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Abstract
Conversion rate (CVR) prediction is becoming in-
creasingly important in the multi-billion dollar on-
line display advertising industry. It has two ma-
jor challenges: firstly, the scarce user history data
is very complicated and non-linear; secondly, the
time delay between the clicks and the correspond-
ing conversions can be very large, e.g., ranging
from seconds to weeks. Existing models usu-
ally suffer from such scarce and delayed conver-
sion behaviors. In this paper, we propose a novel
deep learning framework to tackle the two chal-
lenges. Specifically, we extract the pre-trained em-
bedding from impressions/clicks to assist in con-
version models and propose an inner/self-attention
mechanism to capture the fine-grained personalized
product purchase interests from the sequential click
data. Besides, to overcome the time-delay issue, we
calibrate the delay model by learning dynamic haz-
ard function with the abundant post-click data more
in line with the real distribution. Empirical experi-
ments with real-world user behavior data prove the
effectiveness of the proposed method.

1 Instruction
The online display advertisement is an important applica-
tion of intelligent E-commerce, where the advertisers mar-
ket their products to potential consumers by placing graphi-
cal ads/content in publishers’ web pages, e.g., product pages
in amazon.com. The main goal of advertisers is to reach the
most receptive end users in mobile phones/desktops with im-
pressions, who may engage with their displayed ads via clicks
and eventually take a desired action like a conversion. In the
online advertising market, various ad products are provided
so as to assist advertisers to realize their goals, among which
the cost per conversion based ad products are emerging, e.g.,
OCPA in Google AdWords. The conversion is more prefer-
able by advertisers compared with the click since it transfers
the risk of impression performance and brings the revenue di-
rectly.Thus, the click-through rate (CTR) and conversion rate
∗Corresponding author

(CVR) prediction are becoming increasingly important in the
multi-billion dollar online display advertising industry.

Under the huge commercial values, substantial efforts have
been devoted to designing smart algorithms for CTR or CVR
prediction. Most of existing works focus on CTR estimation
via exploiting deep learning techniques. For instance, [Zhou
et al., 2018] proposed the deep interest network (DIN), which
adopts attention-based mechanism to learn the representa-
tion of user interests from historical behaviors. The majority
of these works use various high-dimensional and extremely
sparse ID features for model training such as user ID and item
ID, and thus have large demands for data volume. Such data
requirement can be easily satisfied in the context of CTR pre-
diction, since the amount of impressions and clicks is really
large in reality. However, the situation is quite different for
CVR prediction. Specifically, the amount of positive conver-
sion samples for CVR prediction is much smaller than that of
positive click samples for CTR prediction inherently. Thus,
how to make use of the powerful deep learning techniques
for modeling complicated and non-linear user behavior data
while avoiding potential over-fitting issue is a great challenge
for CVR prediction.

Aside from the inherent data scarcity, the serious conver-
sion delay is another unique challenge of CVR prediction.
Specifically, the conversion event may happen several days
later or even longer after a click, while the click feedback can
be captured almost immediately after an impression for CTR
prediction. For instance, when a user clicks a product ads
in e-commerce website, she/he may just add the product into
the cart for further comparison, and probably places an order
some days later. This delayed conversion feedback creates
lots of “false negative” samples, i.e., a positive conversion
sample may be treated as negative since we cannot observe
the conversion currently. The existence of “false negative”
samples aggravates the sparsity of positive conversion signal.
More seriously, the “false negative” problem can also result
in the underestimation of CVR due to the biased distribution
in training samples.

To handle the time delay problem, existing works focus
on capturing the expected delay distribution between the ad
click and conversion. Specifically, [Chapelle, 2014] intro-
duced an exponential probability model to help determine on
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what degree a non-converted sample should be treated as true
negative. The recent work [Yoshikawa and Imai, 2018] pro-
posed a non-parametric delayed feedback model to estimate
the time delay without assuming a parametric distribution.
These works can be classified as static time-delay models,
where the time delay distribution is determined when a click
event happens and remains unchanged afterwards. We argue
that the time delay distribution should change as more click
information are observed and collected after an ad click. For
instance, some days after the user clicked and then carted the
candidate item without purchase, she/he may browse a series
of related items, which actually reveals her/his strong intents
to purchase recently. This simple but true example reflects the
dynamic conversion probability of a clicked item. Therefore,
existing static time delay models can not capture the abundant
and diverse information from user behavior data.

In this paper, we propose a two-stage deep neural network
framework to tackle the two challenging problems in CVR
prediction. To overcome the first challenge, we extract click
interests from impressions by generating the dense item em-
bedding from item images via pre-trained Telepath [Wang
et al., 2017] in the first stage. Such dense item embedding
is then utilized to substitute the sparse item ID features in
the second stage to help alleviate the data sparsity issue. In
the second stage, we propose a novel attention based con-
version model to capture the fine-grained personalized prod-
uct purchase interests from the sequential click data. We
adopt self-attention to capture the global/high-level conver-
sion interest patterns across all user sub-interactions. It helps
to find out the hidden conversion items in click history and
captures the relations among different conversion items. To
tackle the time-delay challenge, we also propose a novel time-
delay model. It utilizes the survival analysis to estimate the
time delay and takes advantages of the post-click information
to calibrate the conversion model. To train the conversion
model and the time-delay model jointly on the second stage,
we propose a new EM algorithm, which separates the train-
ing process of the conversion model and the delay model. We
also validate the effectiveness of our two-stage deep neural
network framework by conducting extensive experiments on
real-world e-commerce datasets.

2 Related Work
Existing works mainly exploit traditional models for CVR
prediction. For example, [Lee et al., 2012; Rosales et
al., 2012; Chapelle, 2014] are based on logistic regression
model. [Lu et al., 2017] proposed a Gradient Boosted Deci-
sion Tree (GBDT) based method. [Yang et al., 2016] and [Ji et
al., 2017] tackled the problem with a graphical model. How-
ever, these traditional methods might suffer from their inher-
ent inability in capturing the highly non-linear user behavior
data, which motivates the proposal of deep learning frame-
work. Most recently, ESMM [Xiao et al., 2018] adopted deep
framework to directly extract conversion signal from impres-
sions. However, the extremely sparse conversion can easily
be overwhelmed by the click signal.

Time delay modeling is an important part of CVR pre-
diction. There exist several works focusing on the time-

Figure 1: Two-stage deep learning framework

delay feedback problem [Chapelle, 2014; Ji et al., 2017;
Safari et al., 2017; Yoshikawa and Imai, 2018]. [Chapelle,
2014] is the first study of delayed feedback in display adver-
tising, in which the time delay of conversion is simply as-
sumed to be an exponential distribution. Later works either
proposed other distributions such as Weibul distribution [Ji
et al., 2017] or non-parametric model [Yoshikawa and Imai,
2018] to learn the delay distribution. However, all these exist-
ing methods assume a static time-delay distribution, i.e., the
distribution is based on user history data before the ad click
and remains unchanged regardless of post-click behaviors. In
our work, we learned a dynamic time delay distribution with
the abundant post-click data.

3 Model
Our proposed two-stage deep learning framework for CVR
prediction is shown in Fig. 1. In the first stage, we ex-
tract click interests from impressions and utilize such im-
pression/click information to facilitate the learning in the
second stage. More specifically, we adopt the pre-trained
Telepath [Wang et al., 2017] to generate the dense item em-
beddings from image data, which can then be utilized to sub-
stitute the sparse item ID features in the conversion model to
alleviate data scarcity problem. In the second stage, we de-
sign a novel deep learning framework to extract conversion
interests from clicks. Specifically, it consists of two prob-
ability models, i.e., the conversion model and the time de-
lay model. The conversion model predicts the probability of
whether a displayed ad can be finally converted after being
clicked by some customer, while the time delay model cap-
tures the time delay after the click for the converted items. We
jointly train the two models via our proposed EM algorithm.
More details are provided in the following subsections.

3.1 Conversion Model
Conversion model is first proposed to predict the true con-
version rate. Suppose that we observe a dataset D =
{(Xi,Hi, yi, di, ei)}, where Xi denotes features of the can-
didate item, Hi represents historical clicked items of the user,
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yi indicates the state of candidate item, di is the time delay
between the click and the conversion of the candidate, and ei
is the elapsed time after the click. Specifically, Xi includes
two types of features, i.e., the dense item embedding s ∈ Rn
learned from item product image through Telepath [Wang et
al., 2017] and the one-hot embedding o ∈ Rm to encode
item category information. Then, we have Xi = (si, oi).
Hi = {(sl, ol)}L1 contains L recently clicked items in chrono-
logical order. yi ∈ {0, 1} is a binary value indicating whether
the candidate item has already converted. di ∈ [0,∞] is the
time gap between the click and the conversion for the candi-
date item. If there is no conversion, then di =∞. ei ∈ [0,∞)
is the elapsed time after the click, i.e., the gap of time be-
tween the click and the observation moment. Here, we use
(X,H, Y,D,E) to represent the variable corresponding to
each data field inD. When Y = 0 is observed, the conversion
may still happen in the future due to the time delay. Thus, we
use the conversion variable C ∈ {0, 1} to indicate whether
the conversion of candidate item can be observed eventually.

As [Chapelle, 2014], we assume that the final conversion
are only related to the characteristics of candidate itemX and
users behaviors H , i.e.,

Pr(C|X,H,E) = Pr(C|X,H). (1)

It makes sense since the elapsed time E may have an influ-
ence on the observed time Y but can not affect the final con-
version C. However, different from [Chapelle, 2014], we do
not assume the independence between conversion time vari-
able D and the observed time variable E.

In our conversion model, we first extract the character-
istic from feature Xi of the candidate item. We align the
category and dense embedding via a transformation matrix
Wo ∈ Rk×m. After that, we concatenate them, followed by
one fully connected layer, i.e.,

hc = F(concat(si,Wooi)), (2)

where F∗(·) is a fully connected layer with ReLU.
Another part of the conversion model is to extract the users’

hidden conversion interests from the sequential user click his-
tory Hi. For each item in Hi, we adopt the similar alignment
operation as candidate item, i.e., xl = concat(sl,Wool). To
capture the hidden interests from the sequential history clicks,
we adopt one-layer Gated Recurrent Unit (GRU) mechanism
[Cho et al., 2014] to overcome the gradient vanishing prob-
lem, i.e.,

hl = G
(
xl, hl−1

)
, l ∈ {1, · · · , L}, (3)

where G(·) is the GRU layer and h∗ is its hidden state.
Among the hidden information extracted by GRU from dif-

ferent click sub-sequences, there may exist high-level conver-
sion interests. If there exist a conversion in a user’s click his-
tory, this conversion may affect her/his click sub-sequences
before next conversions. The sub-sequences before different
conversions are highly correlated. To extract the global and
high-level conversion interests among different hidden con-
version items in history click data, we adopt the self-attention
mechanism [Bahdanau et al., 2014] on top of the GRU hidden
layer. Self-attention mechanism refines the representation by
matching a single sequence against itself, which can capture

the relationships between elements in the sequence, regard-
less of their distance. Before calculating the self-similarity
in self-attention, we first transform the hidden state of each
history item hl into query, key, and value via different fully
connected layers, i.e.,

hl
k = Fk

(
hl

)
, k ∈ {Q,K,P}. (4)

By a little abuse of notation, we denote h∗ = (h1
∗, · · · , hL∗ ).

Then, we calculate the self-similarity matrix and obtain the
self-attention hidden state as follows:

hS = softmax
(
hQhT

K

)
hP . (5)

On the top of self-attention layer, we add the inner-
attention mechanism to extract the relationship between the
weighted history behavior and candidate item. We calculate
the similarity fraction between candidate item hidden state hc
and the weighted hidden state of each history hS , i.e.,

slI = vT tanh(Wchc + Wl
ShlS), ∀l ∈ {1, · · · , L}, (6)

where Wc ∈ Rs×(k+n), Wl
S ∈ Rs×(k+n), v ∈ Rs, are all the

parameter matrix used in the calculation. Then, we normalize
similarity scores and utilize them to align hidden state hlS , i.e.,

α = softmax(sI), ua =

L∑
l=1

αlhl
S , (7)

where ααα = (α1, · · · , αL), αl ∈ (0, 1), ∀l ∈ {1, · · · , L}.
In order to enhance the information fusion between the user

behavior and the candidate item, we further concatenate the
hidden embedding for candidate items and the hidden state
vectors based on above inner/self-attention models and also
their augmented matching via element-wise operations, with
one fully connected layers followed, i.e.,

ha = F(concat(hc, ua, hc � ua, hc − ua)). (8)

Finally, we can calculate the probability of item conversion
based on the last hidden layer ha, i.e.,

Pr(C = 1|Xi,Hi) = σ(ha). (9)

Note that the parameters in the conversion model are co-
trained with the time delay model shown in the later subsec-
tion. After training, Eq. (9) alone is used as the conversion
predictor in test or online tasks.

3.2 Time Delay Model
The time delay model is then proposed to calibrate CVR
prediction with additional post-click items, which refer to
the clicked items of a user after the current candidate item.
Denote the data set with extra post-click items as D =
{(Xi,Hi, yi, di, ei,Sei)}. Here, Sei = {Sl}ei1 is a set of
post-click items during elapsed time [0, ei] with Sl as those
in the l-th elapsed day. We use SE to represent the variable
corresponding to feature Sei . To analyze the time delay, we
first demonstrate our survival analysis framework with extra
post-click items Sei , and then introduce the details of how we
extract the most important information from Sei .
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Survival Analysis
Survival analysis [Miller Jr, 2011] is usually conducted to an-
alyze the survival time, especially for censored data, in which
the exact survival time has not been observed, e.g., the patient
may drop out of the study in the treatment. The conversions
that are not observed currently can be treated as censored.
Here, we leverage survival analysis to describe the time delay
distribution of item conversion. We consider the survival time
T as a non-negative random variable. Denote the probability
density function as f(t), which indicates the probability of
occurrence of events at any time t. Then, the survival time
distribution function can be presented as F (t) =

∫ t
0
f(x)dx.

We define the survival function as S(t) = 1 − F (t), which
describes the probability Pr(T > t). We further define the
hazard function h(t) as the probability of instantaneous death
after the survival time t, i.e., h(t) = f(t)

S(t) . Note that h(t),
f(t) and S(t) are related to each other, i.e.,

S(t) = exp(−
∫ t

0

h(x)dx). (10)

When applying survival analysis to our model, we trans-
form it into discrete conversion delay analysis via day slots.
The hazard function represents the probability that the con-
version has not yet happened up to time di but happens at
time di exactly. We denote the hazard function for delay
time D as h(D|X,H, SE), where we ignore the hidden con-
dition C = 1 for simplicity. Previous works usually as-
sume that the hazard function is independent with the timeE,
i.e., h(D|X,H, SE) = h(D|X,H), which makes the hazard
function unchanged during the period [0, ei]. Based on this
assumption, the survival time distribution is simplified as,

S(di|Xi,Hi,Sei) = exp(−h(di|Xi,Hi)di). (11)

It limits the time delay model in the scenario that the conver-
sion rate always decreases as the time elapses. To solve this
problem, we use the post-click items to infer the hazard rate
h(D|Xi,Hi,Sei) and then calculate the survival time accord-
ing to Eq. 10, i.e.,

S(di|Xi,Hi,Sei) = exp(−
di∑
i=1

h(di|Xi,Hi,Sei)). (12)

Note that when di > ei, we cannot have the post click
items in period [ei, di]. Under this case, we just let
h(d|Xi,Hi,Sei) = h(ei|Xi,Hi,Sei), ∀d ∈ {ei, · · · , di}.
When di = 0, we let S(di|Xi,Hi,Sei) = 1.

With the above survival time, we can calculate the time
delay probability at time di, i.e.,
Pr(di|Xi,Hi,Sei) = S(di|Xi,Hi,Sei)h(di|Xi,Hi,Sei). (13)

From Eq. 12 and Eq. 13, we can know that to estimate
the time delay probability at time di, we need to estimate the
hazard rate h(D = d|Xi,Hi,Sei), especially for any day d ∈
{0, · · · , ei} based on the pre-click features (Xi,Hi) and the
post-click data Sei . This is illustrated in next subsection.

Post-click Calibration
In our time delay model, we add the post-click information
to learn the dynamic hazard function. We model the post-
click information via two-level user behavior sequence be-
tween the click and the conversion and propose a two-layer

GRU model to extract them. The first layer GRU is to extract
a fixed size hidden embedding from each day slot according
to the clicked items in this day slot e.g., the items Sl in day
slot l ∈ {0, · · · , ei}. The second layer GRU is to extract the
sequence of embedding in each day slot obtained from layer
one. We consider at most N day slots, i.e., N = maxi{ei}.
Compared with one-level model, which treats all clicks as one
sequence, our two-level model can distinguish the conversion
interests in different days and have much better ability to trace
long-term interests in long click sequences. In our two-layer
GRU model, we adopt the same GRU structure as in Eq. 3.
Furthermore, we denote the feature of click item j in Sl dur-
ing day slot l as (slj , olj). Similar to previous operation, we
combine the item embedding and category index one-hot em-
bedding via xlj = concat(slj ,Woolj). Then, we have the first
layer feature extraction as:

hl
1(j) = G(xl

j , h
l
1(j − 1)), j ∈ {1, · · · , L}. (14)

We use the last hidden embedding state as the representation
of day slot l, denoted as hl1. With the first layer embedding,
we can further extract the post-click information via the sec-
ond layer GRU, i.e.,

h2(l) = G(hl
1, h2(l − 1)), l ∈ {1, · · · , ei}. (15)

Note that there may exist some day slot with empty click item.
Here, we just assign them the zero embedding. For the sec-
ond layer of GRU, we denote hp(e) = h2(e) to represent
the hidden embedding from post-click data before day slot
e ∈ {0, · · · , ei}. Combined with the embedding of candidate
item hc and the hidden state embedding extracted from click
history, denoted as he, we can obtain the final embedding via
one fully connected layer, i.e.,

hg(e) = F(concat(hc, he, hp(e))), ∀e ∈ {0, · · · , ei}. (16)

Finally, we can obtain the hazard rate as follows,

h(D = e|Xi,Hi,Sei)) = σ(hg(e)), ∀e ∈ {0, · · · , ei}. (17)

3.3 Learning Algorithm
In this subsection, we introduce the learning algorithm. Note
that, the variable Y cannot be applied as labels directly
due to the time delay problem. Here, we propose a novel
Expectation-Maximization (EM) algorithm, which is widely
used to find the maximum likelihood estimation of parame-
ters in probabilistic models that depend on unobservable hid-
den variables. The intuition behind the EM algorithm in this
paper is that we treat variable C as the hidden variable. More
specifically, we use current probability model to calculate the
expectation ofC in E-step, treat the expectation ofC as a new
label for training in M-step.
E-step calculation: In E-step, we calculate the expectation
of C by considering the estimation in two different data sets.
Define the unobserved conversion data set as I0 = {i|yi =
0, ∀yi ∈ D} and the observed conversion data set as I1 =
{i|yi = 1, ∀yi ∈ D}. Denote the expectation for sample i as
wi. For any sample i ∈ I1, we can infer C = 1 directly, i.e.,

wi = 1, ∀i ∈ I1. (18)

For any sample i ∈ I0, we cannot observe the conversion cur-
rently, but may still observe it in the future. Given the feature
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information (Xi,Hi,Sei), we can estimate the expectation of
C given Y = 0, i.e.,

wi = Pr{C = 1|Xi,Hi,Sei , Y = 0}
=

Pr{C=1|Xi,Hi,Sei}Pr{Y=0|Xi,Hi,Sei ,C=1}
Pr{Y=0|Xi,Hi,Sei}

=
σ(ha)exp

(
−
∑di

d=1 σ(hg(d))
)

1−σ(ha)+σ(ha)exp
(
−
∑di

d=1 σ(hg(d))
) , ∀i ∈ I0. (19)

M-step optimization: In M-step, we analyze the log-
likelihood loss of data set I1 and I0 separately. We first ana-
lyze the probability of a conversion event. Given the sample
i ∈ I1 with feature set (Xi,Hi,Sei), we have:

Pr{Y = 1, di|Xi,Hi,Sei} = Pr{C = 1, di|Xi,Hi,Sei}
= Pr{C = 1|Xi,Hi,Sei}Pr{di|Xi,Hi,Sei , C = 1}
= Pr{C = 1|Xi,Hi}Pr{di|Xi,Hi,Sei , C = 1}
= σ(ha)σ(hg(ei))exp

(
−
∑di

d=1 σ(hg(d))
)
.

(20)
Note that the third equality is based on the hypothesis pro-
posed in Eq. 1. The last equality is based on the conversion
probability in Eq. 9 and the time delay probability in Eq. 13.

For any i ∈ I1, we can obtain the log-likelihood easily as
wi = 1 according to the conversion probability above. Then,
the log-likelihood loss for I1 can be expressed as:

L1 =
∑
i∈I1

[log(σ(ha)) + log(σ(hg(ei)))−
ei∑

d=1

σ(hg(d))]. (21)

For the sample i ∈ I0, we can not assert whether the click will
be converted eventually. We separate the case of conversion
C = 1 and non-conversion C = 0. Similar to Eq. 20, we can
calculate the probability of Pr{Y = 0, C = 1|Xi,Hi,Sei}
and Pr{Y = 0, C = 0|Xi,Hi,Sei}. Based on the expec-
tation value wi in E-step, we can obtain the log-likelihood
function for samples in I0 as:

L0 =
∑

i∈I0 wi log
(
Pr{Y = 0, C = 1|Xi,Hi,Sei}

)
+w̃i log

(
Pr{Y = 0, C = 0|Xi,Hi,Sei}

)
=
∑

i∈I0 wi

(
log
(
(ha)

)
−
∑ei

d=1 σ(hg(d))
)

+w̃i log
(
1− σ(ha)

)
,

(22)

where we denote w̃i = 1− wi.
At last, we simplify the summation of the log-likelihood

loss L0 and L1, and obtain the total loss as follows:

L(Θ;D) =
∑

i

(
wi log

(
(ha)

)
+ w̃i log

(
1− σ(ha)

))
+
∑

i

(
log(σ(hg(ei)))yi − wi

∑ti
d=1 σ

(
hg(d)

))
,

(23)

where ti = ei if yi = 0 and ti = di otherwise. Note that we
can separate the loss in Eq. 23 into two parts, one only includ-
ing the parameters Θc from conversion model and the other
only including the parameters Θt from time delay model. We
can optimize the parameters Θc and Θt separately via updat-
ing their gradients separately.
Complexity analysis: The GRU layer takes O((n + k)2L).
The Self-attention takes O((n+ k)sL2). The inner-attention
takes O((n+ k)sL). Two-layer GRU takes O((n+ k)2LN ).
When simplifying the calculation, the total complexity of our
model isO

(
(n+k)L

(
sL+(n+k)N2

)
(‖I0‖+‖I1‖)

)
, where

n, k, L and s are constants shown in Eq. 6 andN is the largest
post-click day slot.

Dataset Training Testing
# Items # Classes # Samples # Samples

WP1 69000 3894 247627 33703
WP2 26467 3691 73952 11202

JD-MP 110445 3999 415270 68415

Table 1: Summary of the data structure.

4 Experiments
4.1 Experimental Settings
Datasets: We evaluate our models in three data sets from
JingDong ad platform1, summaried in Table 1. Specifically,
the first two sets are users’ behaviors collected from two dif-
ferent ad positions in Wechat (abbreviated as WP1, WP2).
The last one is from JingDong middle page (short for JD-
MP). All training sets consist of one week data from 2018-
09-04 to 2018-09-10, while the testing sets consist of one day
data on 2018-09-12. In addition, we use the post-clicks from
2018-09-04 to 2018-09-10 in JingDong App.
Baselines: To verify the effectiveness of our two-stage deep
learning framework (short for TS-DL), we choose the follow-
ing baselines for comparison. To assure fairness, all baselines
utilize the item embeddings from the first-stage of TS-DL.

• DFM [Chapelle, 2014]: This is the classic study of de-
layed feedback in display advertising, in which the time
delay is assumed to be an exponential distribution.

• DIN [Zhou et al., 2018]: This baseline applies the at-
tention mechanism to capture users’ long-term interests,
originally designed for CTR prediction.

• Wide&Deep [Karatzoglou et al., 2016]: This baseline
is the classical work of applying deep learning models
to YouTube recommendations.

• GRU+Att: This baseline utilizes GRU to model users’
sequential behaviors and an attention module for captur-
ing user interests from historical behaviors.

• TS-DL/X: This refers a series of baselines extracted
from our TS-DL. The notation “/” means removing some
component from our model. X refers such component,
which includes {I, S, D} indicating first-stage image em-
bedding, self-attention, and delay model accordingly.

Parameter Settings: The dimension of the dense item em-
bedding from Telepath [Wang et al., 2017] is set as n = 50.
The sparse one-hot category embedding is compressed into
a dense k = 8 dimension vector. Note that candidate items,
historical clicked items and post-clicked items have their own
transformation matrix respectively, but with the same dimen-
sion setting. When exploiting the users click history, we only
consider their L = 10 latest clicked items. We train each
model up to 30 epochs, and select the results from the epoch
with the highest AUC score. The batch size is set as 1024
during the training. We choose the learning rate as 0.0001
unless otherwise specified. We implement our TS-DL model
and all baselines with TensorFlow [Abadi et al., 2016], and
use Adam Optimizer to optimize the loss function.

1https://jzt.jd.com/gw/adsource.htm
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Models WP1 WP2 JD-MP
AUC RelaImpr AUC RelaImpr AUC RelaImpr

DFM 0.6560 -21.45% 0.5795 -22.14% 0.6181 -19.71%
DIN∗ 0.6986 0.00% 0.6021 0.00% 0.6471 0.00%

Wide&Deep 0.6573 -20.80% 0.6020 -0.10% 0.5621 -57.78%
GRU+Att 0.6975 -0.55% 0.6205 18.02% 0.6210 -17.74%
TS-DL/I 0.6618 -18.53% 0.5979 -4.11% 0.6287 -12.51%
TS-DL/D 0.7058 3.63% 0.6284 25.76% 0.6325 -9.93%
TS-DL/S 0.7060 3.73% 0.6395 36.63% 0.6567 6.53%
TS-DL 0.7090 5.24% 0.6478 44.76% 0.6589 8.02%

Table 2: Overall comparisons on real data sets

Models WP1 WP2 JD-MP
∆rCVR rCVR ∆rCVR rCVR ∆rCVR rCVR

DFM 0.1317 0.7242 0.1321 0.8420 0.1150 0.8032
DIN 0.1391 0.6606 0.1335 0.7883 0.1091 0.5951

Wide&Deep 0.1048 0.6223 0.0861 0.6890 0.0269 0.5441
GRU+Att 0.1480 0.6546 0.1408 0.7856 0.0802 0.6084
TS-DL/I 0.0960 0.7974 0.1483 1.0461 0.1053 0.8511
TS-DL/D 0.1539 0.6556 0.1591 0.7813 0.0827 0.6070
TS-DL/S 0.2011 0.7751 0.2516 1.0275 0.1673 1.0275
TS-DL 0.2303 0.7945 0.3275 1.0035 0.2526 0.9459

Table 3: In-depth conversion rate comparisons

4.2 Overall Performance Comparisons
In this subsection, we evaluate the overall performance of our
proposed TS-DL model by comparing it with various base-
lines comprehensively. We adopt AUC score to measures the
quality of item ranking based on the predicted CVR [Fawcett,
2005]. The higher the AUC score is, the better the perfor-
mance shows. Furthermore, we choose DIN as the bench-
mark and adopt RelaImpr [Yan et al., 2014] as the metric to
measure the relative AUC improvement.

We compare various state-of-the-art baselines on three data
sets in Table 2. We have the following observations. Firstly,
our TS-DL model outperforms the existing state-of-the-art
methods in all data sets. Particularly, TS-DL produces sig-
nificant 8.02% relative AUC improvement over baseline DIN
in JD-MP, and 5.24% and 44.76% in two Wechat positions
accordingly. Secondly, it also illustrates the effectiveness of
ablation study. For instance, some important components in
our model such as time delay module are crucial for CVR
prediction. More specifically, when compared with TS-DL,
TS-DL/D results in impressive 1.61%, 19% and 17.95% rel-
ative AUC reductions in three ads positions accordingly.

4.3 In-depth Conversion Rate Analysis
In this subsection, we aim to answer two questions: 1) Does
our model calibrate the CVR prediction accurately? 2) Can
our model separate the positive and negative samples cor-
rectly? For the first one, we introduce the metric of relative
CVR (rCVR), which is defined as the ratio of predicted aver-
age CVR of given data samples over the ground-truth average
CVR of the testing sets. The rCVR with smaller distance to
one is better. For the second one, we define the metric of
positive-negative gap, i.e., the difference between the rCVR
over positive samples and that over negative samples, denoted
as ∆rCVR. Larger ∆rCVR means better classification ability.

Table 3 illustrates results of CVR analysis over various
baselines in three data sets. We have following observations.
Firstly, our TS-DL model has the best ability to separate the
positive samples and the negative samples. For instance, the
positive-negative gap from TS-DL is almost twice as large as

 

      
 

 

 

 

  

 

 

      
 

 

 

 

 

 

 

 

Figure 2: Time Delay Distribution

Dataset DFM TS-DL/S TS-DL
WP1 0.1125/0.1071 0.1114/0.1033 0.1112/0.1028
WP2 0.0632/0.0906 0.0620/0.0835 0.0619/0.0833

JD-MP 0.1614/0.1267 0.1231/0.0908 0.1229/0.0889

Table 4: Jensen-Shannon divergence on test/train set

that from DFM in almost all data sets. Secondly, the overall
CVR prediction from all models are under-estimated since all
of the relative CVR are less than one. Yet, the models with
the time-delay component, e.g., DFM and our TS-DL, can
indeed calibrate the relative CVR. Our TS-DL model has the
most accurate average CVR prediction in all data sets.

4.4 Time Delay Analysis
In this subsection, we compare the performance of our TS-DL
model with two baselines, i.e., DFM and TS-DL/S, in predict-
ing time delay over all three data sets, since both DFM and
TS-DL/S have the time delay model. Before the detailed anal-
ysis, we first present the delay distribution on train and test
data sets in Fig. 2. It shows that the number of conversions
decreases with the increase of time delay. We use Jensen-
Shannon divergence [Lin and Wong, 1990] to measure the
performance of the time delay prediction for different models.
It is widely used to quantify the similarity of two probability
distributions. The smaller the Jensen-Shannon divergence is,
the more similar two distributions are. Table 4 shows the re-
sults of time delay prediction over both test and train data
sets. Overall, we can observe that our TS-DL always have
the smallest Jensen-Shannon divergence value over both test
and train data sets. Particularly, TS-DL produces significant
23.9% and 29.8% reductions over DFM on test and train data
from JD-MP accordingly.

5 Conclusions
In this paper, we proposed a novel two-stage deep learn-
ing framework to tackle the CVR prediction problem. More
specifically, we extract the pre-trained embedding from im-
pressions/clicks to assist in the conversion model. To over-
come the time-delay challenge, we leverage the survival anal-
ysis to estimate the time delay via utilizing post-click infor-
mation. We conduct extensive experiments with e-commerce
datasets to verify the performance. The exploration of meta-
data such as price and brand would be in the future work.
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