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Abstract
Value function estimation, i.e., prediction, is an im-
portant task in reinforcement learning. The Boltz-
mann softmax operator is a natural value estimator
and can provide several benefits. However, it does
not satisfy the non-expansion property, and its di-
rect use may fail to converge even in value iteration.
In this paper, we propose to update the value func-
tion with dynamic Boltzmann softmax (DBS) op-
erator, which has good convergence property in the
setting of planning and learning. Experimental re-
sults on GridWorld show that the DBS operator en-
ables better estimation of the value function, which
rectifies the convergence issue of the softmax oper-
ator. Finally, we propose the DBS-DQN algorithm
by applying the DBS operator, which outperforms
DQN substantially in 40 out of 49 Atari games.

1 Introduction
Reinforcement learning has achieved groundbreaking suc-
cess for many decision making problems [Kober et al., 2013;
Mnih et al., 2015]. Without full information of the environ-
ment, the agent learns an optimal policy by interacting with
the environment from experience.

Value function estimation, i.e., prediction, is an important
task in reinforcement learning [Xu et al., 2018; Pan et al.,
2019]. In the prediction task, it requires the agent to have
a good estimate of the value function in order to update to-
wards the true value function. A key factor to prediction is
the action-value summary operator. The action-value sum-
mary operator for a popular off-policy method, Q-learning
[Watkins, 1989], is the hard max operator, which always com-
mits to the maximum action-value function according to cur-
rent estimation for updating the value estimator. The “hard
max” updating scheme may lead to misbehavior due to noise
in stochastic environments [Hasselt, 2010; van Hasselt, 2013;
Fox et al., 2015]. Even in deterministic environments, this
may not be accurate as the value estimator is not correct in the
early stage of the learning process. Consequently, it is impor-
tant to choose an appropriate action-value summary operator.

The Boltzmann softmax operator is a natural value estima-
tor based on the Boltzmann softmax distribution, which is a
widely-used scheme to address the exploration-exploitation

dilemma in reinforcement learning [Azar et al., 2012; Cesa-
Bianchi et al., 2017]. In addition, the Boltzmann softmax
operator provides benefits for reducing overestimation and
gradient noise in deep Q-networks [Song et al., 2019]. How-
ever, despite the advantages, it is challenging to apply the
Boltzmann softmax operator in value function estimation. As
shown in [Littman and Szepesvári, 1996; Asadi and Littman,
2017], it is not a non-expansion, which may lead to multiple
fixed-points and thus the optimal value function of this pol-
icy is not well-defined. Non-expansion is a vital and widely-
used sufficient property to guarantee the convergence of the
planning and learning algorithm. Without such property, the
algorithm may misbehave or even diverge.

We propose to update the value function using the dynamic
Boltzmann softmax (DBS) operator with good convergence
guarantee. Our idea is to make the parameter β time-varying
while being state-independent. We prove that having βt ap-
proach ∞ suffices to guarantee the convergence of value it-
eration with the DBS operator. Therefore, the DBS opera-
tor rectifies the convergence issue of the Boltzmann softmax
operator with fixed parameters. Note that we also achieve
a tighter error bound for the fixed-parameter softmax opera-
tor in general cases compared with [Song et al., 2019]. In
addition, we show that the DBS operator achieves good con-
vergence rate. Based on this theoretical guarantee, we apply
the DBS operator to estimate value functions in the setting
of model-free reinforcement learning without known model.
We prove that the corresponding DBS Q-learning algorithm
also guarantees convergence. Finally, we propose the DBS-
DQN algorithm, which generalizes our proposed DBS oper-
ator from tabular Q-learning to deep Q-networks using func-
tion approximators in high-dimensional state spaces.

It is crucial to note the DBS operator is the only one that
meets all desired properties proposed in [Song et al., 2019] up
to now, as it ensures Bellman optimality, enables overestima-
tion reduction, directly represents a policy, can be applicable
to double Q-learning [Hasselt, 2010], and requires no tuning.

To examine the effectiveness of the DBS operator, we con-
duct extensive experiments to evaluate the effectiveness and
efficiency. We first evaluate DBS value iteration and DBS
Q-learning on a tabular game, the GridWorld. Our results
show that the DBS operator leads to smaller error and bet-
ter performance than vanilla Q-learning and soft Q-learning
[Haarnoja et al., 2017]. We then evaluate DBS-DQN on large
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scale Atari2600 games, and we show that DBS-DQN outper-
forms DQN in 40 out of 49 Atari games.

The main contributions can be summarized as follows:
• We analyze the error bound of the Boltzmann softmax

operator with arbitrary parameters, including static and
dynamic.
• We propose the DBS operator, which has good conver-

gence property in the setting of planning and learning.
• We conduct extensive experiments to verify the effec-

tiveness of the DBS operator in 49 Atari games. Experi-
mental results verify our theoretical analysis and demon-
strate the effectiveness of the DBS operator.

2 Preliminaries
A Markov decision process (MDP) is defined by a 5-tuple
(S,A, p, r, γ), where S andA denote the set of states and ac-
tions, p(s′|s, a) the transition probability from state s to state
s′ under action a, and r(s, a) the corresponding immediate
reward. The discount factor is denoted by γ ∈ [0, 1).

The agent interacts with the environment with its policy
π, a mapping from state to action. The objective is to find
an optimal policy that maximizes the expected discounted
long-term reward E[

∑∞
t=0 γ

trt|π], which can be solved by
estimating value functions. The state value of s and state-
action value of s and a under policy π are defined as V π(s) =
Eπ[
∑∞
t=0 γ

trt|s0 = s] and Qπ(s, a) = Eπ[
∑∞
t=0 γ

trt|s0 =
s, a0 = a]. The optimal value functions are defined as
V ∗(s) = maxπ V

π(s) and Q∗(s, a) = maxπ Q
π(s, a).

The optimal value function V ∗ and Q∗ satisfy the Bellman
equation, which is defined recursively as in Eq. (1):

V ∗(s) = max
a∈A

Q∗(s, a),

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′).
(1)

Starting from an arbitrary initial value function V0, the opti-
mal value function V ∗ can be computed by value iteration
[Bellman, 1957] according to an iterative update Vk+1 =
T Vk, where T is the Bellman operator defined by (T V )(s) =
maxa∈A

[
r(s, a) +

∑
s′∈S p(s

′|s, a)γV (s′)
]
.

When the model is unknown, Q-learning [Watkins and
Dayan, 1992] is an effective algorithm to learn by explor-
ing the environment. Value estimation and update for a given
trajectory (s, a, r, s′) for Q-learning is defined as:

Q(s, a) = (1− α)Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)

)
, (2)

where α denotes the learning rate. Note that Q-learning
employs the hard max operator for value function updates,
i.e., max(X) = maxi xi. Another common operator is the
log-sum-exp operator (Eq. (5) in [Haarnoja et al., 2017]):
Lβ(X) = 1

β log(
∑n
i=1 e

βxi). The Boltzmann softmax oper-

ator is defined as: boltzβ(X) =
∑n
i=1 e

βxixi∑n
i=1 e

βxi
.

3 Dynamic Boltzmann Softmax Updates
In this section, we propose the dynamic Boltzmann softmax
operator (DBS) for value function updates.

The DBS operator is defined as: ∀s ∈ S ,

boltzβt(Q(s, ·)) =

∑
a∈A e

βtQ(s,a)Q(s, a)∑
a∈A e

βtQ(s,a)
, (3)

where βt is non-negative. Our core idea of the DBS operator
is to dynamically adjust the value of βt during the iteration.

We now give theoretical analysis of the proposed DBS op-
erator and show that it has good convergence guarantee.

3.1 Value Iteration with DBS Updates
DBS value iteration admits a time-varying, state-independent
sequence {βt} and updates the value function according to
boltzβt by iterating the following steps:

Qt+1(s, a)←
∑
s′

p(s′|s, a) [r(s, a) + γVt(s
′)] , ∀s, a

Vt+1(s)← boltzβt(Qt+1(s, ·)), ∀s
(4)

For the ease of notations, we denote Tβt the function that it-
erates any value function by Eq. (4).

Therefore, the way to update the value function is accord-
ing to the exponential weighting scheme which is related to
both the current estimator and the parameter βt.

Theoretical Analysis
It has been shown that the Boltzmann softmax operator is not
a non-expansion [Littman and Szepesvári, 1996], as it does
not satisfy Ineq. (5).

|boltzβ(Q1(s, ·))− boltzβ(Q2(s, ·))|
≤max

a
|Q1(s, a)−Q2(s, a)|, ∀s ∈ S. (5)

Indeed, the non-expansion property is a vital and widely-used
sufficient condition for achieving convergence of learning al-
gorithms. If the operator is not a non-expansion, the unique-
ness of the fixed point may not be guaranteed, which can lead
to misbehaviors in value iteration.

In Theorem 1, we provide a novel analysis which demon-
strates that the DBS operator enables the convergence of DBS
value iteration to the optimal value function. We give the
proof sketch due to limited space.
Theorem 1 (Convergence of value iteration with the DBS
operator). For any dynamic Boltzmann softmax operator
boltzβt

, if βt approaches ∞, the value function after t it-
erations Vt converges to the optimal value function V ∗.

Proof Sketch. Let Tm be the function that iterates any value
function by the max operator. Then, we have

||(TβtV1)− (TmV2)||∞ ≤ ||(TβtV1)− (TmV1)||∞︸ ︷︷ ︸
(I)

+ ||(TmV1)− (TmV2)||∞︸ ︷︷ ︸
(II)

(6)

For the term (I), we have

||(TβtV1)− (TmV1)||∞ ≤
log(|A|)
βt

(7)
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For the term (II), we have

||(TmV1)− (TmV2)||∞ ≤ γ||V1 − V2|| (8)

Combining (6), (7), and (8), we have

||(TβtV1)− (TmV2)||∞ ≤ γ||V1 − V2||∞ +
log(|A|)
βt

(9)

As max is a contraction mapping, then from Banach fixed-
point theorem [Banach, 1922] we have TmV ∗ = V ∗.

By the definition of DBS value iteration in Eq. (4),

||Vt − V ∗||∞ =||(Tβt ...Tβ1)V0 − (Tm...Tm)V ∗||∞

≤γ||(Tβt−1 ...Tβ1)V0 − (Tm...Tm)V ∗||∞ +
log(|A|)
βt

≤γt||V0 − V ∗||∞ + log(|A|)
t∑

k=1

γt−k

βk

(10)

If βt →∞, then limt→∞
∑t
k=1

γt−k

βk
= 0.

Taking the limit of the right hand side of Eq. (10), we
obtain limt→∞ ||Vt+1 − V ∗||∞ = 0.

During the process of dynamically adjusting βt, although
the non-expansion property may be violated for some certain
values of β, we only need the state-independent parameter βt
to approach infinity to guarantee the convergence.

Next, we justify that the DBS operator has good conver-
gence rate guarantee. We omit the proof due to lack of space.

Theorem 2 (Convergence rate of value iteration with the
DBS operator). For any power series βt = tp(p >
0), let V0 be an arbitrary initial value function such
that ||V0||∞ ≤ R

1−γ , where R = maxs,a |r(s, a)|,
we have that for any non-negative ε < 1/4, after

max{O
( log( 1

ε )+log( 1
1−γ )+log(R)

log( 1
γ )

), O
(
( 1

(1−γ)ε )
1
p
)
} steps, the

error ||Vt − V ∗||∞ ≤ ε.
For the larger value of p, the convergence rate is faster.

Note that when p approaches∞, the convergence rate is dom-
inated by the first term, which has the same order as that of
the standard Bellman operator, implying that the DBS opera-
tor is competitive with the standard Bellman operator in terms
of the convergence rate in known environment.

From the proof techniques in Theorem 1, we derive the
error bound of value iteration with the Boltzmann softmax
operator with fixed parameter β in Corollary 1.

Corollary 1 (Error bound of value iteration with the Boltz-
mann softmax operator). For any Boltzmann softmax oper-
ator with fixed parameter β, we have lim supt→∞ ||Vt −
V ∗||∞ ≤ min

{
log(|A|)
β(1−γ) ,

2R
(1−γ)2

}
.

Here, we show that after an infinite number of iterations,
the error between the value function Vt computed by the
Boltzmann softmax operator with the fixed parameter β at the
t-th iteration and the optimal value function V ∗ can be upper
bounded. However, although the error can be controlled, the

direct use of the Boltzmann softmax operator with fixed pa-
rameter may introduce performance drop in practice, due to
the fact that it violates the non-expansion property.

Thus, we conclude that the DBS operator performs better
than the traditional Boltzmann softmax operator with fixed
parameter in terms of convergence.

Relation to Existing Results
In this section, we compare the error bound in Corollary 1
with that in [Song et al., 2019] (Theorem 3), which studies the
error bound of the softmax operator with a fixed parameter β.
Theorem 3 (Song et al., 2019). Let Tsoft be the function that
iterates any value function by the Boltzmann softmax oper-
ator, then ∀(s, a), lim inft→∞ T tsoftQ0(s, a) ≥ Q∗(s, a) −
γ(|A|−1)

(1−γ) max
{

1
β+2 ,

2Qmax
1+eβ

}
.

Different from [Song et al., 2019], we provide a more gen-
eral convergence analysis of the softmax operator covering
both static and dynamic parameters. We also achieve a tighter
error bound when

β ≥ 2

max{γ(|A|−1)
log(|A|) ,

2γ(|A|−1)R
1−γ } − 1

, (11)

where R can be normalized to 1 and |A| denotes the number
of actions. The term on the RHS of Eq. (11) is quite small as
shown in Figure 1(a), where we set γ to be some commonly
used values in {0.85, 0.9, 0.95, 0.99}. The shaded area corre-
sponds to the range of β within our bound is tighter, which is
a general case. Note that the case where β is extremely small,
i.e., approaches 0, is usually not considered in practice. Fig-
ure 1(b) shows the improvement of the error bound that is
defined as their bound−our bound

their bound × 100%, where |A| ranges
from 3 to 18 which is common in the Arcade Learning Envi-
ronment [Bellemare et al., 2013]. Moreover, we also give an
analysis of the convergence rate of the DBS operator.

(a) Range of β within which our
bound is tighter.

(b) Improvement ratio.

Figure 1: Error bound comparison.

Please note that our comparison with [Song et al., 2019] is
fair. In particular, [Song et al., 2019] claim that Tsoft con-
verges to T with exponential rate in terms of β. However, we
find that the analysis is incorrect (refer to the proof of Theo-
rem 3 in Appendix A.1). 1

1 Eq. (A8) in the proof [Song et al., 2019] relies on the as-
sumption that the the gap function δi(s) = Q(s, a[1]) − Q(s, a[i])
is constant. However, the gap function is varying during value
iteration. Thus, Eq. (A7) only leads to the following result:
T kQ0(s, a)−T ksoftQ0(s, a) ≤ γ(1−γk)

1−γ maxδ∈∆

∑m
i=2

δi(s)

1+eβδi(s)
,

where ∆ denotes all possible gap functions during value iteration,
instead of a fixed gap function.
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Empirical Results
We first evaluate DBS value iteration to verify our conver-
gence results in a 10 × 10 GridWorld (Figure 2(a)), which
is a larger variant of the environment of [O’Donoghue et al.,
2016], with the dark grids representing walls. The agent starts
at the upper left corner and aims to eat the apple at the bottom
right corner upon receiving a reward of +1. Otherwise, the
reward is 0. The terminal state is that the agent successfully
eats the apple or a maximum number of steps 300 is reached.
For this experiment, we consider the discount factor γ = 0.9.

(a) GridWorld. (b) Value loss.

(c) Value loss of the last iteration in
log scale.

(d) Convergence rate.

Figure 2: DBS value iteration in GridWorld.

The value loss of value iteration is shown in Figure 2(b).
As expected, for fixed β, a larger value leads to a smaller
loss. We then zoom in on Figure 2(b) to further illustrate the
difference between fixed β and dynamic βt in Figure 2(c),
which shows the value loss for the last episode in log scale.
For any fixed β, value iteration suffers from some loss which
decreases as β increases. For dynamic βt, the performance
of t2 and t3 are the same and achieve the smallest loss in the
domain game. Results for the convergence rate is shown in
Figure 2(d). For higher order p of βt = tp, the convergence
rate is faster. We also observe that the convergence rate of
t2 and t10 is very close and matches the performance of the
standard Bellman operator as discussed before.

From the above results, we find a convergent variant of
the Boltzmann softmax operator with good convergence rate,
which paves the path for its use in reinforcement learning al-
gorithms with little knowledge about the environment.

3.2 Q-learning with DBS Updates
In this section, we show that the DBS operator can be applied
in a model-free Q-learning algorithm.

According to the DBS operator, we propose the DBS Q-
learning algorithm, where the value function is updated by

Q(s, a)← Q(s, a) + αt [r + γboltzβt (Q(s′, ·))−Q(s, a)]
(12)

Please note that the action selection policy is different from
the Boltzmann distribution (e.g., ε-greedy policy).

As seen in Theorem 2, a larger p results in faster conver-
gence rate in value iteration. However, this is not the case in
Q-learning, which differs from value iteration in that it knows
little about the environment, and the agent has to learn from
experience. If p is too large, it quickly approximates the max
operator that favors commitment to current action-value func-
tion estimations. This is because the max operator always
greedily selects the maximum action-value function accord-
ing to current estimation, which may not be accurate in the
early stage of learning or in noisy environments.

Theoretical Analysis
We get that DBS Q-learning converges to the optimal policy
as in Theorem 4, which is under the same additional condition
as in DBS value iteration.
Theorem 4 (Convergence of DBS Q-learning). DBS Q-
learning converges to optimal Q∗(s, a) values if (1) the state
and action spaces are finite, and all state-action pairs are vis-
ited infinitely often; (2)

∑
t αt(s, a) =∞ and

∑
t α

2
t (s, a) <

∞; (3) limt→∞ βt =∞; (4) Var(r(s, a)) is bounded.
Besides the convergence guarantee, we show that the DBS

operator can mitigate the overestimation phenomenon of the
max operator in Q-learning [Watkins, 1989].

Let X = {X1, ..., XM} be a set of random variables,
where the mean of variable Xi is denoted by µi. Note that
in value function estimation, Xi denotes random values of
action i for a fixed state. The true value of the maximum ex-
pected value is µ∗(X) = maxi µi. Let µ̂i denote the sample
mean of µi and F̂ denote the joint distribution of µ̂, where
µ̂ = (µ̂1, ..., µ̂M ). The bias of any action-value summary op-
erator

⊗
is defined as Bias(µ̂∗⊗) = Eµ̂∼F̂[

⊗
µ̂] − µ∗(X),

i.e., the difference between the expected estimated value out-
put by the operator and the maximum expected value.

We now compare the bias for different common operators
and we derive the following theorem.
Theorem 5. Let µ̂∗Bβt , µ̂

∗
max, µ̂

∗
Lβ

denote the estimator with
the DBS operator, the max operator, and the log-sum-exp op-
erator. For any given set of M random variables, we have
∀t, ∀β, Bias(µ̂∗Bβt

) ≤ Bias(µ̂∗max) ≤ Bias(µ̂∗Lβ ).

In Theorem 5, we show that although the log-sum-exp op-
erator [Haarnoja et al., 2017] is able to encourage explo-
ration because its objective is an entropy-regularized form of
the original objective, it may worsen the overestimation phe-
nomenon. In addition, the optimal value function induced
by the log-sum-exp operator is biased from the optimal value
function of the original MDP [Dai et al., 2018]. In contrast,
the DBS operator ensures convergence to the optimal value
function as well as reduction of overestimation.

Empirical Results
We now evaluate DBS Q-learning in the same GridWorld en-
vironment. Figure 3 shows the number of steps the agent
spent until eating the apple in each episode, and a fewer num-
ber of steps corresponds to a better performance.

For DBS Q-learning, we apply the power function βt = tp

with p denoting the order. As shown, DBS Q-learning with

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

1995



Figure 3: Performance comparison of DBS Q-learning, Soft Q-
learning, and Q-learning in GridWorld.

the quadratic function achieves the best performance. Note
that when p = 1, it performs worse than Q-learning in this
simple game, which corresponds to our results in value itera-
tion (Figure 2) as p = 1 leads to an nonnegligible value loss.
When the power p of βt = tp increases further, it performs
closer to Q-learning. Soft Q-learning [Haarnoja et al., 2017]
uses the log-sum-exp operator, where the parameter is chosen
with the best performance for comparison. In Figure 3, soft
Q-learning performs better than Q-learning as it encourages
exploration by entropy regularization. However, it underper-
forms DBS Q-learning (βt = t2) as DBS Q-learning can
guarantee convergence to the optimal value function and can
eliminate the overestimation phenomenon. Thus, we choose
p = 2 in the following Atari experiments.

4 The DBS-DQN Algorithm
Now we show that the DBS operator can further be applied to
problems with high dimensional state space and action space.

The DBS-DQN algorithm is shown in Algorithm 1. We
compute the parameter of the DBS operator by applying the
power function βt(c) = c · t2 as the quadratic function per-
forms the best in our previous analysis. Here, c denote the
coefficient, and contributes to controlling the speed of the in-
crease of βt(c). In many problems, it is critical to choose the
hyper-parameter c. In order to make the algorithm more prac-
tical in problems with high-dimensional state spaces, we pro-
pose to learn to adjust c in DBS-DQN by the meta gradient-
based optimization technique based on [Xu et al., 2018].

The gradient-based optimization method follows the online
cross-validation principle [Sutton, 1992]. Given current ex-
perience τ = (s, a, r, snext), the parameter θ of the function
approximator is updated according to

θ′ = θ − α∂J(τ, θ, c)

∂θ
, (13)

where α denotes the learning rate, and the loss of the neural
network is

J(τ, θ, c) =
1

2

[
V (τ, c; θ−)−Q(s, a; θ)

]2
,

V (τ, c; θ−) = r + γboltzβt(c)
(
Q(snext, ·; θ−)

)
.

(14)

The corresponding gradient of J(τ, θ, c) over θ is

∂J(τ, θ, c)

∂θ
= −

[
V (τ, c; θ−)−Q(s, a; θ)

]∂Q(s, a; θ)

∂θ
.

(15)

Algorithm 1 DBS Deep Q-Network

1: initialize experience replay buffer B
2: initialize Q-function and target Q-function with random

weights θ and θ−
3: initialize the coefficient c of βt of the DBS operator
4: for episode t = 1, ..., M do
5: initialize state s
6: calculate βt(c) = c · t2
7: for step = 1, ..., T do
8: choose a from s using ε-greedy policy
9: execute a, observe reward r, next state snext, and

done flag d
10: store experience (s, a, r, snext, d) in B
11: sample random minibatch of experiences

(s, a, r, snext, d) from B
12: set y = r + γ(1− d)boltzβt

(
Q̂(snext, ·; θ−)

)
13: perform a gradient descent step on

(y −Q(s, a; θ))
2 w.r.t. θ

14: update c according to Eq.(18)
15: reset Q̂ = Q every C steps

Then, the coefficient c is updated based on the subsequent
experience τ ′ = (s′, a, r′, s′next) according to the gradient
of the squared error J(τ ′, θ′, c̄) between the value function
approximator Q(s′next, a

′; θ′) and the target value function
V (τ ′, c̄; θ−), where c̄ is the reference value. The gradient
is computed according to the chain rule in Eq. (16).

∂J ′(τ ′, θ′, c̄)

∂c
=
∂J ′(τ ′, θ′, c̄)

∂θ′︸ ︷︷ ︸
A

dθ′

dc︸︷︷︸
B

. (16)

For the term (B), according to Eq. (13), we have

dθ′

dc
= αγ

∂boltzβt(c̄)(Q(s′next, ·; θ−))

∂c

∂Q(s, a; θ)

∂θ
. (17)

Then, the update of c is as in Eq. (18), with η denoting the
learning rate. 2

c′ = c− η ∂J
′(τ ′, θ′, c̄)

∂c
. (18)

Note that it can be hard to choose an appropriate static
value of sensitive parameter β. Therefore, it requires rigor-
ous tuning of the task-specific fixed parameter β in different
games in [Song et al., 2019], which may limit its efficiency
and applicability [Haarnoja et al., 2018]. In contrast, the DBS
operator is effective and efficient as it does not require tuning.

4.1 Experimental Setup
We evaluate the DBS-DQN algorithm on 49 Atari video
games from the Arcade Learning Environment [Bellemare et
al., 2013], a standard challenging benchmark for deep rein-
forcement learning algorithms, by comparing it with DQN.
For fair comparison, we use the same setup of network archi-
tectures and hyper-parameters as in [Mnih et al., 2015] for

2In implementation, c is clipped to max{0.01, c}.
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both DQN and DBS-DQN. Our evaluation procedure is 30
no-op evaluation which is identical to [Mnih et al., 2015],
where the agent performs a random number (up to 30) of “do
nothing” actions in the beginning of an episode. For each
game, we train each algorithm for 50M steps for 3 indepen-
dent runs to evaluate the performance.

4.2 Performance Comparison
To characterize the effectiveness of DBS-DQN, its improve-
ment over DQN is shown in Figure 4, where the improve-
ment is defined as the relative human normalized score:

scoreagent−scorebaseline
max{scorehuman,scorebaseline}−scorerandom

× 100%, with DQN
serving as the baseline. In all, DBS-DQN exceeds the per-
formance of DQN in 40 out of 49 Atari games.

Figure 4: Relative human normalized score on Atari games.

We also compare the median in human normalized score
[Van Hasselt et al., 2016] defined as: scoreagent−scorerandom

scorehuman−scorerandom
×

100%, where human score and random score are taken from
[Wang et al., 2015]. The medians for DQN and DBS-DQN
are 84.72% and 104.49%, respectively. As shown, DBS-
DQN significantly outperforms DQN in terms the median of
the human normalized score, and surpasses human level.

In addition, we compare DBS-DQN with its variant using
fine-tuned fixed coefficient c in βt(c), i.e., without gradient-
based optimization, in each game, to further demonstrate the
effectiveness and efficiency of DBS-DQN. The median of
the human normalized score for DBS-DQN (fine-tuned c) is
103.95%, which underperforms DBS-DQN but outperforms
DQN. Note that DBS-DQN (fine-tuned c) achieves fairly
good performance in term of the median and beats DQN in
33 out of 49 Atari games, which further illustrate the strength
of our proposed DBS updates without gradient-based opti-
mization of c.

Figure 5 shows the learning curves (moving averaged) of
different algorithms, where S-DQN [Song et al., 2019] is
with the best parameter β for each game from grid search in
{1, 5, 10} (which is the same experimental setting in [Song
et al., 2019]). As shown, DBS-DQN outperforms other algo-
rithms. It is also worth noting that S-DQN can fail in some
games even with best parameter β.

5 Related Work
The Boltzmann softmax distribution is widely used in rein-
forcement learning [Littman et al., 1996; Azar et al., 2012;
Song et al., 2019]. [Singh et al., 2000] studied convergence of
on-policy algorithm Sarsa, where they considered a dynamic
scheduling of the parameter in softmax action selection strat-
egy. However, the state-dependent parameter is impractical in

Figure 5: Learning curves in Atari games (shaded area represent
mean ± standard deviation).

complex problems, e.g., Atari. Our work differs from theirs
as our DBS operator is state-independent, which can be read-
ily scaled to complex problems with high-dimensional state
space. Recently, [Song et al., 2019] applied the softmax op-
erator in DQNs, and also studied the error bound of softmax.
In contrast, we propose the DBS operator which rectifies the
convergence issue of softmax, where we provide a more gen-
eral analysis of the convergence property. A notable differ-
ence in the theoretical aspect is that we achieve a tighter error
bound for softmax in general cases, and we investigate the
convergence rate of the DBS operator. Besides the guaran-
tee of Bellman optimality, the DBS operator is efficient as it
does not require hyper-parameter tuning. Note that it can be
hard to choose an appropriate static value of β in [Song et
al., 2019], which is game-specific and can result in different
performance.

[Haarnoja et al., 2017] utilized the log-sum-exp opera-
tor, which enables better exploration and learns deep energy-
based policies. The connection between our proposed DBS
operator and the log-sum-exp operator is discussed above.
[Bellemare et al., 2016] proposed a family of operators which
are not necessarily non-expansions, but still preserve optimal-
ity while being gap-increasing. However, such conditions are
still not satisfied for the Boltzmann softmax operator.

6 Conclusion

We propose the DBS operator in value function estimation
with a time-varying, state-independent parameter. The DBS
operator has good convergence guarantee in the setting of
planning and learning, which rectifies the convergence issue
of the Boltzmann softmax operator. Results validate the ef-
fectiveness of DBS-DQN in a suite of Atari games. For fu-
ture work, it is worth studying the sample complexity of our
proposed DBS Q-learning algorithm. It is also promising to
apply the DBS operator to other state-of-the-art DQN-based
algorithms, such as Rainbow [Hessel et al., 2017].
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