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Abstract
As digital marketplaces and services continue to
expand, it is crucial to maintain a safe and fair
environment for all users. This requires imple-
menting fairness constraints into the sequential
decision-making processes of these platforms to
ensure equal treatment. However, this can be chal-
lenging as these processes often need to solve NP-
complete problems with exponentially large deci-
sion spaces at each time step. To overcome this, we
propose a general framework incorporating robust-
ness and fairness into NP-complete problems, such
as optimizing product ranking and maximizing sub-
modular functions. Our framework casts the prob-
lem as a max-min game between a primal player
aiming to maximize the platform’s objective and a
dual player in charge of group fairness constraints.
We show that one can trace the entire Pareto fair-
ness curve by changing the thresholds on the fair-
ness constraints. We provide theoretical guarantees
for our method and empirically evaluate it, demon-
strating its effectiveness.

1 Introduction
Online combinatorial optimization problems, such as opti-
mizing product rankings, assortment planning, or supply-
demand matching for a sequence of arriving input instances,
are prevalent in digital marketplaces. From a pure utilitarian
perspective, an economically justified goal in several of these
applications is to make combinatorial decisions across time
steps that maximize the expected value of a global objective
function representing the market share, i.e., the total/average
user engagement for the entire population. However, these
marketplaces typically have users with heterogeneous pref-
erences based on demographics such as race, gender, and
age [Hitsch et al., 2010]. Given these demographic groups, a
more egalitarian decision maker might want to maximize the
expected average market share while ensuring each group’s
share of this quantity is “large enough” based on some pre-
determined threshold, thus fostering inclusivity and fairness

The full version of our paper, including all proofs, can be ac-
cessed at https://ssrn.com/abstract=4824251

for all minority groups. This practice is not only ethically
important but also beneficial for business, as it attracts new
customers, retains existing ones, and contributes to a healthy
ecosystem by fostering a positive reputation.

While personalization is effective in achieving the above
goal like, say, by displaying a unique assortment of prod-
ucts to each demographic group, the use of sensitive informa-
tion for personalization can be restricted due to legal issues
and privacy concerns that digital marketplaces face, which
in turn affects the effectiveness and scope of personalized
experiences [California Legislative Service, 2020]. Also, in
some contexts, treating seemingly similar individuals differ-
ently can potentially be against the equal-protection doctrine
and perceived as unlawful. This has motivated a concerted
effort to introduce the notion of demographic group fairness
guarantees into optimization problems by various mathemat-
ical semantics. For example, there is a growing literature on
formulating the problem as a group distributional robust op-
timization (DRO) [Ben-Tal et al., 2013; Duchi et al., 2021;
Sagawa et al., 2019; Soma et al., 2022], or incorporating
parity among demographic groups by adding group fairness
constraints [Kleinberg et al., 2018; Chouldechova and Roth,
2018; Chen et al., 2022; Rahmattalabi et al., 2019].

However, most existing approaches are limited to continu-
ous and offline decision-making settings where the decision-
maker can efficiently solve the (unfair) offline optimization
problem. Hence, these approaches do not provide gen-
eral solutions for online combinatorial optimization prob-
lems with discrete and exponential size decision spaces at
each time step, where the decision-maker should learn and
compute through explorations/exploitation. To complicate
things further, the offline version of many of these combi-
natorial optimization problems, e.g., assortment planning un-
der a large class of consumer choice models or maximizing
market-share through sub-modular function maximization,
are NP-Hard [Goyal et al., 2016; Nemhauser et al., 1978;
Asadpour et al., 2022; Niazadeh et al., 2021] and thus any
robust/fair approach must employ existing approximation al-
gorithms for these problems. We bridge this gap in this paper
by providing a general learning and computing framework for
online combinatorial optimization with group fairness con-
straints, where our algorithms can employ (an online learning
variant of) algorithms for the unfair version of the problem in
a black-box oracle fashion. We now describe our problem.
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1.1 Problem Formulation and Examples
Let F be a conic-closed1 function class defined over (an ex-
ponentially large) domain D of actions. At every time step
t ∈ [T ], there are L functions {f i

t ∈ F}i∈[L] such that
f i
t : D → [0, fmax] for all i ∈ [L], where L is the number of

demographic groups and f i
t is the reward function of group i

at time t. Furthermore, let {τ i}i∈[L] be a set of non-negative
fairness thresholds in [0, fmax], and C ⊆ D be a constrained
domain space. A learner, denoted by ALG, is aware of these
fairness thresholds, and at time step t ∈ [T ], ALG picks an
action xt ∈ C. Then,

1. either the L functions {f i
t ∈ F}i∈[L] (in the full-

information setting);

2. or just the rewards {f i
t (xt) ∈ F}i∈[L] (in the bandit-

information setting),

are revealed to the learner ALG, and it receives a reward∑
i∈[L] f

i
t (xt). The action xt is chosen based on the knowl-

edge of all the functions up to time t−1. In contrast, the func-
tions {f i

t}t∈[L] can depend on the knowledge of the previous
functions {f i

k}i∈[L],k∈[t−1] and actions {xk}k∈[t−1], s.t.2,

E[f i
t (x)|Ht, x] = f i(x),

where we define a sequence of filtrations for t ∈ [T + 1] as,

Ht := σ
(
{f i

k}i∈[L],k∈[t−1], {xk}k∈[t−1]

)
.

In general ALG might select a distribution of actions P ∈
∆(C), where ∆(C) is the set of all distributions over C. Then,
the online maximization benchmark with group fairness con-
straints, ONLINE-OPT, which we compete against, is,

max
P∈∆(C)

1

T

∑
t,i

Ext∼P

[
f i
t (xt)|Ht

]
s.t.

1

T

∑
t

Ext∼P

[
f i
t (xt)|Ht

]
≥ τ i, ∀i ∈ [L],

= max
P∈∆(C)

∑
i

Ex∼P

[
f i(x)

]
s.t. Ex∼P

[
f i(x)

]
≥ τ i, ∀i ∈ [L].

(1)

Note that the online optimization problem (1) 3 considers
ex-ante fairness constraints because we only require the ex-
pected value Ex∼P

[
f i(x)

]
to be greater than τ i. When

τi = 0 for all i ∈ [L], we are only concerned about maximiz-
ing the total market share without any fairness considerations,

max
P∈∆(C)

∑
i

Ex∼P

[
f i(x)

]
. (2)

1If f1, f2 ∈ F , then c1f
1 + c2f

2 ∈ F for any c1, c2 ≥ 0.
2This stochastic adversarial/martingale setup is common in re-

inforcement learning [Ribeiro, 2002; Besbes et al., 2014; Jafarnia-
Jahromi et al., 2021]. The i.i.d. setting where for all i ∈ [L] the
function f i

t for group i is picked independently and identically from
distribution Di ∈ ∆(F) which is fixed in advance, is a special case.

3As is usual in optimization literature, we will refer to the opti-
mization problem and its optimal value interchangeably.

On the other hand, is the following “robust” problem,

max
P∈∆(C)

min
i∈[L]

Ex∼P

[
f i(x)

]
, (3)

which is known as the group-DRO problem and has been
studied extensively [Ben-Tal et al., 2013; Duchi et al., 2021;
Sagawa et al., 2019] in machine learning literature. Sup-
pose we have access to the value τ⋆ of the robust prob-
lem (3). In that case, we can recover group-DRO by solv-
ing problem (1) with fairness constraints τi = τ⋆ for all
i ∈ [L]. More generally, problem (1) interpolates between
the utilitarian objective when τi = 0 for all i ∈ [L] as
we are only concerned about maximizing the total market
share and the egalitarian objective when τi = τ⋆ for all
i ∈ [L], where we are maximizing the market share of
the worst group. Notably, there are many ways to inter-
polate between these objectives. With a symmetric thresh-
old τ i = τ that varies in the interval [0, τ⋆], this approach
recovers the Pareto frontier of fairness-efficiency, which is
a canonical object of study at the intersection of fairness
and decision making, for e.g., see [Bertsimas et al., 2011;
Bertsimas et al., 2012]. Using constraints to trace the utility-
fairness curve is related to scalarization and ϵ-constraint ap-
proaches [Miettinen, 1999] in vector optimization.

Remark 1 (Offline Problem). A very special case of our
problem is the following offline problem (see the full version
of our paper for more discussion):

max
P∈∆(C)

1

L

∑
i∈[L]

Ex∼P

[
f i(x)

]
s.t. Ex∼P

[
f i(x)

]
≥ τ i, ∀i ∈ [L].

(4)

Compared to the online problem (1), the functions {f i}i∈[L]

are known in advance for the offline problem. We will refer to
the optimal value of problem (4) by OFFLINE-OPT.

Running Examples. We will consider two running exam-
ples to illustrate the generality of our framework.

Example 1 (Online Shortest Path Problem). Consider
routing traffic through a city in real-time using a navigation
service. Different neighborhoods (some of which might be
marginalized) would be affected differently [Park and Kwan,
2020] due to factors such as exposure to air pollution, traf-
fic congestion, road accidents, economic opportunities, etc.
This problem can be reduced to an “online shortest path”
problem—one of the core combinatorial prediction problems
in online learning. Consider a graph G = (V,E), with ver-
tices V connected by a set of directed edges E ⊆ V 2. Let
u ∈ V and v ∈ V be the source and sink vertex, respectively.
Let C be the set of all cycle-free paths from u to v, where each
edge only appears once. Note that C is potentially exponen-
tial in |E|. At time t ∈ [T ], for i ∈ [L], f i

t : E → [0, 1],
and f i

t (e) measures the reward for picking an edge e ∈ E
for group i. Then, for a given path xt ∈ C, the total reward
for group i is measured as f i

t (xt) =
∑

e∈xt
f i
t (e) which is a

noisy measurement of the mean reward f i(xt). This repeats
each day, and at the end of the day t the reward functions are
revealed for all the edges, {f i

t (e) : e ∈ E, i ∈ [L]}.
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Example 2 (Online Sub-modular Maximization). The no-
tion of sub-modularity is commonly used to describe the
diminishing return property in discrete and continuous do-
mains. Many optimization problems that arise in the real
world such as viral marketing in a social network [Kempe
et al., 2003], ranking an assortment of products [Asadpour et
al., 2022], welfare maximization [Dobzinski and Schapira,
2006] and speeding up satisfiability solvers [Streeter and
Golovin, 2008] can be expressed as maximizing a sub-
modular function under constraints. In our setting, as-
sume that f i

t : C → [0, 1] is a set function defined on
some constrained set of sets C ⊆ 2[n], such that, for all
S, T ∈ [n], f i

t (S ∪ T ) + f i
t (S ∩ T ) ≤ f i

t (S) + f i
t (T ),

i.e., f i
t is sub-modular. A common set constraint is the car-

dinality constraint which only allows sets of size at most
k ≤ n. It is well-known that sub-modular function maximiza-
tion (SMM) with cardinality constraints is an NP-hard prob-
lem that admits the classic

(
1− 1

e

)
-approximation greedy

algorithm [Nemhauser et al., 1978]. Many applications of
SMM have fairness considerations in the presence of multiple
groups. For instance, recommendations on a digital market-
place should not be unreasonably worse for any gender.

Our proposed framework in this paper can accommodate
NP-hard problems such as sub-modular function maximiza-
tion. Naturally, we can only hope to attain the value ONLINE-
OPT of problem (1) up to a multiplicative factor γ ∈ (0, 1).
We will choose γ as the best approximation factor for the
offline version of the problem of maximizing the individual
function for each group. Thus it will arise from the inher-
ent hardness of the problem. For instance, for SMM with
cardinality constraints, we will pick γ =

(
1− 1

e

)
. Fur-

thermore, since the optimization problem (1) is equivalent
to solving a series of feasibility problems, we can only sat-
isfy the fairness constraints up to this multiplicative factor γ.
In particular, in section 3, we propose Algorithm 1 to mini-
mize the following approximate regret metric often used in
the literature [Niazadeh et al., 2021; Kakade et al., 2007;
Dudik et al., 2020],

γ · ONLINE-OPT − 1

T

∑
i∈[L],t∈[T ]

Ext,fi
t

[
f i
t (xt)|Ht

]
, (5)

while also γ-approximately satisfying the fairness constraints
for all i ∈ [L],

γ · τi ≈
1

T

∑
t∈[T ]

Ext,fi
t

[
f i
t (xt)|Ht

]
. (6)

We will refer to the regret in (5) as γ-average regret.

1.2 Our Contributions
The contributions of our paper are as follows,

• We provide a general framework to incorporate group
fairness constraints to any online combinatorial opti-
mization problem that we know how to solve with a sin-
gle group. Our approach is easy to implement and ac-
commodates both full and bandit information feedback.

• We provide theoretical guarantees for both the regret and
fairness of our approach (see algorithm 1) with black-
box access to an online optimization oracle (see defi-
nition 1) for the combinatorial problem with a single
group. In particular, we show vanishing γ-average re-
gret while being approximately fair (violating the fair-
ness constraint by, at most, some small error δ > 0)
for large T . Thus, we extend prior work on primal-dual
algorithms for online optimization [Shalev-Shwartz and
Singer, 2007] to our setting with group fairness.

• We present an empirical evaluation of our algorithm us-
ing parameters derived from the widely used Movie-
Lens ratings dataset [Harper and Konstan, 2015]. Our
results demonstrate that our online algorithm achieves
sub-linear regret when comparing it to the approximate
optimal benchmark. Additionally, we investigate the ef-
fects of fairness constraints on the total expected mar-
ket share, providing insights into the trade-offs between
group fairness and assortment optimization.

2 Related Work
Recently, machine learning algorithms have increasingly en-
tered various fields, sparking a growing interest in algorith-
mic fairness in optimization, including combinatorial opti-
mization. Researchers have studied a wide range of problems
such as matching [Chierichetti et al., 2019], bandit optimiza-
tion [Liu et al., 2022; Joseph et al., 2016], resource alloca-
tion [Bertsimas et al., 2012; Manshadi et al., 2021], assort-
ment planning [Singh and Joachims, 2018; Biega et al., 2018;
Chen et al., 2022], and reserve pricing in search ad mar-
kets [Deng et al., 2022]. Algorithmic fairness generally falls
into three categories: 1) individual fairness, where algorithms
make comparable predictions for similar individuals [Dwork
et al., 2012; Loi et al., 2019; Chen et al., 2022], 2) group fair-
ness, which ensures equal treatment of distinct groups, often
in resource use or performance in combinatorial optimization
[Singh and Joachims, 2018; Balseiro et al., 2021], and 3) sub-
group fairness, which combines elements of both [Kearns et
al., 2018; Kearns et al., 2019].

For fairness in assortment planning, previous research
mainly targets individual fairness for sellers on online plat-
forms. [Chen et al., 2022] use pairwise fairness to ensure
that items of similar quality get similar visibility. They solve
their constrained assortment optimization problem by fram-
ing it as a linear program and using the Ellipsoid method to
find a nearly optimal solution. Fairness in ranking represents
another related field. Essentially, assortment planning acts as
a specialized case of ranking: items in the top K positions get
full visibility, while the rest remain invisible. [Garcia-Soriano
and Bonchi, 2021] work on minimizing individual unfairness
and imposing group fairness constraints in offline ranking.
They propose a polynomial-time algorithm to solve the prob-
lem. [Celis et al., 2018] focus on group fairness across demo-
graphics, formulate their problem as a linear program, prove
its computational hardness, and introduce an LP-based ap-
proximation algorithm with theoretical guarantees. However,
they do not explore online scenarios.

Our paper differs from previous literature in several ways.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

396



We focus on group fairness in general combinatorial opti-
mization problems, unlike most previous works that center on
individual fairness for specific problems. We also tackle opti-
mization problems that might be unsolvable as a whole, such
as NP-hard problems, and that do not have objectives that are
linear in actions. This approach enables us to address vari-
ous problems relevant to online platforms, from sub-modular
function maximization to assortment planning. Our offline
results most closely relate to concurrent work by [Tang and
Yuan, 2023], who employ the Ellipsoid method to solve of-
fline combinatorial optimization problems with fairness con-
straints. However, our work has two main advantages. First,
we use a simple primal-dual framework that is easy to im-
plement, unlike the numerically unstable and more complex
Ellipsoid method. Second, we can extend our framework eas-
ily to online settings that are more pertinent to online markets
where decision-making usually occurs sequentially.

3 Our Algorithm and Theoretical Guarantees
In this section, we present our algorithm 1 and provide its

theoretical guarantees. Recall that we focus on functions that
are difficult to optimize, where even the individual problems
maxx∈C f

i
t (x) for each i ∈ [L], t ∈ [T ] are NP-hard. To solve

the online variants of such problems with group fairness con-
straints, we need access to the online algorithm used to solve
the problem with a single group. In particular, we assume the
existence of the following no-regret online oracle Z .

Definition 1 (γ-no-regret Online Oracle). A γ-no-regret on-
line oracle, denoted as Z , is an algorithm that produces a
sequence of probability distributions {Pt ∈ ∆(C)}t∈[T ] such
that the following γ-average regret is diminishing over time,

max
x∈C

γ

T

∑
t∈[T ]

ft(x)−
1

T

∑
t∈[T ]

Ext∼Pt [ft(xt)] =
o(T )

T
. (7)

In the full-information setting, at time t, the oracle
knows its past actions x1, . . . , xt−1 and the past func-
tions f1, . . . , ft−1 ∈ F , while in the bandit setting, it is
only aware of its past actions and the past function values
f1(x1), . . . , ft−1(xt−1).

We can obtain a γ-no-regret online oracle for several com-
binatorial problems, including our two running examples.

Remark 2 (Oracle for Online Shortest Path Problem). Online
shortest path problem can be solved exactly, with γ = 1 to get
an O

(
1/
√
T
)

averaged regret. One standard approach (see
[Dekel, 2012] for details) first obtains a convex relaxation of
the problem at each time-step to select an action yt from the
convex hull of all the paths in C. This reduces the problem into
an online linear optimization problem with full-information
feedback, which can be optimized with an algorithm such as
projected online gradient descent to get O(

√
T ) regret. This

is followed by a randomization procedure that samples a path
xt at each time step using yt.

Remark 3 (Oracle for Online Sub-modular Maximization).
There are several online approximation oracles known for
different variants of SMM. [Niazadeh et al., 2021] provide

Algorithm 1 Robust Online Algorithm
Input: A γ-no-regret online approximation oracleZ with ac-
tion space ∆(C) (such as Blackwell algorithms in [Niazadeh
et al., 2021]), a no-regret online linear optimization algorithm
A with action space [0, L/δ]L (such as projected online gra-
dient descent with optimal step sizes), the fairness violation
threshold δ, and the total period T .
Output: An (random) action for each period.

1: Initialize α1 ← (L/δ, L/δ, . . . , L/δ).
2: for t = 1, . . . , T do
3: Max player calls the oracle Z to get Pt ∈ ∆(C).
4: Max player plays xt ∼ Pt.
5: Max player receives one of the following feedbacks:

Full-information: functions {f i
t}i∈[L].

Bandit: function values {f i
t (xt)}i∈[L].

6: The min player gets a loss vector

ℓt ←


f1
t (xt)− γτ1

...
f i
t (xt)− γτ i

...
fL
t (xt)− γτL


.

7: The min player updates αt+1 ← A (αt, {ℓk}1≤k≤t).
8: The oracle Z receives one of the following feedbacks:

Full-information: function

gt :=
∑
i∈[L]

(1 + αi
t)f

i
t .

Bandit: function value

gt(xt) = (1 + αi
t)f

i
t (xt).

9: end for

one instance of such an algorithm that achieves O(1/
√
T )

γ-average regret in the full-information and O(1/T 1/3) γ-
average regret in the bandit-information setting for various
classes of sub-modular functions, including monotone sub-
modular functions with cardinality constraints (γ = 1− 1/e)
and non-monotone discrete sub-modular functions (γ =
1/2). Other works have also presented no-regret oracles
for specific sub-modular problems. [Streeter and Golovin,
2008] proposed an oracle that achieves O(1/

√
T ) (1−1/e)-

average regret for monotone sub-modular functions with car-
dinality constraints, based on the randomized weighted ma-
jority algorithm, [Chen et al., 2018] introduced a Frank-
Wolfe based online oracle that achieves O(1/

√
T ) (1−1/e)-

average regret for monotone continuous sub-modular maxi-
mization in the downward closed convex set, and [Roughgar-
den and Wang, 2018] presented a potential function based
oracle for non-monotone set sub-modular maximization. For
a survey, see the paper by [Niazadeh et al., 2021].
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We will also need an online linear optimization oracle.
Definition 2 (No-regret OLO Oracle). Let X ,L ⊂ Rd be
two compact spaces. Assume at each time step j ∈ [N ] we
see an arbitrary loss function lj ∈ L ⊂ Rd, and an algorithm
A : (X × L)⋆ → X outputs an action xj ∈ X based on
the history at time j. Then A is a no-regret online linear
optimization (OLO) if it has a zero average regret RA(N) in
the limit N →∞, where

RA(N) :=
1

N

∑
j∈[N ]

⟨ℓj , xj⟩ − inf
x∈X

1

N

∑
j∈[N ]

⟨ℓj , x⟩ . (8)

Remark 4. A few examples of no-regret online linear op-
timization oracles are projected Online Gradient Descent
(OGD) [Zinkevich, 2003], Follow the Regularized Leader
(FTRL), and Follow the Perturbed Leader (FTPL) [Kalai and
Vempala, 2005] algorithms. For a survey of these algorithms
and their relative comparisons, see [Hazan, 2016].

Our complete online algorithm using the above two ora-
cles is presented in Algorithm 1. Our algorithm is primal-
dual-based and simulates the problem as an online max-min
game: the min playerA runs a no-regret online minimization
algorithm, and the max player Z runs an approximate on-
line algorithm on a conic combination of the functions at any
given time t ∈ [T ]. For the min player, who is ignorant of the
combinatorial structure of the problem, there is no difference
between full and bandit information feedback because it only
requires the values of functions for each group at each round
and each group’s fairness threshold. Algorithm 1 satisfies the
bounds in the following Theorem (c.f. full paper for proof).
Theorem 1. Suppose that the online maximization
problem with ex-ante fairness constraints, defined by
({f i

t}i∈[L],t∈[T ], {τi}i∈[L]) as shown in Equation 1 is feasi-
ble. Let δ > 0 be some fairness violation threshold, and let
γ be the approximation constant. Suppose that we have a
γ-no-regret online approximation oracle Z with a γ-average
regret of RZ(·) and an OLO algorithm A with an average
regret of RA(·). Then, Algorithm 1 outputs a (random)
sequence of actions {xt}t∈[T ] that satisfies the following:

• For each i ∈ [L],
1

T

∑
t∈[T ]

Ext∼Pt,fi
t

[
f i(xt)|Ht

]
≥ γ · τ i − δfmax −

δ

L
RA(T )− δ

L
·RZ(T ),

meaning that the sequence is γ-approximately fair, and
the violation converges to δfmax as T →∞.

• The total reward function evaluated on the sequence is
a γ-approximation to the optimal value in hindsight, γ ·
ONLINE-OPT, with the following regret
γ

T
· ONLINE-OPT− 1

T

∑
i∈[L],t∈[T ]

Ext∼Pt,fi
t

[
f i(xt)|Ht

]
≤ RA(T ) +RZ(T ).

Here, the functions {f i
t}i∈[L],t∈[T ] ∈ F sat-

isfy Efi
t
[f i

t (·)|Ht] = f i(·) where Ht =

σ
(
{f i

k}i∈[L],k∈[t−1], {xk}k∈[t−1]

)
.

Proof sketch. We rely on the expected average Lagrangian
dual quantity, defined as

1

T

∑
i∈[L],t∈[T ]

(
(1 + αi

t)Ext∼Pt,fi
t

[
f i
t (xt)|Ht

]
− γαi

tτ
i
)
,

to establish an upper bound on γ · ONLINE-OPT
and a lower bound on the algorithm’s total reward,∑

i∈[L],t∈[T ] Ext∼Pt,fi
t

[
f i
t (xt)|Ht

]
. Specifically, we first

upper-bound the expected average Lagrangian dual quantity
by taking the minimum overall expected average Lagrangian
duals evaluated at {xt}t∈[T ], where the minimum is taken
over α ∈ [0, L/δ]L, along with using the definition of the
no-regret OLO oracleA. This step gives the following bound,

1

T

∑
i∈[L],t∈[T ]

(
(1 + αi

t)Ext∼Pt,fi
t

[
f i
t (xt)|Ht

]
− γαi

tτ
i
)
≤

inf
α∈[0,L/δ]L

1

T

∑
i∈[L]

∑
t∈[T ]

(
(1 + αi)Ext∼Pt

[
f i(xt)

]
− γαiτ i

)
+RA(T ). (9)

Next, we establish a lower bound on the expected average
dual by leveraging the γ-approximation of ONLINE-OPT by
Z and the definition of the functions gt.

1

T

∑
i∈[L],t∈[T ]

(
(1 + αi

t)Ext∼Pt,fi
t

[
f i
t (xt)|Ht

]
− γαi

tτ
i
)

≥ γ · ONLINE-OPT −RZ(T ) (10)

Combining the upper bound (9) and the lower bound (10),
followed by some algebraic manipulations, directly gives the
fairness bound. Additionally, using the realization that the
first quantity on the right of (9), i.e., the minimum overall
expected average Lagrangian duals evaluated on {xt}t∈[T ] is
upper bounded by the algorithm’s average reward finishes the
proof for the γ-averaged regret bound.

From the statement of Theorem 1, it might seem like δ can
be set to 0 to avoid the slack in the fairness constraint com-
pletely. However, there is a hiding delta in RA(T ) because
the action space of the oracle A is restricted to [0, L/δ]L

in Algorithm 1. For instance, if we pick A to be the pro-
jected online gradient descent algorithm, then with optimal
step size, RA(T ) = O

(
fmaxL

2

δ
√
T

)
(c.f., [Hazan, 2016] and the

discussion in our full version). This implies that decreasing δ
improves the slackness in the fairness constraint but worsens
the upper bound for γ-averaged regret. FixingA as projected
online gradient descent with optimal step sizes (c.f., discus-
sion in our full version), we recover the final guarantees for
our two running examples.

Remark 5 (Online Shortest Paths). For our first running ex-
ample using Z as the oracle described in remark 2, the above
theorem implies an average regret guarantee ofO(1/

√
T ) as

both RA(T ) and RZ(T ) are O(1/
√
T ).

Remark 6 (Sub-modular Maximization). For our sec-
ond running example by picking Z as the Blackwell
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Figure 1: Cumulative (1− 1/e)-regret over time of Algorithm 1 for
various fairness thresholds µ (same as τ in the main text).

approachability-based algorithm by [Niazadeh et al., 2021],
we can get RZ(T ) = O(1/

√
T ), implying an overall γ aver-

aged regret of O(1/
√
T ) (γ factor depends on the additional

structure in SMM) in the full-information setting. Similarly,
in the bandit information setting the algorithm by [Niazadeh
et al., 2021] implies RZ(T ) = O(1/T 1/3), implying an over-
all regret of O(1/T 1/3).

4 Experiments
In this section, we present a case study using the MovieLens
1M dataset due to [Harper and Konstan, 2015] to evaluate
the effectiveness of our offline (c.f., our full version for more
details) and online algorithms for movie recommendation.
Specifically, we simulate a movie recommendation platform
that aims to offer an assortment of movies tailored to users’
diverse preferences. We partition the users into demographic
groups based on gender and seek to maximize the overall
market share while ensuring that the market share of each
group meets a predetermined threshold to satisfy the group
fairness constraint. Here, the market share of an assortment
for a group represents the probability that a user in the respec-
tive group selects at least one movie from the assortment. Our
experiments demonstrate that our online algorithm produces
a sequence of sets with diminishing γ regret while meeting
the fairness constraint. Furthermore, we examine the impact
of various thresholds on the algorithm’s performance.

Diminishing regret of the online algorithm. Figure 1 dis-
plays the cumulative regret of Algorithm 1 over time. To
compute the regret of our algorithms, we use (1 − 1/e) of
the optimal market share as the regret benchmark, where
(1− 1/e) is the γ factor for the offline greedy algorithm. The
optimal market share is the highest possible among all assort-
ments of size 5, assuming that we know all the parameters
(weights and probability of each mixture) beforehand, which
we obtain by enumerating all possible assortments. In the
experiment, we consider three sets of thresholds for the av-
erage market share for each group: (0.5, 0.5), (0.6, 0.6), and

(0.7, 0.7), where all of these thresholds are feasible. We set
the maximum allowed violation δ to be 0.01. For each thresh-
old, we take the average performance over 50 runs. The re-
sults in Figure 1 show that the cumulative regrets are negative
for all thresholds. The cumulative regret is also smaller (bet-
ter) for a bigger feasible threshold. This may be because our
online algorithm learns faster by updating the dual variables
more aggressively when the threshold is bigger.

Demographic Groups. For the demographic groups, we
first divide the users into two groups based on gender and fur-
ther divide each group into three subgroups based on age (1-
24, 25-44, 45+), which we use when constructing the market
share function. To ensure diverse preferences for each group,
we select the top 20 movies with the largest absolute differ-
ence in average ratings between the two groups, which also
have been rated by at least 1000 users. We use a mixed multi-
nomial logit (MMNL) as our choice model for each group,
where the mixture comes from the different age groups. We
set the probability of each mixture as the empirical probabil-
ity of each age group within the specific gender in the user
data. Moreover, we set the weight for each movie propor-
tional to users’ average rating of the corresponding movie in
the particular subgroup (based on gender and age). We pro-
vide an example in the full version of our paper and highlight
that our market share function is monotone submodular, and
the class of monotone submodular functions is conic-closed.

In the offline setting, each group’s mixture probability and
market share parameters are known beforehand. However,
the decision time (choosing the set) does not know these pa-
rameters in the online setting. To introduce stochasticity into
the market share function in the online setting, we make the
probability of the mixtures of each group stochastic. This is
achieved by drawing the probabilities from a Dirichlet distri-
bution, parameterized by the means obtained from the offline
setting. Specifically, for group i at time t, the probability
of each mixture is sampled from a Dirichlet distribution with
mean (pi,1, pi,2, pi,3) obtained from the offline setting. More-
over, we set the number of periods to be T = 10, 000 and the
allowed violation to be δ = 0.01 for both settings. The al-
lowed violation controls the maximum violation allowed to
satisfy the group fairness.

Implementation. For our offline algorithm, we use pro-
jected OGD as our online linear optimization method (c.f.,
discussion in our full version). We then use the greedy algo-
rithm for maximizing monotone submodular functions with
a cardinality constraint, as proposed by [Nemhauser et al.,
1978], as the (1 − 1/e)-approximate oracle. Meanwhile, we
also use projected OGD as our OLO for the online algorithm.
Additionally, we apply the framework proposed by [Niazadeh
et al., 2021] for the offline greedy algorithm. We use the Mul-
tiplicative Weight/Hedge algorithm to update the weights of
each item for each position in the assortment with a learning
rate of ϵt =

√
1/t. The Hedge algorithm is a no-regret adver-

sarial learning algorithm that keeps weight over the different
arms at each time step and updates those weights based on
the observed feedback. In our problem, subproblem i cor-
responds to determining the item for the ith position in the
assortment. (See [Niazadeh et al., 2021] for more details.)
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Figure 2: The effect of fairness constraints on market share. Under different levels of fairness thresholds, we show a) the expected/average
market share obtained by our offline and online algorithms (the shaded pink region shows the infeasible space), b) the expected/average total
violation of the fairness constraints obtained by our algorithms (the dashed red line is our fairness violation threshold δ = 0.01), c) the
expected/average market share for each group obtained by our offline algorithm, and d) the expected/average market share for each group
obtained by our online algorithm.

The effect of fairness threshold. The results in Figure 2
provide insights into the effect of varying the fairness thresh-
old on the performance of the offline and online algorithms.
The presented values are the averages of 50 runs. In the of-
fline setting, the total expected market share remains sim-
ilar (almost constant) when the thresholds are feasible, as
depicted in Figure 2a (green line). However, as the thresh-
old approaches the boundaries of feasibility (in the range of
[0.74, 0.76]), the performance decreases since the algorithm
has to adjust the assortment to increase the market share of
one group (female users in this case), while in turn decreas-
ing the market share of the other group (male users), as seen
in Figure 2c. Moreover, when the threshold becomes infeasi-
ble, the algorithm no longer tries to balance the two groups,
resulting in a higher total expected market share. This is ex-
pected, as we do not have any fairness guarantees when the
optimization problem is infeasible. Additionally, we limit the
domain of the dual variable α, causing the algorithm to no
longer balance the two groups.

In contrast, in the online setting, the total average mar-
ket share increases as the threshold increases (averaged over
T = 10, 000 rounds), as indicated by the blue line in Fig-
ure 2a. This may be because when the thresholds are higher,
the online algorithm updates the dual variable faster, thus
converging to the optimal solution more quickly. However,
as the threshold approaches the boundaries of feasibility (in
[0.74, 0.76]), the performance decreases and fluctuates. The
algorithm adjusts the market shares of both groups to either
satisfy or violate the fairness constraints by at most δ = 0.01.

Notably, in the boundary region, the average market share of
females increases, while the market share of males decreases
while still satisfying the constraint. When the threshold be-
comes infeasible, the algorithm maximizes the total average
market share with no fairness guarantee.

5 Discussion
This paper provides a general framework for incorporating
fairness constraints into online combinatorial problems, as
our methods use approximation algorithms for the base prob-
lem and OLO algorithms as black boxes. Our framework is
easy to state and implement, making it especially relevant for
applications in online markets. There are two important fu-
ture directions for our work. In the online setting, we con-
sider a stochastic adversary, and the stronger adaptive adver-
sary, which can provide arbitrary functions at each time step,
is much more challenging and probably requires new tech-
niques. Note that there is a slack variable in our fairness
guarantees, appearing from technical requirements for online
gradient descent. We believe this is avoidable in some set-
tings (where a barrier function can be constructed) using an
interior point method to solve our lagrangian max-min game.

Acknowledgements
R.N. was supported by the Asness junior faculty fellowship
at Chicago Booth. F.S. and N.G. were supported by an award
from the Office of Naval Research (ONR) (Award Num-
ber: N00014-23-1-2584). K.K.P. was supported through the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

400



NSF TRIPOD Institute on Data, Economics, Algorithms and
Learning (IDEAL) and other awards from DARPA and NSF.

Contribution Statement
Author names appear alphabetically, and all authors con-
tributed equally to this submission.

References
[Asadpour et al., 2022] Arash Asadpour, Rad Niazadeh,

Amin Saberi, and Ali Shameli. Sequential submodular
maximization and applications to ranking an assortment
of products. Operations Research, 2022.

[Balseiro et al., 2021] Santiago Balseiro, Haihao Lu, and Va-
hab Mirrokni. Regularized online allocation problems:
Fairness and beyond. In International Conference on Ma-
chine Learning, pages 630–639. PMLR, 2021.

[Ben-Tal et al., 2013] Aharon Ben-Tal, Dick Den Hertog,
Anja De Waegenaere, Bertrand Melenberg, and Gijs Ren-
nen. Robust solutions of optimization problems af-
fected by uncertain probabilities. Management Science,
59(2):341–357, 2013.

[Bertsimas et al., 2011] Dimitris Bertsimas, Vivek F. Farias,
and Nikolaos Trichakis. The price of fairness. Operations
research, 59(1):17–31, 2011.

[Bertsimas et al., 2012] Dimitris Bertsimas, Vivek F. Farias,
and Nikolaos Trichakis. On the efficiency-fairness trade-
off. Management Science, 58(12):2234–2250, 2012.

[Besbes et al., 2014] Omar Besbes, Yonatan Gur, and Assaf
Zeevi. Stochastic multi-armed-bandit problem with non-
stationary rewards. Advances in neural information pro-
cessing systems, 27, 2014.

[Biega et al., 2018] Asia J. Biega, Krishna P. Gummadi, and
Gerhard Weikum. Equity of attention: Amortizing indi-
vidual fairness in rankings. In The 41st international acm
sigir conference on research & development in informa-
tion retrieval, pages 405–414, 2018.

[California Legislative Service, 2020] California Legislative
Service. The california privacy rights act of 2020, 2020.
Available at: https://cppa.ca.gov/regulations/.

[Celis et al., 2018] Elisa L. Celis, Damian Straszak, and
Nisheeth K. Vishnoi. Ranking with fairness constraints. In
45th International Colloquium on Automata, Languages,
and Programming (ICALP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[Chen et al., 2018] Lin Chen, Hamed Hassani, and Amin
Karbasi. Online continuous submodular maximization.
In International Conference on Artificial Intelligence and
Statistics, pages 1896–1905. PMLR, 2018.

[Chen et al., 2022] Qinyi Chen, Negin Golrezaei, Fransisca
Susan, and Edy Baskoro. Fair assortment planning. arXiv
preprint arXiv:2208.07341, 2022.

[Chierichetti et al., 2019] Flavio Chierichetti, Ravi Kumar,
Silvio Lattanzi, and Sergei Vassilvtiskii. Matroids, match-
ings, and fairness. In The 22nd International Conference

on Artificial Intelligence and Statistics, pages 2212–2220.
PMLR, 2019.

[Chouldechova and Roth, 2018] Alexandra Chouldechova
and Aaron Roth. The frontiers of fairness in machine
learning. arXiv preprint arXiv:1810.08810, 2018.

[Dekel, 2012] Ofer Dekel. Combinatorial optimization. Lec-
ture Notes, 2012. [Online; accessed 2024-01-17]. Avail-
able: https://courses.cs.washington.edu/courses/cse599s/
12sp/scribes/lecture16.pdf.

[Deng et al., 2022] Yuan Deng, Negin Golrezaei, Patrick
Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni.
Fairness in the autobidding world with machine-learned
advice. arXiv preprint arXiv:2209.04748, 2022.

[Dobzinski and Schapira, 2006] Shahar Dobzinski and
Michael Schapira. An improved approximation algorithm
for combinatorial auctions with submodular bidders.
In Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 1064–1073,
2006.

[Duchi et al., 2021] John C. Duchi, Peter W. Glynn, and
Hongseok Namkoong. Statistics of robust optimization:
A generalized empirical likelihood approach. Mathemat-
ics of Operations Research, 46(3):946–969, 2021.

[Dudik et al., 2020] Miroslav Dudik, Nika Haghtalab,
Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis,
and Jennifer Wortman Vaughan. Oracle-efficient online
learning and auction design. Journal of the ACM (JACM),
67(5):1–57, 2020.

[Dwork et al., 2012] Cynthia Dwork, Moritz Hardt, Toniann
Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations
in theoretical computer science conference, pages 214–
226, 2012.

[Garcia-Soriano and Bonchi, 2021] David Garcia-Soriano
and Francesco Bonchi. Maxmin-fair ranking: individual
fairness under group-fairness constraints. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 436–446, 2021.

[Goyal et al., 2016] Vineet Goyal, Retsef Levi, and Danny
Segev. Near-optimal algorithms for the assortment plan-
ning problem under dynamic substitution and stochastic
demand. Operations Research, 64(1):219–235, 2016.

[Harper and Konstan, 2015] Maxwell Harper and Joseph
Konstan. The movielens datasets: History and context.
Acm transactions on interactive intelligent systems (tiis),
5(4):1–19, 2015.

[Hazan, 2016] Elad Hazan. Introduction to online convex
optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

[Hitsch et al., 2010] Gunter J. Hitsch, Ali Hortacsu, and Dan
Ariely. What makes you click?—mate preferences in
online dating. Quantitative marketing and Economics,
8:393–427, 2010.

[Jafarnia-Jahromi et al., 2021] Mehdi Jafarnia-Jahromi,
Liyu Chen, Rahul Jain, and Haipeng Luo. Online learning

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

401

https://cppa.ca.gov/regulations/
https://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture16.pdf
https://courses.cs.washington.edu/courses/cse599s/12sp/scribes/lecture16.pdf


for stochastic shortest path model via posterior sampling.
arXiv preprint arXiv:2106.05335, 2021.

[Joseph et al., 2016] Matthew Joseph, Michael Kearns,
Jamie H. Morgenstern, and Aaron Roth. Fairness in
learning: Classic and contextual bandits. Advances in
neural information processing systems, 29, 2016.

[Kakade et al., 2007] Sham M. Kakade, Adam Tauman
Kalai, and Katrina Ligett. Playing games with approxima-
tion algorithms. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 546–555,
2007.

[Kalai and Vempala, 2005] Adam Kalai and Santosh Vem-
pala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307,
2005.

[Kearns et al., 2018] Michael Kearns, Seth Neel, Aaron
Roth, and Zhiwei Steven Wu. Preventing fairness gerry-
mandering: Auditing and learning for subgroup fairness.
In International conference on machine learning, pages
2564–2572. PMLR, 2018.

[Kearns et al., 2019] Michael Kearns, Seth Neel, Aaron
Roth, and Zhiwei Steven Wu. An empirical study of rich
subgroup fairness for machine learning. In Proceedings
of the conference on fairness, accountability, and trans-
parency, pages 100–109, 2019.

[Kempe et al., 2003] David Kempe, Jon Kleinberg, and Éva
Tardos. Maximizing the spread of influence through a so-
cial network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 137–146, 2003.

[Kleinberg et al., 2018] Jon Kleinberg, Jens Ludwig, Send-
hil Mullainathan, and Ashesh Rambachan. Algorithmic
fairness. In Aea papers and proceedings, volume 108,
pages 22–27, 2018.

[Liu et al., 2022] Qingsong Liu, Weihang Xu, Siwei Wang,
and Zhixuan Fang. Combinatorial bandits with linear con-
straints: Beyond knapsacks and fairness. Advances in Neu-
ral Information Processing Systems, 35:2997–3010, 2022.

[Loi et al., 2019] Michele Loi, Anders Herlitz, and Hoda
Heidari. A philosophical theory of fairness for prediction-
based decisions. Available at SSRN 3450300, 2019.

[Manshadi et al., 2021] Vahideh Manshadi, Rad Niazadeh,
and Scott Rodilitz. Fair dynamic rationing. In Proceedings
of the 22nd ACM Conference on Economics and Compu-
tation, pages 694–695, 2021.

[Miettinen, 1999] Kaisa Miettinen. Nonlinear multiobjective
optimization, volume 12. Springer Science & Business
Media, 1999.

[Nemhauser et al., 1978] George L. Nemhauser, Lau-
rence A. Wolsey, and Marshall L. Fisher. An analysis
of approximations for maximizing submodular set func-
tions—i. Mathematical programming, 14(1):265–294,
1978.

[Niazadeh et al., 2021] Rad Niazadeh, Negin Golrezaei,
Joshua R. Wang, Fransisca Susan, and Ashwinkumar
Badanidiyuru. Online learning via offline greedy algo-
rithms: Applications in market design and optimization. In
Proceedings of the 22nd ACM Conference on Economics
and Computation, pages 737–738, 2021.

[Park and Kwan, 2020] Yoo Min Park and Mei-Po Kwan.
Understanding racial disparities in exposure to traffic-
related air pollution: Considering the spatiotemporal dy-
namics of population distribution. International journal
of environmental research and public health, 17(3):908,
2020.

[Rahmattalabi et al., 2019] Aida Rahmattalabi, Phebe
Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder,
Amulya Yadav, and Milind Tambe. Exploring algorithmic
fairness in robust graph covering problems. Advances in
neural information processing systems, 32, 2019.

[Ribeiro, 2002] Carlos H. C. Ribeiro. Reinforcement learn-
ing agents. Artificial intelligence review, 17:223–250,
2002.

[Roughgarden and Wang, 2018] Tim Roughgarden and
Joshua R. Wang. An optimal learning algorithm for online
unconstrained submodular maximization. In Conference
On Learning Theory, pages 1307–1325. PMLR, 2018.

[Sagawa et al., 2019] Shiori Sagawa, Pang Wei Koh, Tat-
sunori B. Hashimoto, and Percy Liang. Distribution-
ally robust neural networks for group shifts: On the im-
portance of regularization for worst-case generalization.
arXiv preprint arXiv:1911.08731, 2019.

[Shalev-Shwartz and Singer, 2007] Shai Shalev-Shwartz and
Yoram Singer. A primal-dual perspective of online learn-
ing algorithms. Machine Learning, 69:115–142, 2007.

[Singh and Joachims, 2018] Ashudeep Singh and Thorsten
Joachims. Fairness of exposure in rankings. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2219–
2228, 2018.

[Soma et al., 2022] Tasuku Soma, Khashayar Gatmiry, and
Stefanie Jegelka. Optimal algorithms for group distribu-
tionally robust optimization and beyond. arXiv preprint
arXiv:2212.13669, 2022.

[Streeter and Golovin, 2008] Matthew Streeter and Daniel
Golovin. An online algorithm for maximizing submodu-
lar functions. Advances in Neural Information Processing
Systems, 21, 2008.

[Tang and Yuan, 2023] Shaojie Tang and Jing Yuan. Beyond
submodularity: a unified framework of randomized set se-
lection with group fairness constraints. Journal of Combi-
natorial Optimization, 45(4):102, 2023.

[Zinkevich, 2003] Martin Zinkevich. Online convex pro-
gramming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on ma-
chine learning (icml-03), pages 928–936, 2003.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

402


	Introduction
	Problem Formulation and Examples
	Our Contributions

	Related Work
	Our Algorithm and Theoretical Guarantees
	Experiments
	Discussion

