
Cost-Partitioned Merge-and-Shrink Heuristics for Optimal Classical Planning

Silvan Sievers , Florian Pommerening , Thomas Keller and Malte Helmert
University of Basel, Switzerland

{silvan.sievers,florian.pommerening,tho.keller,malte.helmert}@unibas.ch

Abstract
Cost partitioning is a method for admissibly com-
bining admissible heuristics. In this work, we ex-
tend this concept to merge-and-shrink (M&S) ab-
stractions that may use labels that do not directly
correspond to operators. We investigate how opti-
mal and saturated cost partitioning (SCP) interact
with M&S transformations and develop a method
to compute SCPs during the computation of M&S.
Experiments show that SCP significantly improves
M&S on standard planning benchmarks.

1 Introduction
Classical planning [Ghallab et al., 2004] aims to find a se-
quence of actions that leads from an initial world situation
to a specified goal. A state-of-the-art approach to optimally
solving classical planning problems is A* search [Hart et al.,
1968] with an admissible heuristic [Pearl, 1984]. Abstrac-
tions are a state-of-the-art class of admissible heuristics and
contain the merge-and-shrink (M&S) framework [Dräger et
al., 2009; Helmert et al., 2014; Sievers et al., 2014], which
repeatedly applies transformations to a given state space.

A common problem of abstractions is that they often con-
tain useful information only for parts of a planning task, while
completely ignoring the rest. A possible solution to this prob-
lem is the combination of different abstractions admissibly
with operator cost partitioning [Katz and Domshlak, 2010;
Seipp et al., 2017a], which distributes the operator costs
among the abstractions guaranteeing that the sum of their
heuristic values is admissible. It has successfully been used
with Cartesian abstractions [Seipp and Helmert, 2018] and
pattern databases [Edelkamp, 2001], but not yet with M&S.

In this paper, we take a first step towards closing this gap.
We transfer the notion of operator cost partitioning to M&S
abstractions, thus defining label cost partitionings. We then
analyze how the heuristic value of optimal [Katz and Domsh-
lak, 2010; Pommerening et al., 2015] and saturated cost par-
titioning (SCP) [Seipp and Helmert, 2018] is affected by dif-
ferent M&S transformations. Based on these insights, we
present a practical approach that interleaves computing SCPs
with the M&S algorithm. An experimental evaluation on
standard benchmarks shows that combining M&S heuristics
in SCPs significantly improves their performance.

2 Background
2.1 Classical Planning
Although our techniques are applicable to any transition
system with a so-called factored structure, we show-case
them using classical planning tasks in the SAS+ formalism
[Bäckström and Nebel, 1995]. Such a task is defined as
Π = 〈V ,O, cost, s0, s?〉. V is a finite set of state variables
v, each with a finite domain dom(v). A partial state s is an
assignment over vars(s) ⊆ V , mapping each v ∈ vars(s) to
a value d ∈ dom(v). It is a state if vars(s) = V . State s
satisfies partial state s′, written s |= s′, if s(v) = s′(v) for all
v ∈ vars(s′). O is a finite set of operators o = 〈preo, effo〉,
where preo and effo are partial states called the precondition
and effect of o. The cost function cost : O → R+

0 maps each
operator to its cost. Finally, s0 is the initial state, and s? a
partial state called the goal.

For a state s and operator o with s |= preo the suc-
cessor state sJoK is defined as sJoK(v) = effo(v) for all
v ∈ vars(effo) and sJoK(v) = s(v) for all other variables.
A planning task Π induces a transition system Θ(Π) =
〈S,L, cost, T, sI, SG〉, where S is the set of states over V; L =
O are labels with costs cost(`) = cost(o) for ` ∈ L; T are
the transitions {s `−→ t | s, t ∈ S, ` ∈ L, s |= pre`, t = sJ`K};
sI = s0; and SG = {s ∈ S | s |= s?} are the goal states. For
a transition system Θ, we write S(Θ) for its set of states.

A solution for a planning task is a plan, i.e. a sequence of
labels that induces a path in Θ(Π) from sI to some state in
SG. The cost of a plan is the sum of its label costs. Optimal
planning aims at finding a plan of minimal cost or proving
that no plan exists. To optimally solve planning tasks, we use
the A∗ algorithm with admissible heuristics. A heuristic for
a transition system Θ with labels L and cost function cost is
a function h : S(Θ) → R ∪ {∞} which estimates the cost
of reaching a goal state from s in Θ. We write h(s, cost′)
for the evaluation of h on state s ∈ S(Θ), however using an
alternative cost function cost′ instead of cost. A heuristic h
is admissible if for all states s ∈ S(Θ), h(s) ≤ h∗(s), where
h∗(s) is the true cost of reaching a goal state from s.

2.2 Merge-and-Shrink
Merge-and-shrink (M&S) is a framework for computing ab-
stractions of transition systems. An abstraction maps a
transition system to a different transition system that pre-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4152

Θ1

`1

`2

`3

`3

`1, `3

Θ2

`1, `2

`3

`1, `2

`1, `2

Θ3

`1, `2

`1, `2

`3

Figure 1: Factored transition system with 3 factors.

serves all plans but is typically smaller and easier to solve.
Formally, an abstraction α of a transition system Θ =
〈S,L, cost, T, sI, SG〉 is a homomorphism defined on the
states S of Θ. The induced abstract transition system is de-
fined as α(Θ) = 〈{α(s) | s ∈ S}, L, cost, {α(s) `−→ α(t) |
s `−→ t ∈ T}, α(sI), {α(s) | s ∈ SG}〉.

M&S is applicable to transition systems which exhibit a so-
called factored structure: a factored transition system (FTS)
F = 〈Θ1, . . . ,Θn〉 consists of transition systems Θi (also
called factors) sharing the same set of labels and the same
cost function. It is a compact (“factored”) representation of
its product system

⊗
F = 〈S⊗, L, cost, T⊗, s⊗I , S

⊗
G 〉, where

S⊗ =
∏n
i=1 S

i is the Cartesian product of the state sets;
there is a transition 〈s1, . . . , sn〉 `−→ 〈t1, . . . , tn〉 in T⊗ iff
si `−→ ti ∈ T i for all 1 ≤ i ≤ n; the initial state is s⊗I =
〈s1

I , . . . , s
n
I 〉; and the set of goal states is S⊗G =

∏n
i=1 S

i
G. We

write S(F) to denote the states of the product of F .
A planning task Π = 〈V ,O, cost, s0, s?〉 induces the

FTS F (Π) consisting of the atomic factors Θv for all vari-
ables v ∈ V : Θv is the projection of Π to v, i.e., Θv =
〈dom(v),O, cost, T v, s0[v], SvG〉. The set of transitions T v
consists of the transitions s o−→ t for the state s = preo[v]
if v ∈ vars(preo) and for all states s ∈ dom(v) otherwise,
and for the state t with t = effo[v] if v ∈ vars(effo) and t = s
otherwise. If v is not mentioned in the goal of Π, all states of
Θv are goal states (SvG = dom(v)), otherwise there is a single
goal state SvG = {s?[v]}.

Figure 1 shows an example FTS F = 〈Θ1,Θ2,Θ3〉. When
drawing transition systems, we mark goal states with a double
circle and the initial state with an incoming arrow without
label. All other arrows are labeled and denote transitions of
the transition system. Unless stated otherwise, we assume a
constant label cost of 1 (called unit cost).

Starting from any given FTS F = 〈Θ1, . . . ,Θn〉, M&S
iteratively applies transformations of F . To do so, it keeps
track of the current FTS F ′, a state mapping Σ : S(F) →
S(F ′) from states of F to states of F ′, and a label mapping
λ : L→ L′ from labels L of F to labels L′ of F ′. A transfor-
mation from F to F ′ specifies F ′, the state mapping Σ, and
the label mapping λ. Applying such a transformation means
to replace the current FTS F by F ′ and to compose the main-
tained mappings with those of the transformation. We con-
sider three transformations of the M&S framework:

Merging. Merging replaces two factors of F , w.l.o.g. Θ1

and Θ2, by their product. Formally: F ′ = 〈Θ1 ⊗
Θ2,Θ3, . . . ,Θn〉, Σ(〈s1, . . . , sn〉) = 〈〈s1, s2〉, s3, . . . , sn〉
(where 〈s1, s2〉 is the product state in Θ1 ⊗ Θ2 that results
from the previous states s1 of Θ1 and s2 of Θ2), and λ = id.

Θ′
1

`4

`4

`3

`3

`3, `4

Θ′
2

`4

`3

`4

`4

Θ3

`4

`4

`3

α(Θ′
2)

`4
`3

`4

Θ′
1 ⊗ α(Θ′

2) `3

`4 `4`3

`4 `4`3
`4 `4

Figure 2: Top: FTS F ′ = 〈Θ1,Θ
′
2,Θ

′
3〉 obtained from F shown in

Figure 1 through label reduction. Bottom: Factor α(Θ′2) obtained
by shrinking Θ′2 such that the gray states are combined; Factor Θ′1⊗
α(Θ′2) obtained by merging Θ′1 and α(Θ′2).

Shrinking. Shrinking applies an abstraction α to
one of the factors of F , w.l.o.g. Θ1. Formally:
F ′ = 〈α(Θ1),Θ2, . . . ,Θn〉, Σ(〈s1, . . . , sn〉) =
〈α(s1), s2, . . . , sn〉, and λ = id. Shrinking is called
h-preserving iff h∗Θ1

(s) = h∗α(Θ1)(α(s)) for all s ∈ S(Θ1).

Label reduction. Analogously to shrinking, label reduction
applies a homomorphism to the set of labels of F . Formally:
λ : L → L′ is the label mapping of the reduction, Σ is
the identity mapping, and F ′ = 〈Θ′1, . . . ,Θ′n〉, where Θ′i is
defined based on Θi = 〈Si, L, cost, T i, siI , S

i
G〉 as follows:

Θ′i = 〈Si, L′, cost′, {s λ(`)−−→ t | s `−→ t ∈ T i}, siI , SiG〉 with
cost′(`′) = min`∈λ−1(`′) cost(`) for all λ′ ∈ L′.

All three types of transformations guarantee that at any
time of the M&S computation, each factor Θi is an abstrac-
tion of the original product

⊗
F .

Example 1. Consider the FTS F shown in Figure 1. In a
first step, a label reduction transformation λ combines the
labels `1, `2 into a new label `4. The resulting transformed
FTS F ′ = 〈Θ′1,Θ′2,Θ′3〉 is shown at the top of Figure 2.

In a second step, a shrink transformation applies an ab-
straction α to Θ′2 such that the two gray states are combined.
The resulting FTS is F ′′ = 〈Θ′1, α(Θ′2),Θ′3〉 and the factor
α(Θ′2) is shown in the bottom left of Figure 2 (the other fac-
tors remain unchanged).

Finally, a merge transformation merges Θ′1 and α(Θ′2) of
F ′′. The product is shown in the bottom right of Figure 2.
The final FTS is F ′′′ = 〈(Θ′1 ⊗ α(Θ′2)),Θ′3〉.

In the context of planning, M&S is usually used to compute
a heuristic. Let FTS F ′ = 〈Θ1, . . . ,Θn〉 and state mapping Σ
be the result obtained when executing M&S on some FTS F .
We define the factor heuristic hΘi

for F as the perfect heuris-
tic for the i-th factor of F ′: hΘi

(s) = h∗Θi
(Σ(s)i). Then,

the M&S heuristic for F is defined as the maximum over
the factor heuristics: hM&S

F (s) = max1≤i≤n hΘi(s) for all
s ∈ S(F). For the FTS F of Figure 1, we obtain hM&S

F (sI) =
max(hΘ1

(sI), hΘ2
(sI), hΘ3

(sI)) = max(2, 2, 2) = 2. For
the FTS F ′′′ from Example 1, we obtain hM&S

F ′′′ (sI) =
max(3, 1) = 3.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4153

As mentioned above, all transformations are such that the
result is an abstraction. Therefore, hM&S is admissible. Merg-
ing is even an exact transformation, i.e., the perfect heuristic
values of the product system of the FTSs are unchanged.

Shrinking with abstraction α is not exact in general, but is
exact if it combines states according to a bisimulation relation
∼ between states [Nissim et al., 2011]. Such a relation satis-
fies s ∼ t (“s and t are bisimilar”) iff 1) either both s, t are
goal states or both are not goal states, and 2) for all s `−→ s′,
there exists t `−→ t′ with s′ ∼ t′. Shrinking is based on a
bisimulation ∼ if α(s) = α(t) iff s ∼ t. It is guaranteed to
be h-preserving. The two states combined in Example 1 are
not bisimilar for any ∼, and the transformation is not exact.

Label reduction with label mapping λ is also not exact in
general, but is exact if there is Θ ∈ F such that for all labels
`1, `2 ∈ L with λ(`1) = λ(`2), we have cost(`1) = cost(`2)
and `1 and `2 are Θ-combinable [Sievers et al., 2014]. Two
labels `1 and `2 are called Θ-combinable if they have parallel
transitions in all factors except Θ, i.e., if s `1−→ t ∈ T ′ iff
s `2−→ t ∈ T ′ for the transitions T ′ of all Θ′ ∈ F \ {Θ}.
Labels `1 and `2 combined in Example 1 are Θ1-combinable
because they have parallel transitions in Θ2 and Θ3. Since
they also have the same cost, the transformation is exact.

To obtain a concrete M&S algorithm, we must decide when
to perform which transformation. We follow the literature and
define the algorithm as shown in Algorithm 1 in Section 6, for
simplicity without showing state and label mappings. (Ignore
H , which is related to cost partitioning, discussed later.) The
main loop (lines 4–11) runs until the current FTS F ′ only
consists of one element or a time limit is reached. One iter-
ation of the loop does the following: decide which two fac-
tors Θi,Θj of F ′ to merge in this iteration (line 5), apply
exact label reduction (line 6), possibly shrink Θi and/or Θj

to respect a size limit (lines 8 and 9), and finally perform
the merge (line 10). The algorithm returns hM&S

F computed
over F ′ (line 12 shows how the extended algorithm computes
a cost-partitioned heuristic instead). All transformations are
parameterized by so-called transformation strategies.

2.3 Cost Partitioning
Operator cost partitioning [Katz and Domshlak, 2010] allows
to admissibly combine admissible heuristics by distributing
operator costs among them. Let Π be a planning task with
operator costs cost and let H = 〈h1, . . . , hn〉 be admissible
heuristics for Π. The cost functions C = 〈cost1, . . . , costn〉
form a cost partition if

∑n
i=1 costi ≤ cost. The cost-

partitioned heuristic hH,C(s) =
∑n
i=1 hi(s, costi) is admis-

sible. We discuss two methods to design cost partitions.

Saturated cost partitioning (SCP). The SCP method
[Seipp et al., 2020] greedily assigns costs to the heuristics H
in a given order ω. To simplify the presentation, we consider
the order ω = 〈h1, . . . , hn〉 but in general, ω can be any per-
mutation of the heuristics inH. The algorithm keeps track of
a remaining cost function rci which is initialized with the cost
function cost, i.e., rc0 = cost. In each step i = 1, . . . , n, the
cost function costi is set to a minimal cost function that satis-
fies hi(s, rci−1) = hi(s, costi) for all s, called the saturated
cost function. The remaining cost function is then reduced by

costi, i.e., rci = rci−1−costi. In abstraction heuristics where
the heuristic value is defined as the cheapest path in a transi-
tion system with transitions T , the saturated cost function is
unique: costi(o) = maxs o−→t∈T (hi(s, rci−1) − hi(t, rci−1)).
The saturated cost partitioning heuristic is defined as hH,C(s)
for the discovered cost partition C = 〈cost1, . . . , costn〉.
Optimal cost partitioning (OCP). In contrast to subopti-
mal cost partitioning methods like SCP, OCP distributes the
costs in an optimal way [Katz and Domshlak, 2010]. An OCP
for a planning task Π with cost function cost, a state s, and
admissible heuristics H = 〈h1, . . . , hn〉 is a cost partition
C∗ = 〈cost1, . . . , costn〉 such that hH,C∗(s) ≥ hH,C(s) for
all cost partitions C. The optimal cost partitioning heuristic
is defined as hH,C∗(s). Note that C∗ depends on s, so the
heuristic can use a different cost partition in each state. If
the heuristics H are abstraction heuristics with induced ab-
stract transition systems Θi = 〈Si, L, T i, siI , SiG〉, the value
hH,C∗(s) is the objective value of the following linear pro-
gram (LP) or∞ if the LP is unbounded:

Maximize
∑n
i=1 H

i
s subject to

His? ≤ 0 for all s? ∈ SiG, 1 ≤ i ≤ n (1)

His ≤ Hit + Ci` for all s `−→ t ∈ T i, 1 ≤ i ≤ n (2)
n∑
i=1

Ci` ≤ cost(`) for all ` ∈ L (3)

Example 2. Consider the FTS of Figure 1 to be the induced
FTS F (Π) of a planning task Π. (Actually, it cannot be, but
for simplicity we ignore this subtlety.) The factors are the
atomic factors for Π, which are abstractions of Π where each
label corresponds to an operator. The corresponding abstrac-
tion heuristics H = 〈h1, h2, h3〉 are defined as the shortest
path in each abstraction.

To compute the the SCP heuristic of H with ω = H, we
first set rc0(`i) = 1 for 1 ≤ i ≤ 3. The saturated costs are
cost1(`1) = cost1(`2) = 1 and cost1(`3) = 0, and therefore
rc1(`1) = rc1(`2) = 0 and rc1(`3) = 1. In the second iter-
ation, we get saturated costs cost2(`1) = cost2(`2) = 0 and
cost2(`3) = 1. All remaining costs are 0 now and cost3(`i) =
0 for 1 ≤ i ≤ 3. Thus the heuristic value of the SCP
heuristic is h1(s0, cost1) + h2(s0, cost2) + h3(s0, cost3) =
2 + 1 + 0 = 3. If we consider the order ω = 〈h2, h1, h3〉
instead, h2 receives all costs and the heuristic value becomes
h1(s0, cost1)+h2(s0, cost2)+h3(s0, cost3) = 0+2+0 = 2

An OCP can be computed by solving the LP above. Note
that the LP does not exclude negative costs and they are use-
ful here. An optimal solution is cost1(`i) = 0 for 1 ≤
i ≤ 3; cost2(`1) = cost2(`2) = 0, cost2(`3) = 3; and
cost3(`1) = cost3(`2) = 1, cost3(`3) = −2. The heuristic
value of the OCP heuristic is h1(s0, cost1) + h2(s0, cost2) +
h3(s0, cost3) = 0 + 3 + 2 = 5.

In the example, we used the fact that there is a one-to-one
correspondence between the labels of an induced FTS F (Π)
and the operators of Π. However, after performing M&S
transformations (in particular label reduction), we lose this
correspondence. In the following, we introduce a more gen-
eral form of cost partitioning, which we then use to discuss
cost partitioning on an arbitrary FTS.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4154

3 Label Cost Partitioning
Operator cost partitioning partitions operator cost functions,
so it is not directly applicable to factored transition systems
with arbitrary labels. However, we can easily lift the notion
to general (and in particular to factored) transition systems.

Definition 1. Let cost : L→ R+
0 be a label cost function for

a set of labels L. The cost functions C = 〈cost1, . . . , costn〉
with costi : L → R form a label cost partition if they satisfy∑n
i=1 costi ≤ cost.

Definition 2. Let F = 〈Θ1, . . . ,Θn〉 be an FTS with labels
L and a label cost function cost. Let C = 〈cost1, . . . , costn〉
be a label cost partition. The label-cost-partitioned heuristic
is hF,C(s) =

∑n
i=1 hΘi(s, costi).

Proposition 1. Let Θ be a transition system and let F =
〈Θ1, . . . ,Θn〉 and C be defined as above. If every hΘi

is ad-
missible for Θ, then hF,C is an admissible heuristic for Θ.

Proof. The proof is analogous to the one for operator cost
partitioning [Pommerening et al., 2015].

As a special case, we can conclude that any label cost parti-
tion over the factors of an FTS F created by M&S induces an
admissible heuristic: we know that the factor heuristics hΘi

are admissible heuristics for the product system of F , which
in turn is an abstraction of the original planning task.

As with other cost-partitioned heuristics, there are several
methods to compute the partition C. We consider optimal
and saturated cost partitioning here and define hOCP

F (s) as
hF,C∗(s) for a label cost partitionC∗ that is optimal for s, and
hSCP
F,ω(s) as hF,C(s) for a saturated label cost partition C for s

under order ω. Both heuristics are computed analogously to
their counterparts for planning tasks. In particular, hOCP

F is
defined by the LP from Section 2.3 except that L is the set of
labels of F . We denote this LP by OCP(F).

We also consider a more general form of label cost parti-
tioning, where factors of different FTSs are used. We use this
to combine factors from different stages of the M&S compu-
tation. The main issue with this is that the factors may use
different labels. However, for M&S each factor comes from
a transformed FTS of a common base FTS (e.g., F (Π)). In
such cases, we can treat the combination as a label cost parti-
tioning of the base FTS and translate labels accordingly.

Definition 3. Let L be a set of labels and cost : L → R+
0 be

a label cost function. For 1 ≤ i ≤ n, let Li be a different set
of labels and λi : L→ Li a label mapping function.

Then the functions C = 〈cost1, . . . , costn〉 with costi :
Li → R form an extended label cost partition if∑n
i=1 costi(λi(`)) ≤ cost(`) holds for all ` ∈ L.

Definition 4. Let F be an FTS with labels L and a label
cost function cost : L → R+

0 . For 1 ≤ i ≤ n let Fi
be an FTS that results from F with an M&S transforma-
tion using state mapping Σi : S(F) → S(Fi) and label
mapping λi : L → Li, and let Θi be a factor of Fi. Fi-
nally, let C = 〈cost1, . . . , costn〉 be an extended label cost
partition according to Definition 3. Then the label-cost-
partitioned heuristic for F = 〈Θ1, . . . ,Θn〉 is hM&S

F,F,C(s) =∑n
i=1 hΘi

(Σi(s), costi).

The benefit of an extended label cost partitioning over a
regular one is that it allows us to derive admissible heuristics
from factors of different FTSs (even if they do not use the
same labels).
Proposition 2. The heuristic hM&S

F,F,C is admissible for
⊗
F .

Proof. The functions cost′i(`) = costi(λi(`)) form a label
cost partition for F . For each transition system Θi in F ,
consider the transition system Θ′i that results from Θi by
replacing every transition s `−→ t with s `′−→ t for some
`′ ∈ λ−1

i (`) with minimal cost′i(`
′). It is easy to see that

hΘ′i
(s, cost′i) ≤ hΘi

(s, costi) for all states s. Since hΘi
is ad-

missible for
⊗
Fi, which is in turn an abstraction of

⊗
F ,

hΘ′i
must be admissible for

⊗
F under the cost function

cost′i. Using Proposition 1, the sum of the heuristics is ad-
missible.

Analogous to the cases above, we can define OCP and SCP
for a collection of factors F . An OCP can be computed by
replacing constraint (3) with the constraint from Definition 3
in the LP from Section 2.3. For SCP, we keep track of the
remaining cost of every label in L in rc : L → R. We com-
pute the saturated cost function costi : Li → R under the cost
function rcLi : Li → R with rcLi(`i) = min`∈λ−1(`i) rci(`)
and update rci(`) = rci−1(`) − costi(λ(`)) for all ` ∈ L to
guarantee that the costi form an extended label cost partition.

4 Interaction of OCP with M&S
In this section, we show how OCP interacts with M&S trans-
formations. In particular, we want to know if the OCP over an
FTS before applying a specific M&S transformation achieves
a higher or lower value compared to computing it over the
transformed FTS.

4.1 Label Reduction
We first show that the value of hOCP cannot increase after la-
bel reduction but can decrease in general. We then show that
in the special case of exact label reduction, it cannot decrease.
Proposition 3. Let F = 〈Θ1, . . . ,Θn〉 be an FTS with labels
L and let F ′ the FTS that results from F with a label reduc-
tion λ : L→ L′. Given a solution H′,C′ of OCP(F ′), we can
construct a solution H,C of OCP(F) with the same value.

Proof. The solution is defined as H = H′ and Ci` = C′iλ(`)

for all 1 ≤ i ≤ n and ` ∈ L. With these values, constraints
(1)–(3) of OCP(F) are satisfied and since H = H′, the value
of the solution is the same.

We conclude that label reduction cannot improve hOCP.
Theorem 1. Let F and F ′ be FTSs such that F ′ results from
F with label reduction. Then hOCP

F ≥ hOCP
F ′ .

In general, this inequality can be strict, i.e., the heuristic
value can decrease because of label reduction. For example,
we have seen in Example 2 that the OCP heuristic value of the
factors in Figure 1 is 5. Mapping all labels in that example to
a single label ` would mean that the cost of this label has to
be split between the factors for a total heuristic value of 2.

However, we can show that the heuristic value of hOCP is
not influenced if the label reduction is exact.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4155

Proposition 4. Let F be an FTS with labels L and let F ′
be the FTS that results from F with an exact label reduction
λ : L → L′. Given a solution H,C of OCP(F), we can
construct a solution H′,C′ of OCP(F ′) with the same value.

Proof. We write [`] for the equivalence class {ˆ̀∈ L | λ(`) =

λ(ˆ̀)} and first show that we can construct an alternative solu-
tion Ĥ, Ĉ for OCP(F) where all labels in an equivalence class
have the same cost. We define Ĥ = H and Ĉi` as minˆ̀∈[`] C

i
ˆ̀

in cases where all labels in [`] have parallel transitions in
Θi. There can only be one factor Θi where the labels do
not necessarily have parallel transitions as the label reduction
is exact. In this factor, we set Ĉi` = cost(`) −∑j 6=i Ĉ

j
` , i.e.,

all remaining costs for this label. Labels in one equivalence
class have the same cost in all factors of the former case and
since the same amount of the cost remains also in the latter
case. Constraints (1)–(3) of OCP(F) are still satisfied and
since Ĥ = H, the value of the solution is the same. Based on
Ĥ, Ĉ, we can define the solution of OCP(F ′) as H′ = Ĥ and
C′i`′ = Ĉi` for any label ` mapped to `′. The choice of ` does
not matter as Ĉi` has the same value for all choices.

By combining Propositions 3 and 4, we conclude that hOCP

is invariant under exact label reduction.

Theorem 2. Let F and F ′ be FTSs such that F ′ results from
F with exact label reduction. Then hOCP

F = hOCP
F ′ .

4.2 Shrinking
We first show that the heuristic value of hOCP cannot increase
after shrinking but can decrease in general and even with h-
preserving shrinking. We then show that the value does not
decrease in the special case of bisimulation shrinking.

Proposition 5. Let F = 〈Θ1, . . . ,Θn〉 be an FTS with states
S and let F ′ = 〈α(Θ1),Θ2, . . . ,Θn〉 be the FTS F after
shrinking a factor (w.l.o.g. Θ1) with an abstraction α. Given
a solution H′,C′ of OCP(F ′), we can construct a solution
H,C of OCP(F) with the same value.

Proof. The solution is defined as C = C′ and for all s ∈ S,
H1
s = H′1α(s) and Hi = H′i for all 2 ≤ i ≤ n. Constraints

(1) and (2) remain satisfied, even for the first factor, because
α(Θ1) is an abstraction of Θ1 and for each concrete transition
or goal state the corresponding abstract transition or goal state
shows the constraint is satisfied. Constraint (3) is satisfied
since C = C′ and the value of the solution is the same.

We conclude that shrinking cannot improve hOCP.

Theorem 3. Let F and F ′ be FTSs such that F ′ results from
F with shrinking. Then hOCP

F ≥ hOCP
F ′ .

In general, this inequality can be strict, i.e., the heuristic
value can decrease because of shrinking. This is even the
case if we consider only h-preserving shrinking. To illustrate
this, consider the factors depicted in Figure 3 and the FTSs
F = 〈Θ1,Θ2〉 and F ′ = 〈Θ′1,Θ2〉, where Θ′1 results from
combining the two gray states with identical heuristic value
in Θ1. The OCP for F is cost1 = 〈1, 2, 1,−1〉 and cost2 =

Θ1

`1`2 `3

`2`4`1

Θ2
`1

`4
`2

`3
Θ′

1

`1, `2
`3, `4

`1, `2

Figure 3: Interaction of h-preserving shrinking and OCP.

〈0,−1, 0, 2〉 with heuristic value 4, and cost′1 = 〈0, 0, 0, 0〉
and cost′2 = 〈1, 1, 1, 1〉 for F ′ with heuristic value 3.

OCP does not lose information with the stronger restriction
to bisimulation shrinking, so the heuristic value is unaffected.
Proposition 6. Let F = 〈Θ1, . . . ,Θn〉 be an FTS and let
F ′ = 〈Θ′1,Θ2, . . . ,Θn〉 be the FTS F after shrinking a factor
(w.l.o.g. Θ1) with a bisimulation α. Given a solution H,C of
OCP(F) we can construct a solution H′,C′ of OCP(F ′) with
at least the same value.

Proof sketch. Instead of H,C, we consider a solution Ĥ,C,
where Ĥi = Hi for all i 6= 1 but Ĥ1

s is the optimal plan cost
of s in Θ1 under the costs encoded in C1 for all states s of
Θ1. This is the intuitive meaning of the variables H but the
LP can admit solutions with lower values. It can be checked
that Ĥ,C remains a solution and has at least the same value as
H,C. For two bisimilar states s ∼ t, we then have Ĥ1

s = Ĥ1
t

because they have identical plans. We define the desired so-
lution to be like Ĥ,C in all components except H′1, where we
set H′1s = Ĥ1

s′ for any state s′ mapped to s. As bisimula-
tion shrinking can only combine bisimilar states, H′1 is well-
defined. Constraints for goal states and transitions in Θ′1 are
validated by the constraints for the goal states and transitions
from Θ1 that induce them.

Note that the proof uses a property that is similar to h-
preserving shrinking but the difference is that bisimulation
preserves h values under any cost function, in particular under
the cost function encoded in C1, while h-preserving shrinking
only considers h-values under the original cost function.

By combining Propositions 5 and 6, we conclude that hOCP

is invariant under bisimulation shrinking.
Theorem 4. Let F and F ′ be FTSs such that F ′ results from
F with bisimulation shrinking. Then hOCP

F = hOCP
F ′ .

4.3 Merging
The previous two sections showed transformations that can
potentially decrease the value of hOCP. In contrast to these re-
sults, we show in this section that the heuristic value of hOCP

can only increase after merging.
Proposition 7. Let F = 〈Θ1,Θ2, . . . ,Θn〉 be an FTS and
let F ′ = 〈Θm,Θ3, . . . ,Θn〉 be the FTS where two factors
(w.l.o.g. Θ1 and Θ2) have been replaced with their synchro-
nized product Θm = Θ1 ⊗ Θ2. Given a solution H,C of
OCP(F), we can construct a solution H′,C′ of OCP(F ′) with
the same value.

Proof. We construct the solution as H′m〈s1,s2〉 = H1
s1 + H2

s2

and C′m` = C1
` + C2

` , leaving all other components of H,C

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4156

the same. The new solution forms a cost partition for F ′ and
has the same objective value. Constraints (1) and (2) for Θm

are validated for a goal state or transition by summing the
constraints for the goal states or transitions inducing them in
the synchronized product.

From Proposition 7 we can conclude that merging can only
be beneficial for optimal cost partitioning.
Theorem 5. Let F and F ′ be FTSs such that F ′ results from
F with merging two factors. Then hOCP

F ≤ hOCP
F ′ .

5 Interaction of SCP with M&S
The results on the interaction of OCP and M&S do not allow
to draw conclusions for other cost partitioning techniques. In
this section, we analyze how applying M&S transformations
affects hSCP. To avoid that a difference in the heuristic value
is only caused by a different order, we compare compatible
orders before and after a M&S transformation.

5.1 Label Reduction
In this section, we consider an FTS F = 〈Θ1, . . . ,Θn〉 with
labels L and the FTS F ′ = 〈Θ′1, . . . ,Θ′n〉 with labels L′ that
results from applying label reduction λ : L→ L′ to F . As all
Θ′i in F ′ are derived from Θi via λ, we compare hSCP before
and after label reduction with orders ω and ω′, where ω′ can
be derived from ω by replacing each Θi with Θ′i.

We first show that the value of hSCP can decrease or in-
crease after label reduction. Thereafter, we show that exact
label reduction does not affect the value of hSCP.
Theorem 6. Given F , F ′, ω and ω′ as described above, hSCP

F,ω

and hSCP
F ′,ω′ are incomparable.

Proof. We provide examples for all three cases. If λ(`) = `
for all ` ∈ L, we have F = F ′ and ω = ω′ and hence
hSCP
F,ω = hSCP

F ′,ω′ . Now consider an FTS F = 〈Θ2,Θ5,Θ3〉
with factors as depicted in Figure 4 and order ω = F . We
have hSCP

F,ω(sI) = 2. If all labels are mapped to the same label,
we get hSCP

F ′,ω′(sI) = 1, and if only `2 and `3 are mapped to
the same label, we get hSCP

F ′,ω′(sI) = 3.

Theorem 7. Given F , F ′, ω and ω′ as described above. If λ
is an exact label reduction, then hSCP

F,ω = hSCP
F ′,ω′ .

Proof sketch. As the label reduction is exact, we know that all
combined labels are Θk-combinable. We prove the following
statements by an induction over the order ω:

hΘ′i
(s, rc′i−1) = hΘi

(s, rci−1)

rc′i(`
′) =

{
rci(`) if i < k

min`∈λ−1(`′) rck(`) otherwise

cost′i(`
′) =

{
costi(`) if i 6= k

max`∈λ−1(`′) costi(`) otherwise

for all 1 ≤ i ≤ n, all states s, all `′ ∈ L′, and all ` ∈
λ−1(`′). The theorem then follows from the first statement.
The full proof can be found in a technical report [Sievers et
al., 2020b].

Θ2

`3

`1, `2

`1, `2, `3

Θ1

`1

`2

`3

`3 `1, `2 `1, `2, `3

Θ1⊗2

`3

`1

`2

`1

`2

`3

`3

`3

`3

`1, `2

`1, `2

`1, `2

`1, `2, `3

Θ3

`1 `2 `1

`2, `3 `1, `3 `2, `3 `1, `2, `3

Θ4

`1

`3`2

`1

Θ5

`1, `2
`1, `3

Figure 4: Factors used in Section 5.

5.2 Shrinking
Consider two FTSs F = 〈Θ1, . . .Θn〉 and F ′ =
〈α(Θ1), . . .Θn〉 where w.l.o.g. Θ1 of F is shrunk with ab-
straction α. The order ω′ for F ′ can be derived from the order
ω for F by replacing Θ1 with α(Θ1).

Theorem 8. Given F , F ′, ω and ω′ as described above, hSCP
F,ω

and hSCP
F ′,ω′ are incomparable.

Proof. We provide examples for all three cases. If α = id
and hence α(Θ1) = Θ1, we have ω = ω′ and hSCP

F,ω = hSCP
F ′,ω′ .

Now consider an FTS F = 〈Θ4,Θ2〉 with factors as depicted
in Figure 4 and the order ω = F . We have hSCP

F,ω(sI) = 1. If
Θ4 is shrunk by combining the black and white states, we get
hSCP
F ′,ω′(sI) = 2, but if Θ4 is shrunk by combining the gray

and white states, we get hSCP
F ′,ω′(sI) = 0.

Theorem 9. Given F , F ′, ω and ω′ as described above. If
〈cost1, . . . , costn〉 is the cost partition computed by hSCP

F,ω and
α is h-preserving under cost1 then hSCP

F,ω = hSCP
F ′,ω′ .

Proof sketch. Saturated costs in Θi are computed solely with
the h-values of states under rci, which are preserved by α for
all s ∈ S(α(Θ1)) according to the condition on α.

5.3 Merging
Consider FTS F = 〈Θ1, . . . ,Θn〉 and a merge transforma-
tion which w.l.o.g. replaces the factors Θ1 and Θ2 by their
product Θ1⊗2 to obtain the FTS F ′. There are two compati-
ble orders: ω′ replaces Θ1 with Θ1⊗2 and removes Θ2, while
ω′′ replaces Θ2 with Θ1⊗2 and removes Θ1.

Theorem 10. Given F , F ′, ω and ω′ as described above,
hSCP
F,ω , hSCP

F ′,ω′ and hSCP
F ′,ω′′ are incomparable.

Proof. By choosing ω so Θ1 and Θ2 appear consecutively,
we have ω′ = ω′′ and it is sufficient to give an example for
all three possible cases. If Θ2 is a factor with a single (goal)
state s, we have hΘ2(s, cost2) = 0 and Θ1⊗2 = Θ1 and hence
hSCP
F,ω = hSCP

F ′,ω′ .
Now consider an FTS F = 〈Θ1,Θ2,Θ3〉 with factors

as depicted in Figure 4 and the order ω = F . We have

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4157

Algorithm 1 Merge-and-shrink algorithm extended to com-
pute SCP heuristics.
Input: FTS F , transformation strategies, size limit, time

limit, order strategy
Output: Heuristic for F

1: function M&SWITHSCP(F)
2: F ′ ← F
3: H ← ∅
4: while not TERMINATE(〈F ′,Σ, λ〉) do
5: i, j ← MERGESTRATEGY(F ′)
6: F ′ ← LABELREDUCTIONSTRATEGY(F ′)
7: H ← H ∪ COMPUTESNAPSHOT(F ′)
8: Θ′i,Θ

′
j ← SHRINKSTRATEGY(F ′, i, j)

9: F ′ ← (F ′ \ {Θi,Θj}) ∪ {Θ′i,Θ′j}
10: F ′ ← (F ′ \ {Θ′i,Θ′j}) ∪ {Θ′i ⊗Θ′j}
11: end while
12: return maxhSCP∈H h

SCP

13: end function

hSCP
F,ω(sI) = 3. If Θ1 and Θ2 are merged to Θ1⊗2, we get
hSCP
F ′,ω′(sI) = 2. If we consider an FTS F 〈Θ1,Θ2〉 instead,

we have hSCP
F,ω(sI) = 1 but hSCP

F ′,ω′(sI) = 2 after merging.

6 Implementation
We now describe our practical approach of integrating label
cost partitioning into the M&S algorithm. We focus on SCPs
because computing OCPs over large abstractions is often in-
feasible in practice, but our approach can be used with OCPs
in the same way.

Recall that at each step of the M&S algorithm on some
FTS F , the factors Θi of the current FTS F ′ induce the factor
heuristics hΘi

for F . The first and most simple approach sim-
ply takes the final factor heuristics of the M&S computation
and, instead of computing the maximum over them like hM&S

does, combines them into an SCP heuristic (denoted hSCP
final).

However, if there is enough time, the M&S algorithm only
terminates when there is only one factor left, in which case
neither maximizing nor cost partitioning is beneficial.

Therefore, we instead suggest to compute SCP heuristics
over the factor heuristics of any intermediate FTS F ′ and to
compute the maximum over these SCP heuristics to form the
final heuristic. This approach requires to decide when and
how often to compute such SCP heuristics. Concerning how
often, for simplicity, we decided to take a single snapshot of
each ith iteration of M&S. That is, in each ith iteration, we
compute a single SCP heuristic over the factor heuristics in-
duced by the current FTS. We experimentally evaluate differ-
ent values for i. Regarding the choice of when in a given iter-
ation this should be done, our theoretical analysis showed that
each transformation can have a positive or negative impact, so
we consider computing a snapshot after label reduction, after
shrinking, or after merging.

Algorithm 1 shows the M&S algorithm extended to com-
pute SCP heuristics. Compared to regular M&S, it addition-
ally stores the computed SCP heuristics in a set H (line 7).
Depending on when to compute the snapshot, line 7 is moved
after line 9 (shrinking) or after line 10 (merging). At the

end (line 12), instead of computing hM&S over the final F ′,
it computes the maximum heuristic over all SCP heuristics in
H , which we denote by hSCP

int for this interleaved approach
of computing M&S and SCPs. The parameter order strategy
specifies in which order to compute SCP heuristics and we
explore different choices in the experiments.

A potential drawback of the interleaved approach is that it
misses the opportunity to combine factor heuristics of differ-
ent M&S iterations with extended label cost partitions. We
therefore also suggest an offline approach, which, rather than
computing an SCP during an iteration, only stores the factor
heuristics of that iteration for later use. We exclude factors
which have not changed since the last snapshot to avoid dupli-
cates. At the end, we need to use the stored factor heuristics
to compute a heuristic. We consider two alternatives: com-
puting a single SCP heuristic, denoted hSCP

off , and computing
the maximum heuristic over several SCP heuristics computed
for diverse orders obtained with the algorithm by Seipp et
al. [2020], denoted hSCP

off-div. This makes the offline approach
more comparable to the interleaved approach that also maxi-
mizes over several SCP heuristics. A potential disadvantage
of the offline approach is that it needs to store the transition
system of each factor heuristic until it computed the SCPs.

Finally, we remark that for all SCP heuristics, we only store
useful (non-constant zero) heuristics as suggested by Seipp
et al. [2020]. Furthermore, for each factor heuristic used in
an SCP, we need to copy the relevant state mapping because
further M&S transformations possibly modify it. However,
M&S stores state mappings in a tree-like data structure called
factored state mappings [Sievers, 2018] which is expensive
to copy. Fortunately, only their root node is subject to poten-
tial change through M&S transformations. We exploit this by
computing shallow copies, reusing subtrees which are guar-
anteed to not change anymore. We experimentally compare
this to the alternative of making full copies.

7 Experiments
We implemented our techniques on top of the M&S imple-
mentation of Fast Downward [Helmert, 2006], version 19.12.
To evaluate them, we use the following state-of-the-art M&S
configuration: shrinking is based on bisimulation and uses
a size limit of 50000 on transition systems (allowing exact
shrinking also when shrinking is not necessary to respect the
size limit); the merge strategy is SCC-DFP [Sievers et al.,
2016]; we use exact label reduction; and the main loop is lim-
ited to 900s. As benchmarks, we use the tasks of all optimal
tracks of all International Planning Competitions, a set con-
sisting of 1827 tasks across 65 domains. Experiments were
run on Intel Xeon Silver 4114 CPUs, using Downward Lab
[Seipp et al., 2017b]. Each planner run is limited to 1800s
and 3.5 GiB. The code, benchmarks, and experimental data
are published online [Sievers et al., 2020a].

We use the following order strategies for computing SCPs:
random (rnd); creation time of the factors (otn for old to
new); the inverse of otn (nto); the greedy orders of Seipp et
al. [2020] called maximize heuristic (mh), minimize stolen
cost (msc), and maximize heuristic per stolen cost (mhsc).
Greedy orders are computed for the initial state.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4158

50 100

20%

40%

60%

Number of M&S transformations

In
iti
al
h
va
lu
es

OCP
SCP
Max

Figure 5: Geometric mean over initial heuristic values of the factor
heuristics when combined with maximization (Max), SCP with a
random order, or OCP. All values are normalized with h∗ and plotted
over the first 100 M&S transformations.

after label reduction

i = 1 i = 2 i = 5 i = 10

full 922 923 923 916
shallow 933 930 926 917

i = 1, shallow

after label r. 933
after shrinking 933
after merging 925

Table 1: Coverage of hSCP
int, rnd computing an SCP every ith iteration

after different M&S transformations using shallow or full copies of
the factored state mappings.

First, we analyze how much better compared to hM&S we
can get. Figure 5 reports the development of initial h-values
of the factor heuristics after each M&S transformation, when
combined with maximization (Max), SCP with a random or-
der, or OCP. In this plot, we only consider the 833 tasks
where M&S terminated (including computing the cost par-
titions). As expected, the combination with cost partitioning
dominates the combination with maximization, but SCP is
reasonably close to OCP, which justifies its higher practical
relevance compared to the more expensive OCP.

Second, we compare hM&S against hSCP
final. There are 162

tasks for which M&S computes more than one factor heuristic
because it reaches the time limit. Of these tasks, hM&S solves
50 compared to 56 tasks solved by hSCP

final regardless of the used
order. This is the result we expected: the combination with
SCP is usually stronger than the maximization used by hM&S,
but since these tasks are the most difficult ones (indicated by
M&S reaching the time limit), the difference is small.

Next, we investigate the interleaved SCP approach by vary-
ing the parameter i. We also compare full against shallow
copies of factored states mappings. The left part of Table 1
shows coverage (number of solved tasks) of hSCP

int with a ran-
dom order (hSCP

int, rnd) when computing snapshots after label re-
duction. Compared to hM&S, which achieves a coverage of
905, we can see that all variants improve coverage, even when
computing a snapshot each iteration (i = 1). While with full
copying, there is no visible difference for i = 1, 2, 5, using
the memory-efficient shallow copying significantly improves
coverage of those variants. For i = 10, performance is sim-
ilar for full and shallow copies, which can be explained by a
lower heuristic quality compared to smaller values of i due to
computing fewer SCP heuristics. We use the best configura-
tion i = 1 and shallow copies for the remaining evaluation.

rnd otn nto mhsc mh msc

hSCP
int 933 932 928 928 927 930
hSCP

off 841 836 905 869 905 837
hSCP

off-div 915 841 904 887 907 838

Table 2: Coverage with interleaved or offline computation using dif-
ferent order strategies.

We continue with evaluating when to compute snapshots:
after label reduction, shrinking or merging. The right part
of Table 1 shows how this affects the coverage of hSCP

int, rnd. We
observe no difference between the first two choices but a clear
benefit over the third. This matches our theoretical results:
the value of an SCP heuristic is not affected by exact label
reduction and h-preserving shrinking, whereas merging can
affect the SCP value arbitrarily. We compute the snapshots
after label reduction for the rest of the evaluation.

Finally, we evaluate different order strategies. The first row
of Table 2 shows coverage of hSCP

int . Somewhat surprisingly,
the random order (rnd) performs best. A possible reason
is that diversification of orders with interleaved SCPs is ob-
tained through computing SCPs over different factor heuris-
tics in each iteration. Another reason might be that the two
basic orders we introduced (otn and nto) as well as the greedy
orders by Seipp et al. [2020] (mhsc, mh, msc) are not well
suited for our setting.

The latter hypothesis is backed by the evaluation of the
offline approach under the same setting as the interleaved
approach (i = 1, shallow copies, snapshots after label re-
duction). The last two rows of Table 2 show coverage of
hSCP

off and hSCP
off-div. Interestingly, even computing a single SCP

heuristic (hSCP
off) with orders nto and mh already achieves the

same coverage as plain hM&S. Computing diverse orders
(hSCP

off-div) strictly improves coverage compared to hSCP
off , but

only marginally for all order strategies except rnd, which is
the best strategy like for the interleaved approach. Compared
to hSCP

int , hSCP
off-div is strictly dominated in terms of total coverage.

Again, the most likely explanation is that the order strategies
are not strong enough to help the order diversification algo-
rithm to find better orders compared to the diversification im-
plicitly obtained by the interleaved approach.

8 Conclusions
In this paper, we contribute the first combination of cost parti-
tioning with M&S heuristics. Our theoretical analysis inves-
tigates the interaction of OCP and SCP with M&S transfor-
mations, and our practical implementation significantly im-
proves regular M&S heuristics. In future work, we want to
investigate better order strategies for SCPs in the context of
M&S and to formalize cost partitioning as a transformation
of the M&S framework.

Acknowledgements
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639).

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4159

References
[Bäckström and Nebel, 1995] Christer Bäckström and Bern-

hard Nebel. Complexity results for SAS+ planning. Com-
putational Intelligence, 11(4):625–655, 1995.

[Dräger et al., 2009] Klaus Dräger, Bernd Finkbeiner, and
Andreas Podelski. Directed model checking with distance-
preserving abstractions. International Journal on Software
Tools for Technology Transfer, 11(1):27–37, 2009.

[Edelkamp, 2001] Stefan Edelkamp. Planning with pattern
databases. In Amedeo Cesta and Daniel Borrajo, editors,
Proceedings of the Sixth European Conference on Plan-
ning (ECP 2001), pages 84–90. AAAI Press, 2001.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice.
Morgan Kaufmann, 2004.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[Helmert et al., 2014] Malte Helmert, Patrik Haslum, Jörg
Hoffmann, and Raz Nissim. Merge-and-shrink abstrac-
tion: A method for generating lower bounds in factored
state spaces. Journal of the ACM, 61(3):16:1–63, 2014.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Katz and Domshlak, 2010] Michael Katz and Carmel
Domshlak. Optimal admissible composition of abstraction
heuristics. Artificial Intelligence, 174(12–13):767–798,
2010.

[Nissim et al., 2011] Raz Nissim, Jörg Hoffmann, and Malte
Helmert. Computing perfect heuristics in polynomial time:
On bisimulation and merge-and-shrink abstraction in opti-
mal planning. In Toby Walsh, editor, Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence (IJCAI 2011), pages 1983–1990. AAAI Press, 2011.

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley, 1984.

[Pommerening et al., 2015] Florian Pommerening, Malte
Helmert, Gabriele Röger, and Jendrik Seipp. From
non-negative to general operator cost partitioning. In
Blai Bonet and Sven Koenig, editors, Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI 2015), pages 3335–3341. AAAI Press, 2015.

[Seipp and Helmert, 2018] Jendrik Seipp and Malte
Helmert. Counterexample-guided Cartesian abstrac-
tion refinement for classical planning. Journal of Artificial
Intelligence Research, 62:535–577, 2018.

[Seipp et al., 2017a] Jendrik Seipp, Thomas Keller, and
Malte Helmert. A comparison of cost partitioning algo-
rithms for optimal classical planning. In Laura Barbulescu,
Jeremy Frank, Mausam, and Stephen F. Smith, editors,

Proceedings of the Twenty-Seventh International Con-
ference on Automated Planning and Scheduling (ICAPS
2017), pages 259–268. AAAI Press, 2017.

[Seipp et al., 2017b] Jendrik Seipp, Florian Pommerening,
Silvan Sievers, and Malte Helmert. Downward Lab. https:
//doi.org/10.5281/zenodo.790461, 2017.

[Seipp et al., 2020] Jendrik Seipp, Thomas Keller, and Malte
Helmert. Saturated cost partitioning for optimal classi-
cal planning. Journal of Artificial Intelligence Research,
67:129–167, 2020.

[Sievers et al., 2014] Silvan Sievers, Martin Wehrle, and
Malte Helmert. Generalized label reduction for merge-
and-shrink heuristics. In Carla E. Brodley and Peter Stone,
editors, Proceedings of the Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence (AAAI 2014), pages 2358–
2366. AAAI Press, 2014.

[Sievers et al., 2016] Silvan Sievers, Martin Wehrle, and
Malte Helmert. An analysis of merge strategies for
merge-and-shrink heuristics. In Amanda Coles, Andrew
Coles, Stefan Edelkamp, Daniele Magazzeni, and Scott
Sanner, editors, Proceedings of the Twenty-Sixth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2016), pages 294–298. AAAI Press, 2016.

[Sievers et al., 2020a] Silvan Sievers, Florian Pommeren-
ing, Thomas Keller, and Malte Helmert. Code, bench-
marks and experiment data for the IJCAI 2020 paper
“Cost-Partitioned Merge-and-Shrink Heuristics for Opti-
mal Classical Planning”. https://doi.org/10.5281/zenodo.
3775871, 2020.

[Sievers et al., 2020b] Silvan Sievers, Florian Pommerening,
Thomas Keller, and Malte Helmert. Cost-partitioned
merge-and-shrink heuristics for optimal classical plan-
ning: Technical report. Technical Report CS-2020-001,
University of Basel, Department of Mathematics and
Computer Science, 2020.

[Sievers, 2018] Silvan Sievers. Merge-and-shrink heuristics
for classical planning: Efficient implementation and par-
tial abstractions. In Vadim Bulitko and Sabine Storandt,
editors, Proceedings of the 11th Annual Symposium on
Combinatorial Search (SoCS 2018), pages 90–98. AAAI
Press, 2018.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

4160

https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.790461
https://doi.org/10.5281/zenodo.3775871
https://doi.org/10.5281/zenodo.3775871

	Introduction
	Background
	Classical Planning
	Merge-and-Shrink
	Cost Partitioning

	Label Cost Partitioning
	Interaction of OCP with M&S
	Label Reduction
	Shrinking
	Merging

	Interaction of SCP with M&S
	Label Reduction
	Shrinking
	Merging

	Implementation
	Experiments
	Conclusions

