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Abstract

Spectrum-based Fault Localization (SFL) ap-
proaches aim to efficiently localize faulty compo-
nents from examining program behavior. This is
done by collecting the execution patterns of var-
ious combinations of components and the corre-
sponding outcomes into a spectrum. Efficient fault
localization depends heavily on the quality of the
spectra. Previous approaches, including the cur-
rent state-of-the-art Density- Diversity-Uniqueness
(DDU) approach, attempt to generate “good” test-
suites by improving certain structural properties of
the spectra. In this work, we propose a differ-
ent approach, Multiverse Analysis, that considers
multiple hypothetical universes, each correspond-
ing to a scenario where one of the components is
assumed to be faulty, to generate a spectrum that
attempts to reduce the expected worst-case wasted
effort over all the universes. Our experiments show
that the Multiverse Analysis not just improves the
efficiency of fault localization but also achieves bet-
ter coverage and generates smaller test-suites over
DDU, the current state-of-the-art technique. On av-
erage, our approach reduces the developer effort
over DDU by over 16% for more than 92% of the
instances. Further, the improvements over DDU
are indeed statistically significant on the paired
Wilcoxon Signed-rank test.

1 Introduction
Spectrum-based Fault Localization (SFL) techniques [Abreu
et al., 2009b] have proved to be immensely helpful at local-
izing faults in large code-bases [Pearson et al., 2017]. These
techniques aim to identify the faulty components, e.g., faulty
lines of code, based on a statistical analysis of the test spectra.
A spectra captures information on the activity pattern of each
test case (which components are executed) and the resulting
outcomes (which tests fail).

Given a faulty program P with m components
{c1, c2, . . . , cm}, the quality of the test suite is the key
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factor for SFL to produce accurate diagnostic reports [Cam-
pos et al., 2013]. Test suites can be created either manually
or using automatic test generation techniques [Campos et al.,
2014]. A test-suite generator can produce a test-suite T on P
by optimizing a fitness function f . The function f is taken as
a measure of the quality of a test-suite. The activity pattern
of a test-case t ∈ T can be represented as a m-dimensional
binary vector where the i-th element is 1 if the corresponding
component ci was executed (activated) in test t. The behavior
of a test-suite consisting of n such test-cases can, therefore,
be captured by a n × m-dimensional binary matrix A,
where the element aij is set to 1 if the i-th test executed
the j-th component of P . This matrix is referred to as an
activity matrix; the rows of A correspond to the activity
pattern of test-cases while the columns correspond to the
involvement pattern of the corresponding components. The
matrix A is complemented with a vector E, error vector, that
captures whether a ti is found to be a passing test, then the
corresponding entity Ei = 0, and for failing tests, Ei = 1.
The tuple (A,E) is referred to as the spectrum.

SFL techniques use this spectrum to rank the components
of P by their suspiciousness of being faulty (several formulae
to quantify suspiciousness exist [Pearson et al., 2017; Lucia
et al., 2014; Wong et al., 2016]). Developers are expected
to examine the components in the (decreasing) order of their
suspiciousness scores till the faulty component is identified;
thus, one generally constructs an ordered list, L, by ranking
the components in descending order of their suspiciousness.

As mentioned before, the effectiveness of the SFL tech-
nique heavily depends on the quality of the test-suite for di-
agnosabilty, and can be measured by the rank of the (ground-
truth) faulty component in L: if the rank of the faulty compo-
nent is lower, then a developer would need to examine a fewer
number of components before she identifies the faulty one.
This effort, termed as the cost of diagnosis (D), is measured
as D = r

m , where r is the rank of the faulty component in L
and m is the total number of components. We can also define
the cost of diagnosis by the wasted effort (W), that captures
the effort that is wasted in examining non-faulty components
before hitting the faulty one: W = r−1

m−1 .
A recent work [Perez et al., 2017b] claims that test-suites

with good scores on adequacy metrics (like coverage) do not
necessarily imply that these test-suites offer good diagnos-
ability. In fact, the authors performed rigorous experiments
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to prove the contrary and proposed a new metric, DDU, that
attempts to capture the quality of test-suites for SFL. Interest-
ingly, such metrics can be plugged as fitness functions within
Search-Based Software Testing (SBST) [McMinn, 2011] to
automatically generate test-suites with the desired proper-
ties. One such popular search-based unit test generator, EVO-
SUITE [Fraser and Arcuri, 2011], accepts a program P , a fit-
ness function f and employs a genetic algorithm to generate
good test-suites by optimizing f . EVOSUITE also provides
fault oracles in the form of a set of assertions which model
the behavior of P . By examining deviations from these as-
sertions, EVOSUITE can produce test outcomes and generate
the error vector for a test-suite.

In this work, we propose a new metric, Ulysis, to capture
the quality of test-suites for diagnosability. Instead of uti-
lizing the structural properties of the activity matrix that are
likely to be good proxies of test-case diagnosability (the road
taken by prior efforts, like DDU [Perez et al., 2017b]), our
metric directly considers multiple hypothetical universe (col-
lectively defined as a multiverse), each universe assuming a
component to be faulty, and computes the expected worst-
case wasted effort for each of these hypothetical universe. We
implement our metric in EVOSUITE and perform experiments
on real-life software faults from the DEFECTS4J benchmark
(version 1.4.0). Our experiments demonstrate that Ulysis out-
performs the current state-of-the-art metric, DDU, on all the
relevant metrics: diagnosability, coverage and size of test-
suites. The Wilcoxon signed-rank test showed that our fault
localization improvements over DDU are indeed statistically
significant.
The following are the contributions of this work:
• We propose a new metric, Ulysis, to measure the diag-

nosability of test-suites, essentially computing the ex-
pected worst-case wasted effort instead of using proxies
for good diagnosability as used in previous works;
• We implement our metric as a fitness function in EVO-

SUITE and evaluate the test-suites generated by our met-
ric versus those by DDU and coverage.

2 Our Approach
2.1 Ulysis: Multiverse Analysis
The test-generation metrics accept an activity matrix A as an
input and provide a score that quantifies the goodness of the
test-suite1. Given an activity matrix A, as the faulty compo-
nent is not known, we design a metric that attempts to reduce
the worst-case wasted effort for all components. Given a pro-
gram P with a set of m components C = {c1, c2, . . . , cm},
we consider m hypothetical universe (multiverse): the com-
ponent ci is assumed to be faulty in the i-th hypothetical
universe. Hence, the hypothetical universe Zi operates on a
spectrum consisting of the activity matrixA, with a hypothet-
ical error vector Ei according to what the error vector would
have been if ci was (persistently) faulty. This synthesized er-
ror vector for Zi is, thus, nothing but the involvement pattern

1Note that the test-generation metrics do not have access to the
error vector as the test-generation phase does not have access to the
fault oracles. Fault localization is performed post test-generation.

of ci—a test passing whenever ci is not activated and failing
whenever it is.

For each such hypothetical universe Zi, we compute the
worst case wasted effort. Worst-case wasted effort is nothing
but the effort we waste to localize ci as the faulty component
in the hypothetical universe Zi in the worst case. Clearly, ci
will be the most likely faulty candidate in Zi as ci = Ei,
i.e., the involvement pattern matches perfectly with the error
vector. However, all components from {c1, c2, . . . , cm} that
have the same involvement pattern as ci will also have the
same likelihood of being faulty in Zi. Assuming the number
of such components is r, we will end up examining these r
components before identifying ci as the actual faulty compo-
nent in the worst-case scenario. From this observation, we
define a highest ambiguity set Li as:

Li =

{
cj | cj ∈ C, j 6= i, if ci = ~0

cj | cj ∈ C, cj = ci, j 6= i, otherwise.
(1)

Hence, the highest ambiguity set Li contains all these compo-
nents that, due to having the same involvement pattern as ci,
cannot be distinguished from ci by any similarity-based fault
localization algorithm. As these elements in Li are compo-
nents which, in the worst case, will be examined before ci, the
cardinality of Li can be taken as measure of the worst-case
wasted effort for localizing ci given Zi. We, thus, compute
the worst case wasted effort in Zi as: Wi = |Li|

m−1 .
In an ideal scenario, where we should be able to perfectly

localize ci as the faulty component with zero wasted effort,
Wi = 0 (the highest ambiguity group contains only ci) and
in the worst case scenario, where we will end up examin-
ing all other candidates before finally identifying ci as the
faulty component,Wi = 1 (the highest ambiguity group con-
tains all components other than ci). Therefore, our objec-
tive is to minimize Wi for all components while generating
test-suites. Hence, we can define the overall quality of the
test-suite represented by A as the expectation over all Wi:
WUlysis =

∑m
i=1 p(ci).Wi where, p(ci) is our prior belief

about ci being the actual faulty component.
A previous work [Paterson et al., 2019] has attempted to

extract such possible distributions by past history of failures,
number of repository commits etc. Without prior knowledge
(as done in this work), we assume uninformed prior knowl-
edge where all components are assumed equally likely to be
faulty, i.e., p(c1) = p(c2) = · · · = p(cm) = 1/m. Thus
WUlysis becomes: WUlysis = 1

m

∑m
i=1Wi.

We refer to WUlysis as the Ulysis score. Since, enhanc-
ing the quality of a test-suite can be expressed in terms of
minimizing the Ulysis score, we can plug in Ulysis score as
a fitness function in any SBST tool which aim to generate
test-suites by optimizing the given fitness function.

There is one major advantage of usingWUlysis to measure
the quality ofA instead of DDU. Consider a situation where a
particular component ck was never executed in any test case.
In such cases, the k-th column of A will contain all 0 values.
If ck is a 0 vector, then the corresponding imaginary error
vector Ek in the hypothetical universe Zk will also be a 0
vector. In that case, following Eqn. 1, Lk will contain all the
(m − 1) components from C other than ck. Consequently,
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Figure 1: Multiverse analysis.

the value ofWk, i.e., the worst-case wasted effort to identify
ck as faulty, will be 1. Therefore, to minimize Wk, the k-th
component ck must be executed at least once in any test case.
This is important because, if ck is the faulty component and
it is never executed, then there is no way for us to identify ck
as the faulty component. Therefore, optimizing our proposed
metric will result in higher coverage of a program as well.

We give a brief demonstration of how to computeWUlysis

using an example shown in Figure 1. We start by assum-
ing a hypothetical universe Z1 where c1 is the faulty com-
ponent. Then, the corresponding imaginary error vector will
have the same pattern as c1. This imaginary error vector in
Z1 is shown by E1. Since, components {c2, c3, c4} share the
same involvement patterns as c1, L1 = {c2, c3, c4}. There-
fore, W1 = |L1|

m−1 = 3
5 . Similarly, W2 = W3 = W4 = 3

5 .
Now, when we assume c5 to be the faulty component in
a hypothetical universe Z5, E5 becomes the corresponding
imaginary error vector and L5 = φ as no other compo-
nent shares the same involvement pattern as c5. Therefore,
W5 = 0. When we assume c6 to be faulty, the correspond-
ing imaginary error vector E6 in Z6 is a 0 vector as c6 is
never executed in any test-case. Therefore,W6 = 1. Hence,
WUlysis = 1

6 ( 3
5 + 3

5 + 3
5 + 3

5 + 0 +1) = 17
30 . Our formulation

makes two simplifying assumptions:
• Single fault: We assume that the program has a fault in

a single component.
• Perfect detection: We assume that the tests do not ex-

hibit flakiness [Bell et al., 2018], i.e., the outcome of a
test case is failure if and only if the faulty component is
triggered in that particular test case.

Note that, single fault assumption is a common assump-
tion in most SFL-based works; further, Perez et al. [Perez et
al., 2017a] show that it is a fair assumption. The single fault
assumption makes our model simple and efficient. Also, we
assumed perfect detection instead of inserting random noise
as: (1) we lose predictable behavior of a deterministic fitness
function, (2) with no knowledge of the magnitude and direc-
tion of the noise in the output, the noise introduced in the in-
put will often turn additive, deteriorating the performance fur-
ther. Our evaluations on the DEFECTS4J benchmark (which
has real programs with multiple faults) show that Ulysis out-

Algorithm 1: Ulysis
1 population← Initialize();
2 while not converged and not timedout do
3 T ← ∅;
4 for each test-suite t in population do
5 for each row i in the activation matrix A of t do
6

Wi =

1, if ~A[i] = ~0
1

m−1
∑

j=1:m,j 6=i

( ~A[j] = ~A[i]), otherwise

7 Wt = 1
m

∑
i=1:m

Wi;

8 T ← T ∪ 〈t,Wt〉;
9 population← SelectTopTest-suites(T );

10 return population

performs the state-of-the-art, even when the assumptions (in-
cluding perfect detection) are violated.

2.2 Algorithm
Algorithm 1 describes our test-suite generation in EVOSUITE
using Ulysis. The underlying evolutionary algorithm in EVO-
SUITE starts by initializing a population of test-suites (Line
1). Then, the algorithm is guided through the search-space by
our fitness function (Lines 2-9), i.e., the Ulysis approach. In
detail, for each test suite t in the population (Line 4), the al-
gorithms uses the t′s activation matrix A (Line 5) to compute
the worst-case wasted effort Wi by assuming each compo-
nent j is faulty one at a time. Then, it computes the Ulysis
scoreWt of t by averaging all worst-case wasted effortsWi

(Line 7). Finally, it collects all Ulysis scores of all test suites
(Line 8). On each iteration of the evolutionary algorithm, the
population is refined by selecting the top test-suites based on
wt from T (Line 9) until the fitness function converges or the
time budget is exceeded.

3 Ulysis versus DDU
Density- Diversity-Uniqueness (DDU) [Perez et al., 2017b],
the state-of-the-art metric for diagnosability, uses three struc-
tural properties of an activity matrix A to generate good test-
suites in terms of their fault localization capability.

Density. Given a program P withm components and a test-
suite with n tests, the density of an activity matrix A is de-
fined as: ρ =

∑n
i=1

∑m
j=1 Aij

n×m . This metric essentially attempts
to improve the entropy of the activity matrix, and hence, the
ideal value of density is 0.5.

Diversity. Test-cases having the same activity pattern are
redundant, only increasing the size of the test-suite. Test-
cases should be diverse, i.e., execute different combinations
of components. The diversity measure [Perez et al., 2017b]
tries to ensure that each test pattern in A (rows of A) is
unique. Mathematically this is expressed as the Gini-Simpson
index [Jost, 2006]: G = 1 −

∑k
i=1 ni×(ni−1)
n×(n−1) , where k repre-

sents the number of groups of test cases having unique activ-
ity patterns, ni is the number of test cases having the same
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Figure 2: This example demonstrate a scenario where Ulysis is able
to judge (b) as a better test-suite than (a) whereas DDU considers
them both to be of the same quality.

activity pattern belonging to group i and n is the total num-
ber of test cases. Essentially, G measures how likely is it for
two test cases, chosen at random from A, to have the same
activity pattern. If all test cases are unique, then the value of
G is 1.

Uniqueness. The uniqueness measure [Baudry et al., 2006]
ensures that the number of components having the same in-
volvement pattern (columns of A) is reduced. To formulate
uniqueness, we first define ambiguity groups: if one or more
components share the same involvement pattern then we say
that these components form an ambiguity group. Uniqueness
of a test-suite is measured as: U = l

m , where l represents the
number of ambiguity groups in A and m is the total number
of components. For a good test-suite, the value of U should
be 1, i.e., all component patterns should be unique.

Finally, DDU is defined as: (1− |1− 2ρ|)× G × U .
Let us analyze DDU for diagnosability: Figures 2(a) and

(b) demonstrate two test-suites from a program having six
components where the value of U is less than 1 (generally
U = 1 is infeasible due to branch correlations). For both
of the test-suites, density (ρ) is 0.5 and diversity (G) is 1 as
all the test cases have unique activation patterns. For the
test-suite in Figure 2(a), there are three ambiguity groups:
{c1, c2, c3, c4}, {c5} and {c6}. Therefore, the uniqueness
score U is 3

6 = 0.5. Similarly, the test-suite in Figure 2(b)
contains three ambiguity groups as well: {c1, c2}, {c3, c4}
and {c5, c6}. Hence, the value of U is again 0.5 in this case.
Therefore, according to the DDU metric, both of these test-
suites are equally good in terms of effort spent to localize the
faulty component in the corresponding program, and hence,
any of these test-suites are equally likely to be selected.

Now, let us analyze two possible scenarios:

The test-suite in Figure 2(a) is chosen. If any of the com-
ponents ({c1, c2, c3, c4}) is faulty, we would end up exam-
ining 60% of the program components before we are able
to identify the actual fault. For real programs, which may
contain thousands of components, this would be disastrous.
However, if the component c5 is the faulty component, c5
will be identified with zero wasted effort—a lucky situation!

The test-suite in Figure 2(b) is chosen. In this case, re-
gardless of whichever component is faulty, we will never have
to examine more than 20% of the program components before
discovering the actual fault even in the worst case scenario.

Hence, DDU is incapable of discriminating test-suites
based on their worst-case behavior. Given that we have no
prior knowledge about which component is faulty, it is there-
fore far more reasonable to select the second test-suite for
efficient fault localization.

On the other hand, the Ulysis scores of the test-suites in
Figures 2(a) and (b), are 2

5 and 1
5 respectively. This clearly

demonstrates that, unlike DDU, Ulysis is capable of discrim-
inating test-suites based on worst-case scenarios. Note that,
optimizing to improve the worst case, reduces the chances of
riding on lucky situations (as the case with DDU picking the
first test-case and the component c5 being faulty). This is seen
in our experiments (Figure 3) where DDU performs exceed-
ingly better in a few (7% instances) but the average decrease
in effort while using Ulysis rather than Coverage is over 13%
for more than 95% of all faults and the same over DDU is
over 16% for more than 92% instances.

4 Experiments
Test-suites can be evaluated on three criteria:
• Coverage: Though not a good diagnosability met-

ric [Staats et al., 2012], coverage is still an important
metric that allows faults to be triggered. Note that, di-
agnosability metrics are helpless unless failing tests are
found.
• Diagnosability: This metric captures low wasted effort

(or high suspiciousness scores) for ground-truth faults,
given fault triggering tests are available.
• Cost: This captures the runtime cost of testing. Smaller

test-suites are preferred over bigger test-suites.
We pose three research questions to evaluate the perfor-

mance of our proposal.
RQ1 What is the saving of developer effort by our proposal

over prior techniques?
RQ2 Is the improvement in the ranking of the faulty compo-

nent by our proposal indeed statistically significant over
prior techniques like DDU and coverage?

RQ3 Is the quality of test-suites (size and coverage) pro-
duced by our technique better than existing techniques?

We have performed our experiments on DEFECTS4J ver-
sion 1.4.0 [Just et al., 2014] which is a benchmark suite con-
sisting of six diverse Java project repositories. DEFECTS4J
contains 395 real-life software faults. Given that our experi-
mental evaluations show an improvement in fault localization
over the DEFECTS4J benchmark suite, the results should gen-
eralize.

We have implemented Ulysis2 as a fitness function within
EVOSUITE [Fraser and Arcuri, 2011] and compared it with
other state-of-the-art fitness functions such as DDU and
coverage [Fraser and Arcuri, 2015] (available within EVO-
SUITE). DDU [Perez et al., 2017b] was shown to be bet-
ter than current SFL techniques. So, we restricted our com-
parison to only DDU and Coverage. To take into account
the randomization within EVOSUITE, for each fault, we have
generated 5 test-suites using a time limit of 600 seconds on
each fitness function. Post test-suite generation, we perform

2Ulysis is available in EVOSUITE as part of pull request #293,
https://github.com/EvoSuite/evosuite/pull/293.
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∆W cov DDU
> 0 59.05% 54.96%
= 0 12.38% 13.51%
< 0 28.57% 31.53%

top-k Ulysis DDU
5 34.11% 23.88%
10 44.19% 35.07%
50 70.54% 66.42%

Table 1: Comparisons w.r.t. wasted effort and top-k.

fault localization with the Ochiai metric using the GZOLTAR
tool [Campos et al., 2012]. The reason we use Ochiai is be-
cause it usually outperforms other similarity based metrics
[Abreu et al., 2006], [Pearson et al., 2017] and it is as good
as Bayesian Reasoning techniques, if we assume single faults
[Abreu et al., 2009c]. Both Ochiai and Spectrum-based Rea-
soning approaches like Barinel [Abreu et al., 2009a] produce
the theoretically optimal ranking under perfect detection and
single-fault assumptions (assumption in most SFL-work, in-
cluding ours). Finally, it is known that other approaches like
Model Based Reasoning are computationally prohibitive on
large codebases [Wong et al., 2016] such the ones used in our
experiments.

Our experimental methodology of generating tests on the
golden version is a standard setup for all SFL-related work.
Of course, this methodology assumes a test-oracle to cap-
ture the program specification. Generation of the test-oracle
is orthogonal, and a concern of the base framework (EVO-
SUITE, in our case). In real-world scenarios, for maintenance
projects, the previous version is often taken as the golden ver-
sion for regression, and for others, oracles can be constructed
from programmer annotations.

We did not consider all test-suites for fault localization as
in some cases either EVOSUITE generated an empty test-suite
or no failing test cases were present in the spectrum when ex-
ecuted on the faulty version for either Ulysis or the state-of-
the-art approaches such as DDU and coverage. We found 111
such valid instances, on which we compare the median ef-
fort over 5 test-suite generation attempts with each of Ulysis,
DDU and coverage. Note that, in our experiments, both Uly-
sis and DDU detect similar number of faults (in DEFECTS4J),
showing that Ulysis is comparable to the state-of-the-art in
fault detection. This also demonstrates that generation of ei-
ther empty test-suites or test-suites without fault-triggering
test cases is a limitation of EVOSUITE and not of the fitness
functions [Shamshiri et al., 2015]. All experiments are per-
formed at branch granularity, i.e., the program components
are branches. We have done these experiments on a 16 core
virtual machine with Intel Xeon processors having 2.1 GHz
core frequency and 32 gigabytes of RAM.
Threats to validity. In this study, we used faults taken from
only six Java open source projects. Although our results may
not generalize to other Java projects with different character-
istics, we followed the setup proposed by others to ease the
comparison with previous works. Also, our study only con-
sidered one test generation tool. There are, however, other
tools that may generate test cases that improve even further
the performance of the underline fault localization technique.
We leave such analysis for future work.

4.1 RQ1: Fault Localization Performance
We quantify goodness of test-suites by their wasted effort
W . Given a fault, two fitness functions, say A and B,
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Figure 3: Percentage decrease of effort in fault localization while
using Ulysis instead of DDU.

are compared by the sign of the difference in wasted effort,
∆W = WA − WB ; of course, as a lower value of wasted
effort is better, B is a better performing metric if ∆W > 0.

We denote ∆Wcov = WCoverage − WUlysis and
∆WDDU = WDDU −WUlysis, where WCoverage, WDDU

and WUlysis represents the wasted effort needed to localize
the fault on test-suites generated by Coverage, DDU and Ul-
ysis (respectively).

Rows 1, 2 and 3 of Table 1 show the number of instances
where ∆W values are positive (Ulysis is better), zero (both
metrics are equivalent ,i.e., difference within 1e − 15) and
negative (Ulysis is worse). Ulysis is better than both the
competing fitness functions in more than about 55% instances
while being better or equivalent in about 68% instances.

In Table 1, we compare Ulysis and DDU using the top−n
metric which is a standard practice [Pearson et al., 2017]. The
top− n metric shows the percentage of cases for each metric
where the faulty component appears within the top-n posi-
tions of the ranked list after performing fault localization on
the test-suites produced by the corresponding metric. As we
can see, test-suites produced by Ulysis are usually superior
with respect to the top − n metric. The comparison between
Ulysis and Coverage w.r.t top− n metric is also similar.

Figure 3 details the percentage decrease in the fault local-
ization effort while usingWUlysis rather thanWDDU on all
of our 111 (faulty) instances: Ulysis reduces effort in most
instances. In some cases (around 7% instances), the com-
peting metrics get “lucky” and are able to significantly de-
crease effort; few such cases are expected as per our discus-
sion in Section 3. Since Ulysis optimizes fault localization
efficiency over all components, we treat such instances as out-
liers. For fairness, we assume that any instances where one
metric outperforms another by over 100%, are outliers and are
not considered while summarizing the result (the graphs are
truncated at 100% and −100% on both ends of the y-axis).
Our results against coverage is similar (omitted for brevity).

In summary, the average decrease in effort while using Ul-
ysis rather than Coverage is over 13% for more than 95% of
all faults and the same over DDU is over 16% for more than
92% of all faults in DEFECTS4J.

4.2 RQ2: Statistical Significance
Having seen that Ulysis indeed seems to improve fault lo-
calization, we question if the improvement is indeed statis-
tically significant? We take the effort needed for localiz-
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Function Cov Uniq Size DDU Ulysis
DDU 0.88 0.69 25 0.65 0.13
Coverage 0.93 0.35 10 0.14 0.16
Ulysis 0.92 0.76 18 0.33 0.08

Table 2: Comparison between the quality of test-suites generated by
Coverage, DDU and Ulysis. Each value represents the median of
each function.

ing each fault by coverage, DDU and Ulysis as individual
data columns (WCoverage,WDDU ,WUlysis) and perform a
Shapiro-Wilk test [Mohd Razali and Yap, 2011] for normality
on each of these columns. The test refutes the null hypothesis
that any of these data columns are from a normal distribu-
tion with 99% confidence. The corresponding p-values are
5.20e− 14, 7.02e− 14 and 1.98e− 14 respectively.

Having concluded that the effort data columns are not
from a normal distribution, we perform a paired Wilcoxon
Signed-rank test on ∆Wcov = (WCoverage −WUlysis) and
∆WDDU = (WDDU −WUlysis) respectively. Our null hy-
pothesis is that the medians of both ∆Wcov and ∆WDDU

are 0, while the alternate hypothesis is that the medians are
greater than 0. In both cases, we are able refute the null hy-
pothesis with 99% confidence, with corresponding p-values
being 0.0015 for ∆Wcov and 0.0017 for ∆WDDU .

4.3 RQ3: Quality of Test-suites (Size and
Coverage)

In Table 2, we show the median values of coverage (Cov),
DDU, uniqueness (Uniq), test-suite sizes in the number of
test cases (Size) and the Ulysis score of the test-suites gener-
ated by DDU, Coverage and Ulysis respectively (with the best
values set in bold). Not surprisingly, the test-suites generated
by coverage attain the highest coverage with the least num-
ber of tests; however, the diagnosability for these test-suites
is poor. Ulysis is comparable to the coverage metric in terms
of percentage of component covered. Ulysis beats DDU, the
current state-of-the-art fitness function for diagnosabilty on
uniqueness, coverage and test-suite size. As discussed previ-
ously, uniqueness is a very important metric. Diagnosability
of a test-suite is directly correlated with the uniqueness score
and Ulysis scores higher than all the other metrics in this re-
gard, being even higher than DDU that includes it as part of
its fitness function. This indicates that optimizing on the ex-
pected worst-case wasted effort automatically optimizes this
very important metric. Note that, the numbers are similar if
we use mean instead of median.

5 Related Work
Related studies on fault localization primarily focus on two
key aspects, test-suite generation and fault localization. Test-
suite generation approaches can be broadly categorized into
approaches that improve test-suite adequacy (such as branch
coverage [Fraser and Arcuri, 2011]) versus test-suite diag-
nosability (e.g., [Perez et al., 2017b]). It has been shown
that test-case adequacy measures do not have a direct cor-
relation with the effectiveness of fault localization [Staats
et al., 2012]. Other studies have demonstrated that cover-
age and size of test-suites together exhibit a stronger non-

linear relation with the fault localization capabilities of a test-
suites [Namin and Andrews, 2009]. Our approach, while fo-
cused on enhancing the diagnosability of test-suites, can also
improve adequacy of test-suites.

Approaches directed at improving diagnosability have
attempted to maximize the entropy of the activity ma-
trix [Abreu et al., 2009a], which, however, can lead to pro-
hibitively large test-suites. Subsequent works [Gonzalez-
Sanchez et al., 2011] have attempted to contain this explosion
in size by optimizing the density of the activity matrix (to an
ideal 0.5). Other metrics, such as Uniqueness [Baudry et al.,
2006] and DDU [Perez et al., 2017b] focus on enhancing cer-
tain structural properties of the activity matrix in order to im-
prove fault localization performance of test-suites. While the
objective of our approach is also to improve the diagnosabil-
ity of test-suites, we choose to directly attack the fault local-
ization performance instead of optimizing proxies for it. The
test-suites generated by our approach are smaller than those
generated by diagnosability and entropy optimization metrics
such as DDU while providing comparable adequacy to those
generated by adequacy enhancement metrics such as cover-
age. Since the fault localization performance of our approach
is also better, this ensures that our test-suites are both more
efficient and faster on virtue of being smaller and therefore,
less computationally expensive and taking lesser time to ex-
ecute. Another advantage is the interpretability of the Ulysis
score of a test-suite. Since we assume that each component
may be faulty while computing the score, it can also be inter-
preted as an estimate of the fault localization performance of
any test-suite even prior to its execution. No other test-suite
generation metric can provide such an estimate. Also, recent
approaches which are orthogonal to the test-suite generation
but use SFL [Liu et al., 2019] can benefit from our work.

The diagnostic accuracy of similarity-based fault localiza-
tion is dictated not just by the quality of the test suite, but
also at the efficiency of the metric to compare component’s
involvement patterns with error vectors. There are many such
metrics [Lucia et al., 2014]; a recent study [Pearson et al.,
2017] has identified Ochiai to be amongst the best metrics.
Note that, although we have chosen to perform fault localiza-
tion using the Ochiai score, our approach is not dependant on
any particular fault localization method.

6 Conclusion
We propose a test-suite diagnosability metric that, unlike pre-
vious state-of-the-art approaches, directly attacks the fault
localization metric via a multiverse model, instead of using
structural properties of the activity matrix as proxies (like
density or uniqueness). The test-suites generated by our
method are not only statistically better in terms of diagnos-
tic accuracy, but they also provide comparable or better code
coverage.
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