives are as in the following table. Therefore,
as shown in Table 2, w is eliminated in round q + 1, whose
votes transfer to c. Finally, c will be the winner.

Rd. w c bi or b̄i d0 dj

q + 1 12q − 1 12q
12q + 8i− 1 or
12q + 8i− 5

12q 12q

Table 2: STV score at q + 1 round in P − P ∗.

Suppose the GNSP-STV instance is a yes instance. We
prove that the RXC3 instance is also a yes instance in two
steps. First, the new winner must be c. c and w are adjacent
in all votes. Thus, when w is eliminated, all of its votes are
transferred to c, and c is ranked at the top in at least 24q − 1
votes (in P1∪P2). This makes c the new winner. Second, the
absent votes in P7 constitute a solution to the RXC3 instance.
Note that only agents whose votes are in P1 and P7 have in-
centives to abstain. Let I denote the indices i’s of agents who
abstain their votes from P7 whose top-ranked preferences are
b̄i. If S∗ = {Si : i ∈ I} is not a RXC3 solution, dj will be
eliminated in round q + 1 and transfer all its votes to w for
some j not in any Si. Then w will be the winner, which is a
contradiction. So S∗ must be a solution. ✷

4 Algorithms for Verifying GNSP
We first present a general search-based algorithm that works
for any rule as a baseline. Then, we present integer linear pro-
gramming (ILP)-based algorithms for different voting rules.

Search-based algorithm. A brute-force breadth-first-
search can enumerate all possible group abstentions in a
breadth-first manner. In the worst case (when GNSP does
not occur in a profile), the algorithm checks all possible
combinations of group abstentions. From Proposition 1, the
number of all possible group abstention combinations is
bounded by ( n

m! )
m!, which determines the search run-time.

Although the run-time is polynomial-time for a fixed m,
the degree of the polynomial may be very high. Thus, this
algorithms becomes too expensive for large n. We discuss
possible improvements on this algorithm in Appendix C.

ILP formulations. To circumvent the computational inef-
ficiency faced in the search-based approach for large n, we
consider ILP-based algorithms for determining the GNSP-r
problem. ILP is an optimization paradigm that finds inte-
ger solutions for optimizing a specific objective function un-
der linear or discrete constraints. Some of our ILP formula-
tions for different voting rules have conditional constraints,
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or constraints containing products of integer and binary vari-
ables. We refer to Bradley et al.; Conforti et al. [1977;
2014] for exposition to such techniques. We formulate ILPs
for the group no-show paradox problem for four voting rules
– Copeland, Maximin, Black’s rule, and STV. In our formu-
lations, we have both integer and binary variables and our
objective is the size of the smallest group of agents that can
abstain from voting to change the outcome for any profile P .
Below, we describe the ILPs for Copeland and present the
ILP formulations for other voting rules in Appendix C.
Copeland. First, we define the variables for the ILP for-
mulations. Assume, that for profile P and voting rule r,
r(P ) = a. To verify if GNSP occurs for any alterna-
tive b ̸= a, we need to check all agents j with preference
b ≻Vj

a. For any linear order Ri ∈ L(A), assume that
|{j | Vj = Ri}| = ni. That is, ni is the number of agents
with preference Ri. Let Rb≻a = {R | b ≻R a}, the set of
rankings where b is preferred over a. Now, for any linear or-
der Ri ∈ Rb≻a, agents may strategically abstain from voting.
We denote xi as the actual number of agents who vote Ri,
with xi ≤ ni. Thus, x = {xi}Ri∈Rb≻a

are the variables for
the ILPs. We call Px the alternate profile that is created by xi

agents voting for each linear order, Ri ∈ Rb≻a. For a profile
P , the group no-show paradox occurs for voting rule r, when
there is a solution, x such that r(Px) = b for some b ̸= a.
Minimizing the objective function

∑
Ri∈Rb≻a

(ni − xi) gives
the smallest group size with an incentive to abstain.

Any alternative b ̸= a, b will be the Copeland winner after
abstention if b’s Copeland score becomes the highest. For any
pair of alternatives c, d, Px[c ≻ d] in the updated profile Px

can be defined as follows-
Px[c ≻ d] =

∑
Ri∈Rb≻a

xi1c≻d(Ri) +
∑

Ri ̸∈Rb≻a

ni1c≻d(Ri)

Here 1c≻d(Ri) is an indicator function that states whether
c ≻ d in linear order Ri. There can be three scenarios: (1)
Px[c ≻ d] > Px[d ≻ c], (2) Px[c ≻ d] < Px[d ≻ c], (3)
Px[c ≻ d] = Px[d ≻ c]. Let, qcd, rcd be binary variables that
will be true for scenario (1) and (3) respectively. It follows
immediately that qcd + qdc + rcd = 1.

The Copeland score for an alternative c is:

CSPx(c) =
∑
d ̸=c

qcd + α
∑
d ̸=c

rcd

This equation imposes a constraint for the Copeland score
for each alternative. The following constraints on the auxil-
iary variables are also needed for all c and d: qcd = 1 =⇒
Px[c ≻ d] > Px[d ≻ c]; rcd = 1 =⇒ Px[c ≻ d] = Px[d ≻
c]; and qcd + rcd + qdc = 1.

Finally, if b is the new Copeland winner, we get the follow-
ing constraint on the scores

CSPx
(b) ≥ CSPx

(c) ∀c ̸= b

Note that these winner constraints could be sightly different
due to the tie-breaking mechanism used. We enumerate all
possible winners, and check the corresponding ILP (m − 1
alternatives in total) for a solution. We tried an alternative
formulation by using additional auxiliary variables for each
alternative being the winner and use more conditional con-
straints, which performed worse in practice.

Tie-breaking Both the search-based and ILP algorithms
are presented for anonymous voting rules, and in particular
the experiments were done with lexicographic tie-breaking.
However, they are readily adaptable to non-anonymous vot-
ing rules, for example, ones that use fixed agent tie-breaking.
For the search algorithm, it is trivial to keep track of the fixed
agent’s preference. For the ILP formulations, different tie-
breaking methods will result in slightly altered constraints.

Run-time consideration. ILP solving is an NP-complete
problem, and for the ILP formulation we would have a worst-
case run-time that is an exponential of m! (See Appendix
C for a brief discussion). But, powerful software packages
like Gurobi can solve many such problems using heuristic
methods efficiently. The number of primary variables (xi)
for Copeland (and the other voting rules as well) is upper
bounded by the number of unique rankings in a profile, which
in turn is bounded by min(n,m!). So, we expect the run-time
to be dependent on min(n,m!). Additionally, we expect run-
time to increase with m, as there are O(m2) auxiliary vari-
ables. Empirical results on the run-times of the algorithms
are presented in Section 5 and Appendix D.

5 Experiments
In this section, we present results on the performance of the
two algorithms and the likelihood of GNSP in both synthetic
and real-world election data. All experiments were imple-
mented in Python 3 and were run on a Windows laptop with
3.2 GHz AMD Ryzen 7 5800 CPU and 16 GB memory and
the Gurobi solver was used for solving ILPs.

Synthetic datasets. We run a number of experiments on
synthetic ranking data to test the run-time of our various al-
gorithms and calculate the likelihood of GNSP for different
voting rules under different conditions. To create the rank-
ing data, for each sample profile, all agent rankings are i.i.d.
samples from the same distribution. We run experiments on a
number of popular models for ranking, such as Impartial Cul-
ture (IC), single-peaked preferences [Conitzer, 2009], Mal-
lows [Mallows, 1957] and more. For each model, for different
values of n between 10 and 1000 and m ∈ [3, 10], we sam-
ple 1,000 preference profiles and calculate the occurrences of
GNSP and the run-times. For space constraint, we mention
only the IC and Mallows experiments here while describing
the others in Appendix D. Mallows models are parameterized
by ϕ, which mean the dispersion value. Smaller values of
ϕ mean more correlation between the votes whereas higher
values mean more random votes. ϕ = 1 coincides with the
aforementioned IC model. The Mallows model allows us to
check likelihood for different levels of consensus among the
voting agents. We also only present results for Copeland0.5
but briefly mention important points from additional experi-
ments, all of which are detailed in Appendix D.
Likelihood of GNSP. We compute the empirical likelihood
of GNSP by counting the number of sample profiles where
GNSP occurs. Figure 4 shows the likelihood of GNSP under
Copeland0.5. It can be seen that more consensus among the
agents (low ϕ value) leads to a lower likelihood of GNSP.
This behavior is also seen for other voting rules. In particular
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Figure 4: Likelihood of GNSP under Copeland0.5 for m = 4.
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Figure 5: Likelihood of GNSP for Different Voting Rules under IC
distribution for m = 4.

for the IC model, likelihood keeps increasing with n. How-
ever, this is not an effect that is seen for all voting rules or
all models. As a comparison, Plassmann and Tideman [2014]
computed the likelihood of no-show paradox for 3 alterna-
tives under a spatial model and noticed that the likelihood
decreases as the number of agents increases. So, we suspect
the distribution of agent preferences plays an important part.
In general, we have seen that ranking models where there is
more randomness among the agents leads to more likelihood
of GNSP. Another consistent trend is that GNSP likelihood
increases with number of alternatives. One interesting result
was that for single-peaked preferences, only STV shows very
high likelihood of GNSP. Figure 5 shows the likelihood of
GNSP under different voting rules for the IC distribution.
We see that Copeland has the highest likelihood of GNSP,
followed by STV, then Black’s rule, and Maximin has the
lowest likelihood. This observation of Maximin being more
robust to GNSP is seen for all the ranking models that we
have tested. More likelihood results for other voting rules
and other models can be found in Appendix D.
Run-time of algorithms. Figure 6 (left) shows that the run-
time for the ILP-based algorithm does not increase signifi-
cantly with n for small m, while the BFS run-time increases
exponentially in n, and becomes prohibitively high even for
n = 50. Figure 6 (right) shows that the run-time of BFS
does not increase significantly with the number of alterna-
tives, m, when n is small. While the ILP algorithm’s run-
time increases with m for n = 10, it is not that significant.
However, for n = 100, the ILP algorithm still manages to fin-
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Figure 6: Run-time for the BFS and ILP algorithms. Left: Run-time
vs No. of agents for m = 4. Right: Run-time vs No. of agents for
n = 10 and n = 100, The BFS does not finish running for n = 100
and is not reported.

ish running reasonably fast while BFS fails to do so because
of exponential blow-up of run-time. Additional experimen-
tal results (for other rules) are shown in Appendix D. These
results illustrate that the BFS algorithm useful mostly when
the number of agents is very small. On the other hand, the
ILP algorithms are useful as long as the number of unique
rankings is small and the number of alternatives is moderate,
which includes a larger number of scenarios.
Real world data from PrefLib. We use all available elec-
tion data from PrefLib [Mattei and Walsh, 2013] which have
strict order-complete rankings for all agents. In total, there
are 315 such profiles on PrefLib. We can verify the exis-
tence of GNSP in all of this profiles using either the BFS
or ILP algorithm. Out of all 315 observed profiles, only
one profile violates group participation for Copeland, Black’s
rule and STV, and we found no violations for Maximin. For
Copeland, the occurrence was for an election with 30 agents
and 11 candidates, where one voter abstaining causes a tie,
with the tie-breaking result causing the no-show paradox. For
both Black’s rule and STV rule, the occurrence is for voting
profiles with large number of alternatives (32 and 41 respec-
tively) with very few agents (4 for both). So all three sce-
narios are kind of rare in the high number of candidates and
unique preference rankings among the agents. We have in-
cluded the data files for the profiles leading to paradoxes in
the supplementary materials.

6 Discussion and Future Work
We prove that the group no-show paradox is computationally
hard to verify for Copeland, Maximin, STV, and Condorceti-
fied integer positional scoring rules, and provided search and
ILP-based algorithms for computing them. Whether the re-
sults for Copeland, Maximin, and STV hold regardless of
the tie-breaking rules remains an interesting open question.
Studying the complexity and algorithms for other undesirable
events, such as (group) manipulation is a natural direction for
future work. In general, research in this direction helps es-
tablish a data-centric foundation for evaluating and designing
voting rules.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2964



Acknowledgments
We thank the anonymous reviewers for this and previous
versions of this work for all their helpful comments. LX
acknowledges NSF #1453542 and #2007476, an IBM-RPI
AIRC fund, and a Google gift fund for support. The codes for
our implementation of the verification algorithms is provided
in the following repository: https://github.com/farhadmohsin/
AxiomVerification.

Ethics Statement
The group no-show paradox can incentivize agents to abstain
from voting. To make better group decisions, participation of
agents is desirable, and thus the problem that we tackle in this
paper has the broad goal getting better collective decisions.
All experiments ran on real data uses anonymized preference
data so there is no privacy concern for the work.

References
[Bartholdi and Orlin, 1991] John Bartholdi, III and James

Orlin. Single transferable vote resists strategic voting. So-
cial Choice and Welfare, 8(4):341–354, 1991.

[Bartholdi et al., 1992] John J. Bartholdi, Craig A. Tovey,
and Michael A. Trick. How hard is it to control an elec-
tion? Mathematical and Computer Modelling, 16(8):27–
40, 1992.

[Black, 1958] Duncan Black. The Theory of Committees and
Elections. Cambridge University Press, 1958.

[Bradley et al., 1977] Stephen P Bradley, Arnoldo C Hax,
and Thomas L Magnanti. Applied mathematical program-
ming. (No Title), 1977.

[Brandl et al., 2015] Florian Brandl, Felix Brandt, and Jo-
hannes Hofbauer. Incentives for participation and absten-
tion in probabilistic social choice. In Proceedings of the
15th International Conference on Autonomous Agents and
Multiagent Systems, page 1411–1419, 2015.

[Brandl et al., 2017] Florian Brandl, Felix Brandt, and Jo-
hannes Hofbauer. Random assignment with optional par-
ticipation. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, pages 326–334,
2017.

[Brandl et al., 2019] Florian Brandl, Felix Brandt, Christian
Geist, and Johannes Hofbauer. Strategic abstention based
on preference extensions: Positive results and computer-
generated impossibilities. Journal of Artificial Intelligence
Research, 66:1031–1056, 2019.

[Brandt et al., 2017] Felix Brandt, Christian Geist, and Do-
minik Peters. Optimal bounds for the no-show paradox
via sat solving. Mathematical Social Sciences, 90:18–27,
2017.

[Brandt et al., 2021] Felix Brandt, Johannes Hofbauer, and
Martin Strobel. Exploring the no-show paradox for con-
dorcet extensions. In Evaluating Voting Systems with
Probability Models, pages 251–273. Springer, 2021.

[Brandt et al., 2022] Felix Brandt, Marie Matthäus, and
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