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Abstract

Precise medicine recommendations provide more
effective treatments and cause fewer drug side ef-
fects. A key step is to understand the mecha-
nistic relationships among drugs, targets, and dis-
eases. Tensor-based models have the ability to
explore relationships of drug-target-disease based
on large amount of labeled data. However, exist-
ing tensor models fail to capture complex nonlin-
ear dependencies among tensor data. In addition,
rich medical knowledge are far less studied, which
may lead to unsatisfied results. Here we propose
a Neural Tensor Network (NeurTN) to assist per-
sonalized medicine treatments. NeurTN seamlessly
combines tensor algebra and deep neural networks,
which offers a more powerful way to capture the
nonlinear relationships among drugs, targets, and
diseases. To leverage medical knowledge, we aug-
ment NeurTN with geometric neural networks to
capture the structural information of both drugs’
chemical structures and targets’ sequences. Ex-
tensive experiments on real-world datasets demon-
strate the effectiveness of the NeurTN model.

1 Introduction
Data-Driven Drug Discovery. Personalized medicine rec-
ommendation is one of the most promising assets to treat
human disease [Li et al., 2015]. A critical step in person-
alized medicine is to understand drugs’ mechanism of ac-
tions (MoAs) by exploring the biological interactions among
drugs, targets, and diseases. In vitro experiments can be
performed to identify potential associations of drug-target-
disease, but such systematic screening remains an expensive
and time-consuming process. It takes more than 13 years and
$2.87 billion to bring a new drug into the market [Hauser et
al., 2017]. Researchers are thus resorting to machine learning
to understand the drugs’ MoAs by mining the emergence of
large-scale chemical and genomic data [Chen and Li, 2018].

Two most prominent data-driven tasks among these recent
developments are drug-disease and drug-target prediction
(see [Ezzat et al., 2018; Li et al., 2015] for surveys). In these
tasks, researchers have attempted to collect a variety of omics

data, and predict new interactions of drug-disease or drug-
target through network inference [Chen and Li, 2017], multi-
view learning [Zheng et al., 2013], and deep learning [Tsub-
aki et al., 2018]. Beyond pairwise drug-disease or drug-target
relationships, some recent studies have pointed at the impor-
tance of identifying triple-wise interactions of drug-target-
disease in human metabolic systems [Capuzzi et al., 2018;
Chen and Li, 2019; Wang et al., 2018]. Among different
methods, tensor factorization is a commonly used method to
infer the missing entries of a drug-target-disease tensor [Chen
and Li, 2019; Wang et al., 2018].

Tensor Factorization. Tensor factorizations aim to extract
latent structure from high dimensional data [Kolda and Bader,
2009]. CP (CANDECOMP/PARAFAC) and Tucker are two
popular tensor models with diverse variants being success-
fully applied in health data analysis [Wang et al., 2015;
Chen and Li, 2019]. However, the CP and Tucker models
(or their variants) suffer from two weaknesses.

First, their performance can be limited by linearity, which
might not be expressive well for nonlinear data manifolds.
Recently, a series of studies have shown that nonlinear ten-
sor factorizations have superior performances over multi-
linear tensor models [Xu et al., 2012; Liu et al., 2019;
Wu et al., 2019]. For example, InfTucker [Xu et al., 2012]
was proposed to use a nonlinear Gaussian kernel. However,
they rely on a prior Gaussian process over tensor data, which
might be difficult to estimate in practice [Zhe et al., 2016].

The second drawback of CP or Tucker models is the data
sparsity issue. To alleviate this issue, coupled tensor-matrix
models are extended to jointly analyze tensor together with
auxiliary information [Wang et al., 2015; Narita et al., 2012;
Acar et al., 2011]. However, these methods are inherently
limited by encoding feature matrices, which require tedious
feature engineering [Shan et al., 2016]. As the number of
features grows, designing and deploying them become chal-
lenging, especially for healthcare data.

Contributions. To tackle these challenges, we propose a
Neural Tensor Network (NeurTN), which combines tensor al-
gebra and deep neural networks to provide effective medicine
recommendations. By replacing the multilinear multiplica-
tion with a neural network, NeurTN is able to character-
ize nonlinear dependencies among tensor data. Moreover,
NeurTN incorporates various heterogeneous information to
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alleviate the data sparsity issue. Instead of constructing them
as feature matrices, NeurTN uses geometric neural networks
to learn the embeddings from molecular graphs and target se-
quences, which allows to be trained end-to-end. Our data-
driven model opens up opportunities to use large-scale omics
data to discover drug’ MoAs in pharmacological studies.

2 Preliminaries
2.1 Tensor Algebra
Tensors are multidimensional arrays that extend the concept
of matrices [Kolda and Bader, 2009]. An N -order tensor
is denoted as X ∈ RI1×I2×...×IN , where the (i1, . . . , iN )-
th element of X is denoted as X i1,...,iN . Matricization
is the process of flattening a tensor into a matrix. The
mode-n matricization of tensorX is represented as X(n) ∈
RIn×I1...In−1×In+1...IN and is arranging the mode-n fibers of
the tensor as columns in X(n).

N-mode product. The n-mode product of a tensor X ∈
RI1×I2×...×IN with a matrix A ∈ RJ×In is denoted as X ×nA
with size RI1···×In−1×J×In+1···×IN . Also, we have:

(X ×n A)i1···in−1jin+1···iN =

In∑
in=1

X i1i2···iNAjin

CP tensor factorization. The CP is the most common ten-
sor model, which assumes a compact hidden structure in the
data [Kolda and Bader, 2009]. Formally, the CP model ap-
proximates the element of a third-order X as:

X̂ ijk = f(i, j, k|U,V,W) =

r∑
t=1

UitVjtWkt, (1)

where U,V,W are the factor matrices; r denotes the tensor
rank. The CP model has its ease of interpretation: each rank-
one component serves as a latent concept or clusters for the
data. However, the CP model adopts multilinear assumption,
which may be insufficient to capture more complex and non-
linear feature interactions. Our work here addresses this issue
by designing the predictor f(·) using neural networks.

2.2 Problem Definition
The medicine recommendation task can be formulated as a
tensor completion problem [Chen and Li, 2019; Wang et al.,
2018]. To be specific, the input can be organized as a drug-
target-disease tensor X ∈ RM×N×L, where M , N , and L de-
note the number of drugs, targets, and diseases, respectively.
An entry X ijk = 1 if an interaction among drug i, target j,
and disease k is observed; X ijk = 0, otherwise. Our aim is to
estimate the scores of unobserved elements X̂ ijk, which can
be used to infer novel interactions of drug-target-disease.

2.3 Input and Embedding Layer
Our goal is to estimate a score between drug i, target j and
disease k, i.e., X̂ ijk. We first describe the biological features
with respect to drugs, targets, and diseases.

One-hot Embeddings
Given a drug i, a target j, and a disease k, their one-hot en-
codings ai ∈ RM , bj ∈ RN , and ck ∈ RL can be obtained
based on their identities. We can obtain their dense embed-
dings via three lookup tables:

ûi ← lookup(ai), v̂j ← lookup(bi), ŵk ← lookup(ci),
(2)

where ûi ∈ Rd1 , v̂j ∈ Rd2 , and ŵk ∈ Rd3 are new embed-
dings for drug i, target j, and disease k, respectively.

Here we also incorporate medical knowledge of drugs and
targets. We leave the exploration of diseases as a future work.
Instead of constructing these auxiliary information as feature
matrices [Zheng et al., 2013; Chen and Li, 2019], we apply
geometric neural networks to learn the structural information
of both drugs’ chemical structures and targets’ sequences.

Graph Neural Network for Molecular Graph
The chemical structure of a drug determines its physicochem-
ical properties, further affects its pharmacological activity. In
this study, we extract features of chemical structures by us-
ing Graph Neural Networks (GNN) [Duvenaud et al., 2015;
Gilmer et al., 2017]. A chemical molecule can be represented
as a graph G = (V, E), where nodes denote the atoms and
edges denote the chemical bonds between atoms. The key
idea behind GNN is to iteratively aggregate information from
atoms’ local neighbors with convolutional operator. Such
information can be further propagated across the graph by
stacking multiple graph convolutional layers, resulting in a
learned featurization for each molecule.

Formally, given a graph Gi for drug i, the GNN converts
the graph Gi into a vector representation riG by aggregating the
representation rv of each atom node v in the graph [Duvenaud
et al., 2015]. GNN first obtains the representation r

(t)
v by the

following transition function:

m(t+1)
v = r(t)v +

∑
u∈N(v)

r(t)u ,

r(t+1)
v = σ(m(t+1)

v H
|N(v)|
(t) ),

where r
(t)
v is the representation of node v in the t-th step and

r
(0)
v can be initialized by its atom features [Duvenaud et al.,

2015]. N(v) is the neighbors of v and |N(v)| denotes the num-
ber of neighbors around v. H|N(v)|

(t) is a weight and σ(·) is the
sigmoid. A global pooling function then acquires the graph
representation by combining features from all the atoms as:

riG =
∑
t,v

softmax(W(t)
gnnr

(t)
v ), (3)

here W
(t)
gnn is a weight and riG ∈ Rg is the dense vector repre-

sentations for the graph Gi.

Convolutional Neural Network for Target Sequence
Similarly, we can obtain vector representations of target se-
quences by using a convolutional neural network (CNN).
Here we adopt a recent developed CNN model to map tar-
get sequences to a real-valued vectors by applying hierarchi-
cal filter functions [Tsubaki et al., 2018]. Given that a target
sequence can be treated as a string of amino acids, it can be
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transformed into a list of words by using n-gram feature ex-
traction technique. Let Sj = x1, x2, . . . , x|Sj | be a sequence
for target j, where xi is the i-th word after transformation and
|Sj | is the length of sequence. All words can be then trans-
lated into randomly word embeddings as:

x1,x2, . . . ,x|Sj |−1,x|Sj |

where xi ∈ Rd is the embedding of the i-th word. Let input
c
(0)
i = xi:i+w−1 refer to [xi, . . . ,xi+w−1], the concatenation of
w contiguous embeddings. The CNN uses one filter as:

c
(1)
i = ReLU(Wcnnc

(0)
i + bcnn),

where c
(1)
i ∈ Rd is a hidden vector, Wcnn ∈ Rd×dw is the

weight and bcnn is the bias. Note that the filter projects
a dw-dimensional input vector into a d-dimensional hidden
vector. As such, one can obtain a set of hidden vector:
C = {c(t)1 , c

(t)
2 , . . . , c

(t)
C } by applying the filters hierarchically

[Tsubaki et al., 2018]. Finally, an average function is used to
aggregate features from hidden vectors as:

rjS =
1

|C|

|C|∑
i=1

c
(t)
i , (4)

here rjS ∈ Rd is the representation for the target sequence Sj .

The Unified Embeddings
We fuse all available features for more sophisticated embed-
dings by using fully connected neural layers. Given drug’s
features (ûi, r

i
G), target’s features (v̂j , r

j
S), and disease’s fea-

ture ŵk, we can obtain new embeddings ui,vj , and wk
1 via:

ui ← FC(Θu; ûi⊕riG), vj ← FC(Θv; v̂j⊕rjS), wk ← ŵk

(5)
where ⊕ is the concatenation. In addition, by choosing the
parameters Θu and Θv properly, we can reshape all embed-
dings with the same size, i.e., {ui,vj ,wk} ∈ Rr. As such, a
nonlinear tensor model can be built upon these embeddings.

3 The Proposed Model
The proposed NeurTN contains three components: MLP,
GTF, and CTN as shown in Figure 1.

3.1 Multi-Layer Perceptron
It is straightforward to feed all the features into a Multi-
Layer Perceptron (MLP) [He et al., 2017; Wu et al., 2019], in
which each hidden layer can learn nonlinear feature interac-
tions from ui, vj , and wk:

zL = MLP(ui ⊕ vj ⊕wk),

X̂ ijk = σ(WLzL + bL)
(6)

where WL and bL denote the weight and bias. We choose
the ReLU(·) as activation function in hidden layers and the
sigmoid function σ(·) as predictor function.

The MLP is capable of learning nonlinearity of the con-
catenated features. Nevertheless, the concatenated features,
i.e., ui ⊕ vj ⊕wk, may lose some information in the original
embeddings that are useful for later interaction learning. To
avoid such information loss, we further propose two triple-
wise layers for learning multi-aspect features.

1wk only contains one-hot feature since there is no auxiliary in-
formation for diseases in this study.

GTF
MLP

MLP

Fusion

� 𝑿𝑿
𝒊𝒊𝒊𝒊
𝒊𝒊

Drug (i) Disease (k)Target (j)

0 1 0 0 1 0 0 1 0

CNNGNN

CTN 

Figure 1: Overall architecture of NeurTN.

3.2 Generalized Tensor Factorization
Inspired by the success of tensor CP model in Eq. (1), we
propose a Generalized Tensor Factorization (GTF) to learn
nonlinear triple-wise feature interactions. Specifically, given
the drug embedding ui ∈ Rr, target embedding vj ∈ Rr, and
disease embedding wk ∈ Rr, we define a novel triple-wise
interaction layer as:

φ(ui,vj ,wk) = ui � vj �wk (7)
here � denotes the element-wise product. Then, we can
project the hidden vector φ(ui,vj ,wk) into an output layer:

X̂ ijk = fout(h
T (ui � vj �wk)) (8)

here fout(·) and h denote the activation function and weights.
Relation to tensor CP model: Intuitively, if we use an

identity function for fout (e.g., fout(x) = x) and enforce the
weights h to be a uniform vector of 1, we can rewrite the
Eq. (8) as X̂ ijk =

∑r
t=1 uitvjtwkt, which exactly recovers

the tensor CP model as Eq. (1). In other words, GTF ex-
tends the CP model into a nonlinear tensor machine. As
neural networks have strong ability to fit the data, GTF is
thus more expressive than the linear CP model. In this work,
we implement the GTF layer by using the sigmoid function
fout(x) = 1/(1 + e−x) and learning h from the data.

3.3 Compressed Tensor Network
To better capture the triple-wise feature interactions among
drug-target-disease, we further consider the outer product on
the embeddings ui,vj , and wk:

E = ui ⊗ vj ⊗wk (9)
where E ∈ Rr×r×r is a tensor feature map and ⊗ de-
notes the outer product. Our motivation for E is straight-
forward. The map E captures more signals than element-
wise product in Eq. (7) since it encodes any triple-wise fea-
ture interactions. Such strategy has been widely used to
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boost system performance in deep learning [He et al., 2018;
Cohen et al., 2016]. Moreover, the feature map E lies in a 3D
tensor format, which allows us to design an efficient feedfor-
ward neural network by using tensor algebra latter.

The 3D tensor format of E naturally suggests a CNN model
to use shared parameters to perform ”convolution”. However,
the feature E from the outer product space does not have spa-
tial locality. Thus, we cannot employ the CNN to E by en-
forcing an unexpected local connectivity pattern. Inspired by
the tensor algebra in n-mode product (Sec 2.1), we propose
a simple but efficient Compressed Tensor Network (CTN) to
perform feedforward computations. Basically, the tensor map
E is successively compressed by a sequence of three weight
matrices along each mode with nonlinear transformation:

H1 = ReLU(E×1A
(0)×2B

(0)×3C
(0) + B(0)), ...,

HL = ReLU(HL−1×1A
(L−1)×2B

(L−1)×3C
(L−1) + B(L−1)),

X̂ ijk = σ(Wo × Reshape(HL) + bo)
(10)

where Hl, {A(l),B(l),C(l)}, and B(l) denote the hidden ten-
sor, the weights, and bias in the l-th layer, respectively.
Reshape(·) flattens HL into a vector. The output layer is a
fully connected layer with the sigmoid function as predictor.

Dropout: Dropout [Srivastava et al., 2014] is a regulariza-
tion technique for neural networks to prevent overfitting. The
idea of dropout is to randomly turn off neurons with probabil-
ity ρ during training, and use all neurons in the testing. Here
we also apply a dropout layer on the feature E, i.e., randomly
dropping ρ percent of its elements.

3.4 The Overall Model
Joint Training. We have developed three instantiations of
nonlinear tensor models: MLP, GTF, and CTN. We present
our unified model NeurTN by joint learning these three mod-
ules. Formally, let zL, φ, and HL denote the outputs of
the last hidden layers of MLP, GTF, and CTN, respectively.
Then, we have:

F = zL ⊕ φ⊕ Reshape(HL),

X̂ ijk = σ(WfF + bf )
(11)

here we choose the sigmoid function σ(·) as final predictor.
Relation to wide&deep learning: The proposed NeurTN is

similar to the well-known Wide&Deep Learning [Cheng et
al., 2016; He et al., 2017], which has the benefits of mem-
orization and generalization. Our GTF can be regarded as a
wide component whereas the MLP and CTN can be viewed
as deep components.
Model Optimization. We adopt pairwise learning methods
to optimize model parameters [Bordes et al., 2013]. The idea
behind pairwise learning is that an observed triplet should be
predicted with a higher score than an unobserved one. This
can be achieved by minimizing:

L(Θ) =
∑

(i,j,k)∈D+

∑
(i′,j′,k′)∈D−

max(0, 1+f(i′, j′, k′)−f(i, j, k))

(12)
here f(·) and Θ denote our predictive function and model pa-
rameters in Eq. (11). D+ denotes the set of positive triplets

(e.g., X ijk = 1), and D− denotes the set of negative triplets
corresponding toD+ by sampling from unobserved elements.
Following [Bordes et al., 2013], for each positive training
triplet (i, j, k), we randomly sample one negative training
triplet (i′, j′, k′) in the training step.

It is worth mentioning that our model is highly instruc-
tive and allows the use of deep learning techniques, such
as dropout regularization, which is more effective than the
kernel-based nonlinear tensor models (see Sec 4.2).

4 Experiments
4.1 Datasets and Baselines
Datasets. We obtain data from three public databases [Chen
and Li, 2019; Wang et al., 2018]: CTD2, DrugBank3, and
UniProt4. We only focus on drugs that have DrugBank identi-
fier for later collecting auxiliary information. As such, we ob-
tain 436, 322 triplets of drug-target-disease, involving 1, 901
drugs, 2, 514 targets, and 2, 923 diseases. For drugs, their
SMILES, a string encoding of chemical structures, are down-
loaded from DrugBank. These SMILES strings can be con-
verted to molecular graphs using RDKit tool5, which can be
then fed into the GNN module. For targets, their amino acid
sequences are collected from UniProt and can be used by the
CNN module without any pre-processing.
Baselines. We mainly compare with tensor-based models
that can learn the drug-target-disease data. (1) CP and
Tucker [Kolda and Bader, 2009]: both adopt multilinear as-
sumption. (2) nTucker [Zhe et al., 2016]: a nonlinear Tucker
based on Gaussian process. (3) CoSTCo [Liu et al., 2019]:
a recent CNN-based tensor model. (4) CMTF [Acar et al.,
2011]: a tensor-matrix model regarding auxiliary informa-
tion as feature matrices. (5) TFAI [Narita et al., 2012]: a
tensor model with mode regularization. (6) AirCP [Ge et al.,
2016]: a tensor-matrix model with graph regularization. (7)
NTF [Wu et al., 2019]: a neural network with MLP. (8) Ru-
bik [Wang et al., 2015]: a tensor model with non-negativity
and sparsity constraints. (9) DTD [Chen and Li, 2019]: a
recent tensor-matrix model in drug discovery.
Parameter Settings. For tensor-matrix models CMTF,
TEAI, AirCP, Rubik, and DTD, the feature matrices for aux-
iliary information are constructed using feature engineering
as [Zheng et al., 2013; Chen and Li, 2017], The parameter
settings for all the baselines are carefully tuned to achieve
optimal performance. For NeurTN, the embedding size r in
Eq. (5) is searched within [16, 32, 64, 128]. For MLP and
CTN, we both employ three hidden layers with dropout ratio
ρ = 0.3 and each layer sequentially decreases the half size
of inputs. Our models are built upon PyTorch6 with Adam
optimizer [Kingma and Ba, 2015]. We search the batch
size and the learning rate within {128, 256, 512, 1024} and
{0.001, 0.005, 0.01, 0.05, 0.1}, respectively. We use grid-
based search to find the best parameter settings. We tune

2http://ctdbase.org/downloads/
3https://www.drugbank.ca/
4https://www.uniprot.org/
5http://rdkit.org/
6https://pytorch.org/
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Model Hit@5 NDCG@5 Hit@10 NDCG@10 Hit@15 NDCG@15
CP 0.412 0.201 0.441 0.243 0.462 0.251

Tucker 0.423 0.212 0.452 0.249 0.459 0.254
nTucker 0.438 0.223 0.463 0.257 0.467 0.261
CoSTCo 0.437 0.230 0.461 0.259 0.469 0.266

MLP 0.428 0.219 0.456 0.255 0.461 0.258
GTF 0.459 0.241 0.478 0.262 0.473 0.269
CTN 0.462 0.250 0.482 0.269 0.480 0.271

NeurTN 0.475 0.259 0.491 0.277 0.486 0.279

Table 1: Results of different methods without auxiliary information.

model parameters using validation set and terminate training
if the performance does not improve for 100 epochs.

Evaluation Protocols. We randomly split the dataset into
80% training, 10% validation, and 10% test sets. The valida-
tion set is used for tuning hyper-parameters and the final re-
sults are evaluated on the test set. To better construct negative
test triplets, we adopt similar procedures as [Ge et al., 2016;
Chen and Li, 2019; Bordes et al., 2013]: 1) Scenario 1 (ran-
dom sample): for each positive test triplet (i, j, k), we ran-
domly sample a negative triplet (i′, j′, k′) such that (i′, j′, k′)
is unobserved from data, i.e., X i′j′k′ = 0; 2) Scenario 2 (sam-
ple drug mode): we corrupt the drug mode by replacing the
drug i with a new drug i′ so that the (i′, j, k) is unobserved;
3) Scenario 3 (sample target mode): we corrupt the triplet
(i, j, k) by (i, j′, k) in the target mode; 4) Scenario 4 (sample
disease mode): the triplet (i, j, k) is replaced with (i, j, k′).
Such scenarios are meaningful in clinics. For example, given
a pair of drug-target (i, j), we can find their potential indi-
cations for new disease k′ [Hauser et al., 2017]. In addition,
we apply filtered settings [Bordes et al., 2013] such that those
test negative samples will not appear in the training step.

We use two common top-n metrics, Hit@n and NDCG@n,
to evaluate recommendation performance [He et al., 2017;
Bordes et al., 2013]. The metric of Hit@n measures if a test
triplet is among the top-n ranked list, while NDCG@n is a
position-aware metric which assigns larger weights on higher
positions. Moreover, we use the strategy in [Bordes et al.,
2013] to avoid heavy computation on all triplets. For exam-
ple, in Scenario 1, we randomly generate 100 negative sam-
ples (i′, j′, k′) for each test (i, j, k). Based on the ranking of
these triplets, Hit@n and NDCG@n can be computed.

4.2 Experimental Results
Pure Tensor Completion. We have proposed four variants
of nonlinear tensor models: MLP (Eq. (6)), GTF (Eq. (8)),
CTN (Eq. (10)), and the unified NeurTN (Eq. (11)). In this
section, We first compare them with the baselines CP, Tucker,
nTucker, and CoSTCo, which are pure tensor machines with-
out any auxiliary data of drugs or targets. For fair comparison,
we only use the one-hot features in Eq. (2) as inputs for the
proposed models. Due to page limitation, we only show the
top-n performances for Scenario 1, and similar trends can be
observed under different scenarios. Table 1 shows the results
in terms of Hit@n and NDCG@n.

It is observed that nonlinear tensor models consistently
outperform the multilinear models. For example, nonlin-
ear nTucker performs better than Tucker; GTF outperforms
the CP model and gains average improvements of 7.39% on

Drug (DrugBank) Target (UniProt)
Fructose Bis(5’-adenosyl)-triphosphatase
Nicotine Neuronal acetylcholine receptor subunit alpha-2
Fructose ATP synthase subunit beta, mitochondrial
Glucosamine Matrix metalloproteinase-9
Atorvastatin Histone deacetylase 2
Cannabidiol Histamine H1 receptor
Calcitriol Solute carrier family 12 member 3
Cyclophosphamide Protein kinase C beta type
Bezafibrate Nuclear receptor subfamily 1 group I member 2
Copper Insulin receptor

Table 2: Top 10 novel drug-target pairs for diabetes’ disease.

Hit@n and 11.63% on NDCG@n. These improvements are
statistically significant and mainly stem from the powerful
representation of nonlinear models. Second, the performance
of CoSTCo is limited for drug-target-disease data that do not
have local connectivity. As such, CoSTCo may be insuffi-
cient to capture nonlinear patterns for biological data using a
CNN. Third, the performances of CTN are better than GTF,
implying a good representations of a deeper neural network.
Finally, NeurTN achieves the best performances, presumably
this owes to the the benefits of its joint learning.

Tensor Completion with Auxiliary Information. Now we
compare the overall performance of NeurTN with the base-
lines with auxiliary information. The results of CP, Tucker,
nTucker, and CoSTCo are omitted due to their inferior per-
formances without auxiliary data. Figure 2 shows the perfor-
mance of Top-n performances, where n = [5, 10, 15].

From the figures, we can observe that our proposed
NeurTN outperforms coupled tensor-matrix factorization
methods in all scenarios. The superior performance of
NeurTN mainly benefits from its deep neural networks. It
is intuitive that neural networks would have stronger abil-
ity to fit the data, while the multilinear assumptions in cou-
pled tensor-matrix factorizations do not. More importantly,
NeurTN utilizes geometric neural networks GNN and CNN,
which can learn features from molecular graphs and protein
sequences in the training process. Such end-to-end repre-
sentation learning can potentially obtain more interpretable
data-driven features instead of predefining hand-crafted fea-
ture matrices in coupled tensor-matrix factorizations. Given
these encouraging results, we use our model to predict novel
interactions in the diabetes-specific pathway.

Case Study on Diabetes. In clinics, given a disease, it is
critical to know which drugs can treat this disease as well
as the targets involving in the disease-specific pathway. The
pairs of (drug, target) related to a special disease are im-
portant in personalized treatments. Here we use NeurTN
to predict the novel (drug, target) pairs related to diabetes’s
metabolic pathway. The top-10 novel pairs of (drug, target)
corresponding to diabetes are listed in Table 2. The pre-
dictive results can be then evaluated by domain experts to
see whether such recommendations are clinically meaning-
ful. They can be further validated in vivo experiments, such
as animal studies and clinical trials. In summary, the pro-
posed model provides a systematic approach to narrow down
the search space for further clinical trials in drug discovery.
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Figure 2: Evaluation of top-n performance for different scenarios in terms of Hit@n (a-d) NDCG@n (e-h).

4.3 Ablation Study
We perform some ablation studies to investigate the impact of
each module in NeurTN. Table 3 shows the performance of
our default method and its variants in the case of Scenario 1.

Our results are summarized as follows: (1) Remove MLP:
Without MLP layers, we find that the performance is slightly
worse. Although the black-box nature of MLP, its hierar-
chical structure is still helpful to learn more complex in-
teractions; (2) Remove GTF: Not surprisingly, the results
are worse than the default method, which suggests that the
GTF can capture triple-wise feature interactions in a non-
linear fashion; (3) Remove CTN: This variant substantially
decreases the overall performance with a large margin, veri-
fying the effectiveness the CTN in capturing the useful fea-
ture interactions from outer product feature space; (4) Re-
move GNN: The chemical structure of a drug determines
its pharmacological activity. Removing GNN thus decreases
the overall performance; (5) Remove CNN: Similar, amino
acid sequences determine the therapeutic function of targets.
Deleting the CNN module thus hurts the final performance.

Embedding size of NeurTN: The embedding size r in Eq.
(5) affects the representation ability of NeurTN. We vary r
within [16, 32, 64, 128]. As shown in Figure 3(a), NeurTN
benefits from a large embedding size in Scenario 1. Results
on other scenarios have similar trends and are omitted.

Layers of NeurTN: We also conduct experiments to inves-
tigate the impact of the number of layers in NeurTN. We vary
the number of layers in the NeurTN within L = [2, 3, 4, 5].

Architecture Hit@5 NDCG@5 Hit@10 NDCG@10
(0) Default 0.574 0.343 0.602 0.396
(1) Remove MLP 0.558 0.337 0.571 0.380
(2) Remove GTF 0.533↓ 0.335 0.553↓ 0.371↓
(3) Remove CTN 0.527↓ 0.329↓ 0.544↓ 0.362↓
(4) Remove GNN 0.515↓ 0.317↓ 0.526↓ 0.341 ↓
(5) Remove CNN 0.519↓ 0.324↓ 0.530↓ 0.346 ↓

Table 3: Ablation analysis on our variant models. ’↓’ means a severe
performance drop.

16 32 64 128
r

0.55

0.56

0.57

0.58

0.59

H
it@

5

(a) Embedding size
NeurTN

2 3 4 5
L

0.55

0.56

0.57

0.58

0.59

H
it@

5

(b) Layers of NeurTN
NeurTN

0.1 0.3 0.5 0.7 0.9
0.55

0.56

0.57

0.58

H
it@

5

(c) Dropout ratio
with dropout
without dropout

Figure 3: (a) The impact of embedding size r. (b) The impact of the
number of layers L. (c) The impact of dropout ratio ρ.

As shown in Figure 3(b), stacking more layers generally im-
proves the system performance, which demonstrates the us-
age of more neural layers is able to model complex drug-
target-disease interactions.

Dropout regularization: Figure 3(c) shows the perfor-
mances of NeurTN w.r.t. dropout ratio. Our results show
that dropout offers better performance. Specifically, using a
dropout ratio ρ ≈ 0.3 achieves an optimal accuracy.

5 Conclusion
A critical step in personalized medicine is to understand
drugs’ MoAs by exploring the biological interactions among
drugs, targets, and diseases in human metabolic systems. In
this study, we present a novel NeurTN, which seamlessly
combines the tensor algebra and deep neural network to cap-
ture the nonlinear relationships among health data. In the fu-
ture, we aim to incorporate the auxiliary information of dis-
eases under the NeurTN.
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