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Abstract
The wide spread of rumors on social media has
caused tremendous effects in both the online and
offline world. In addition to text information, re-
cent detection methods began to exploit the graph
structure in the propagation network. However,
without a rigorous design, rumors may evade such
graph models using various camouflage strategies
by perturbing the structured data. Our focus in this
work is to develop a robust graph-based detector
to identify rumors on social media from an adver-
sarial perspective. We first build a heterogeneous
information network to model the rich information
among users, posts, and user comments for detec-
tion. We then propose a graph adversarial learning
framework, where the attacker tries to dynamically
add intentional perturbations on the graph structure
to fool the detector, while the detector would learn
more distinctive structure features to resist such
perturbations. In this way, our model would be en-
hanced in both robustness and generalization. Ex-
periments on real-world datasets demonstrate that
our model achieves better results than the state-of-
the-art methods.

1 Introduction
With the rapid growth of social media such as Twitter and
Weibo, information campaigns are frequently carried out by
misinformation producers with various commercial and po-
litical purposes. Consequently, large amounts of fake or un-
verified information have emerged and spread to affect online
social network users, which also leads to tremendous effects
on the offline society. For example, the wide spread of fake
news on social media has influenced the 2016 US presiden-
tial election [Allcott and Gentzkow, 2017]. Thus, identifying
rumors automatically is beneficial for providing early precau-
tions to minimize its negative influence.

Traditional rumor detection methods such as [Yang et al.,
2012; Ma et al., 2015; Kwon et al., 2017] mainly focused on
extracting hand-crafted features from post contents, user pro-
files, and diffusion patterns as inputs for supervised learning
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Figure 1: Four types of camouflage strategies on a social graph: (a)
rumor spreader User1 buys many fans; (b) rumor spreader User1
forwards a normal post Post2; (c) rumor spreader User1 deletes an
unfavorable comment Comment1; (d) rumor spreader User1 hacks a
normal account User2 and uses User2 to forward the rumor Post1

algorithms. Recently, powerful deep learning models with-
out heavy feature engineering have been applied in this task.
RNN-, CNN-, and autoencoder-based methods have achieved
significant improvements over traditional methods. However,
existing methods mostly treat the detection of each piece of
information independently, ignoring their correlations. On
social networks, there are rich structure correlations among
different pieces of information. For instance, multiple posts
can be connected if they are posted or retweeted by the same
user. Such correlations enable sharing knowledge between
connected instances, assisting each other’s detection to im-
prove the performance. Recent efforts on utilizing structure
information for rumor and fake news detection have shown
promising performance. In [Yuan et al., 2019], based on a
heterogeneous graph constructed from posts, comments, and
the related users on social networks, structure semantics are
captured by graph attention network[Veličković et al., 2018].
In [Zhang et al., 2018], a deep diffusive network model is
built to learn the representations of news articles, creators,
and subjects simultaneously.

Despite the success of deep graph neural networks, the lack
of interpretability and robustness would make it risky for ru-
mor detection. A fundamental assumption of these models is
that a piece of information connecting with high-credit users
would also have high credit, but the credit can be manipulated
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by rumor producers. A rumor could try to disguising itself by
posting with hijacked or traded accounts from honest users.
For example, in 2013, Associated Press’s Twitter account was
hijacked and the rumor of explosion at White House was
posted, causing the stock market to briefly plunge. Other
cheaper and more common camouflage strategies include
connecting the posting user with high-credit users, removing
opposing comments, and creating fake supporting comments.
Figure 1 shows four types of camouflages on the social graph.
Such attacks would make the rumor evade graph-based mod-
els by intentionally modifying the graph structures. However,
little attention has been paid to this severe issue.

We argue that considering camouflages are necessary to
complement prior work on rumor detection. We focus on the
attack type that fools the graph neural network-based detec-
tion model by manipulating the graph structure. In this re-
gard, RL-based and gradient-based adversarial attack meth-
ods on graph-structured data have been proposed in [Dai et
al., 2018], but the target graph they consider is homogeneous
and the structure can be modified arbitrarily. In contrast, the
graph constructed for rumor detection is heterogeneous and
involves domain constraints. For example, a post cannot be
connected with another post directly.

In this paper, we investigate: (i) how to simulate various
camouflage methods on social networks to evade the rumor
detector (ii) how to make the detector reveal camouflages as
much as possible. To address these two issues, we rigorously
define the possible camouflage, i.e., attack types in considera-
tion of domain constraints. We then propose a novel graph ad-
versarial learning framework that enables such attacks to fool
the detector by dynamically adding intentional perturbations.
Meanwhile, the detector would be enhanced to learn more
distinctive structural features to resist such perturbations. The
attacker and detector would strengthen each other iteratively,
making our model produce robust detection results.

The main contributions of this paper can be summarized as
follows:

• We study a novel problem of rumor detection on social
media in the face of camouflage.

• We propose an end-to-end framework that jointly ex-
ploits text and structure information for detection.

• We develop a graph adversarial learning method that en-
courages the model to provide robust predictions under
the perturbed graph structure.

• We conduct extensive experiments on real-world
datasets to demonstrate the effectiveness of our model.

2 Related Work
Compared to the traditional machine learning models such as
[Zhao et al., 2015; Ma et al., 2017; Castillo et al., 2011], deep
learning models have achieved state-of-the-art performance
for rumor detection. Most of these models adopt the text in-
formation for detection. [Ma et al., 2018] uses recursive neu-
ral networks with a bottom-up structure and a top-down tree
structure to extract text features. [Khattar et al., 2019] uses
a variational autoencoder to obtain features of texts and pic-
tures to determine whether the post is a rumor. [Liu and Wu,

2018] models the propagation path of a tweet as a multivari-
ate time series, and uses RNN and CNN to capture the global
and local variations of user characteristics along propagation
paths. The common limitation of these studies is that they
don’t fully utilize the social network structure information.
In contrast, [Yuan et al., 2019] not only uses text features but
also extracts network structure features through the Graph At-
tention Network [Veličković et al., 2018], which shows good
performance. However, it doesn’t consider the camouflage
behaviors in the social network, and thus may fail to detect
the camouflaged rumors.

[Wang et al., 2018] obtains non-event-specific features
from texts and pictures with the idea of the generative ad-
versarial network (GAN) [Goodfellow et al., 2014] for de-
tection. [Ma et al., 2019] uses GAN to generate uncer-
tain or conflicting voices to learn more effective features.
Different from these GAN-based works that manipulate the
texts, we perturb the network structure to learn stronger struc-
ture features. Although there are some recent studies on
graph adversarial attacks [Xu et al., 2019; Wu et al., 2019;
Dai et al., 2019], they perform general attacks without con-
sidering the heterogeneity and domain constraints that exist
in real-world applications such as rumor detection.

3 Problem Definition
Let P = {p1, p2, ..., p|P|} be a set of posts on social media,
R(pi) = {r1, r2, ..., r|R|} be a set of comments of pi, U =
{u1, u2, ..., u|U|} be a set of users who deliver one or more
posts or comments.

To exploit the posting and retweeting behaviours on the
social network for classification, we construct the heteroge-
neous graphG = (V,E,A), where V is the set of nodes, E is
the set of edges and A ∈ {0, 1}|V |×|V | is the adjacency ma-
trix. There are three types of nodes, users, social posts, and
user comments. To construct the graph, there would be an
edge between a user and her post. The user and her comment
would also be connected. Users are connected according to
the follower/followee relationships. Moreover, there would
be an edge between two comments if one is the comment for
the other. For simplicity, we don’t consider the directions on
the edges and thus treat G as an undirected graph.

We take the rumor detection task as a binary classification
problem. c ∈ {0, 1} denotes the class labels where c = 1
represents the rumor and the other represents the non-rumor.
Our goal is to train a model f(·) to predict the label of a given
post where f(pi) = 1 denotes pi as a rumor and f(pi) = 0
denotes pi as a non-rumor

4 Methodology
4.1 Model Overview
The proposed rumor detection model consists of three main
components, encoding camouflaged graph, encoding text
contents, and classification with adversarial learning. Fig-
ure 2 shows the architecture of the proposed model.

We define several widely used camouflage strategies, and
automatically learn to generate camouflages on the graph. We
then extract the structure representations from camouflaged
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Node type Good User Bad User Rumor Non-rumor Comment
Good User 0 1 1 0 0
Bad User 1 0 0 1 0
Rumor 1 0 0 0 1
Non-rumor 0 1 0 0 0
Comment 0 0 1 0 0

Table 1: Camouflage compatibility matrix. The entry “1” indicates
allowing a camouflaged attack (i.e., addition or deletion of an edge)
between these two types of nodes, while the entry “0” does not allow.

graphs for each post. Besides structure information, we also
exploit the post contents to extract the text representations for
each post and fuse text and structure representations to make
a classification. This classification loss with camouflaged
structure features would be combined with another standard
classification loss with non-camouflaged structure features.
To optimize the sum of these two losses, we train the model
end-to-end with an adversarial learning method.

4.2 Encoding Camouflaged Graph
Generating Camouflages on Graph
To simulate the camouflage strategies of a rumor spreader,
we divide users into two categories: bad user and good user.
Bad users refer to those who deliver or forward at least one
piece of rumor and the others are good users. We support the
following four types of camouflages as shown in Figure 1:

(a) a bad user node links to good user nodes which repre-
sents the bad user disguises himself by buying some fans or
following some good users.

(b) a bad user node links to non-rumor post nodes, indicat-
ing a rumor spreader carries out normal social activities.

(c) a rumor spreader node deletes the edges between the
rumor post node and the opposing comment nodes, avoiding
being caught.

(d) a good user node links to rumor post nodes, indicating a
good user account was hacked or bought to forward a rumor.

To formally describe the camouflage strategies, we define
a camouflage compatibility matrix in Table 1 which corre-
sponds to Figure 1 exactly. The entry values “0” and “1” de-
note it does and doesn’t allow a camouflage between the cor-
responding two types of nodes respectively. We then define
an action mask matrix M ∈ {0, 1}|V |×|V |, where Mij = 1
if it allows a camouflage between node types of ni and nj
({ni, nj} ∈ V ) in Table 1. Otherwise, Mij = 0. For exam-
ple, if ni is a rumor post and nj is a comment, in this case,
Mij = 1 because a camouflaged modification between a ru-
mor and a comment is allowed in Table 1.

Apart from the action mask matrix M , we also define an
action matrix S ∈ {0, 1}|V |×|V | to specify the camouflage
actions that are actually taken. Specifically, Sij = 1 means
a camouflage action is performed between ni and nj . Oth-
erwise, Sij = 0 indicates no action is performed. For ex-
ample, given Aij = 1 (resp. Aij = 0), Sij = 1 would
lead to the deletion (resp. addition) of the edge between ni
and nj as a camouflage. The adjacency matrix is thus mod-
ified and we obtain Aij = 0 (resp. Aij = 1) accordingly.
To connect the modification of Aij with the action Sij , we
further introduce an assistant matrix C ∈ {0, 1,−1}|V |×|V |.
C = Ā − A, where Ā = 11T − I − A. I is the identity

matrix and (11T − I) represents the fully-connected graph.
Since C = Ā − A, directly apply C to A would make all
the entries (except the diagonal ones ) in A are modified from
1 to 0 or from 0 to 1, indicating performing camouflages on all
the pairs of nodes. Actually, whether it is allowed to perform
a specific camouflage between a pair of nodes is determined
by M , and even if it is allowed, whether it is performed is de-
termined by S. Thus, the final camouflaged adjacency matrix
A′ is obtained by jointly involving these matrices, that is,

A′ = A + C ◦ S ◦ M (1)
where ◦ represents element-wise product.

Note that A, M , and C are predetermined according to
the dataset. Sij is updated in the training process. For ease
of optimization, we relax Sij ∈ {0, 1} to its convex hull
Sij ∈ [0, 1]. To enable this learning, we use the attention
mechanism to derive the elements of S.

For example, suppose ni is a rumor node and nj is a
good user node. In this work, representations of all kinds
of nodes have the same dimension of d. {vi,vj} ∈ Rd rep-
resent the node vectors of ni and nj respectively. Consid-
ering the heterogeneity of the graph, we first transform vi

and vj to the same feature space through Wpvi and Wuvj

where Wp ∈ Rd′×d and Wu ∈ Rd′×d are two parameterized
weight matrices for posts and users respectively. Similarly,
there is also Wr ∈ Rd′×d for comments. In this way, we
transform the d-dimensional vi to the d′-dimensional vector.
Then the attention coefficient is obtained through a single-
layer neural network g : Rd′ × Rd′ → R

eij = σ(aT
1 Wpvi + aT

2 Wuvj) (2)

where σ is an activation function such as ReLU . a1 ∈ Rd′

and a2 ∈ Rd′ are parameters in the attention corresponding
to posts and users respectively. There is also a3 ∈ Rd′ cor-
responding to comments. eij indicates the importance of nj
to ni. We denoteNi as a set of nodes that could have camou-
flaged actions with ni. Then softmax is applied to normalize
each attention coefficient by

αij = softmaxj(eij) =
exp(eij)∑

k∈Ni
exp(eik)

. (3)

The more important nj is to ni, the greater value αij has.
In our application, there is Sij = αij , indicating the extent
of camouflage action between nj and ni. In this way, we pa-
rameterize A′. With the camouflaged graph, we then discuss
how to extract the graph structure features.

Encoding Structures
Graph neural networks (GNNs) have shown superior capabil-
ity in capturing the graph structures. GCN [Kipf and Welling,
2017] and GAT [Veličković et al., 2018] are two widely-used
models. We chose GCN in this work.

First, the camouflaged adjacency matrix is added with the
self-connections, that is

Ã = A′ + I (4)
Then the propagation step from the l-th layer to the (l+1)-

th layer is

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (5)
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Figure 2: Framework. For a social graph, we generate camouflages on it, and fed it into GCN to obtain the perturbed structure representation
for each post. We also extract the text representation for each post with multi-head self-attention and CNN. The two representations are
concatenated for classification. We also consider the standard method that extracts structure representations from the non-camouflaged graph
and combine it with the text representation for classification. These two classification mechanisms are optimized jointly.

where σ is the ReLU activation function. H(l) ∈ R|V |×d is
the matrix of activations in the l-th layer. H(0) is the node
embedding matrix B ∈ R|V |×d. The element of D̃ is D̃ii =∑
j Ãij . W (l) is a trainable weight matrix. We use a two-

layer GCN to extract structure features. It is calculated as

f(B,A) = softmax(Âσ(ÂBW (0))W (1)) (6)

where Â = D̃−
1
2 ÃD̃−

1
2 and W (0) ∈ Rd×d′ is the input-

to-hidden weight matrix. W (1) ∈ Rd′×d′ is the hidden-to-
output weight matrix. f(B,A) ∈ R|V |×d′ is the updated
node embedding matrix. We denote h′i ∈ Rd′ as the i-th
node embedding in f(B,A) which represents the structure
feature of pi.

Besides extracting the structure representation h′i from the
camouflaged graph A′, we also extract the structure represen-
tation of pi from the original graph A, denoted as hi. Both
hi
′ and hi would be concatenated with the text representation

(described in the next subsection) for classification.

4.3 Encoding Text Contents
To obtain the text representation for each post, we adopt the
multi-head self-attention and CNN with pooling.

For preprocessing, we truncate the text if its length is larger
than L and pad zero if the length is smaller than L. Let xi

j ∈
Rd represent the word embedding of the j-th word in the text
of post pi. The text representation of pi is thus represented as

Xi
1:L = [xi

1;x
i
2; ...;x

i
L] (7)

where Xi
1:L ∈ RL×d.

Then, we refine word embeddings using the multi-head
self-attention [Vaswani et al., 2017] to capture dependencies
between words. Each of the heads captures a hidden rela-
tionship from a specific aspect. Considering a self-attention
with h heads. There are three input matrices for the j-th
head which are the query matrix Qj ∈ RL× d

h , the key ma-
trix Kj ∈ RL× d

h and the value matrix Vj ∈ RL× d
h . Take

Xi
1:L ∈ RL×d as an example. For simplicity, we denote

Xi
1:L as X . There are Kj = XWK

j , Qj = XWQ
j and

Vj = XWV
j with {WQ

j ,W
K
j ,WV

j } ∈ Rd× d
h . Besides,

we denote the output of the self-attention with h heads as
Z = [Z1;Z2; ...;Zh]. The output of the j-th head is calcu-
lated as

Zj = Attention(Qj ,Kj ,Vj) = softmax(
QjK

T
j√
d

)Vj

(8)

with Zj ∈ RL× d
h . Then Z is calculated as

Z =MultiHead(X,X,X) = Concat(Z1, ...,Zh)W
O

(9)

where WO ∈ Rd×d and Z ∈ RL×d.
We then capture the semantic representation of a post with

CNN. Xi
e:e+k−1 is convolved with a filter W ∈ Rk×d

where k is the size of the receptive field. The feature tj is
generated from a window of word embeddings Xi

e:e+k−1

tj = σ(W ∗Xi
e:e+k−1 + b) (10)

where ∗ is the convolution operation and b ∈ R is the bias
term. σ is an activation function such as tanh. The filter W
is applied to each possible window of word embeddings in
Xi

1:L to produce a feature map t for pi
t = [t1, t2, ..., tL−k+1] (11)

where t ∈ RL−k+1. Then a max pooling with a stride of
L− k + 1 is applied over the feature map:

t̂ = max{t}. (12)

We use d/3 filters with varying receptive filed k ∈ {5, 6, 7} to
obtain the semantics from different granularities. Each of the
receptive fileds corresponds to a feature vector of length d/3.
Next, we concatenate all feature vectors to form mi ∈ Rd,
which is the final text representation of post pi.
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4.4 Classification with Adversarial Learning
Here we describe how to combine the structure and text rep-
resentations for classification.

Objective of Optimization
For post pi, we have obtained its structure features h′i and hi

from the camouflaged graph and the non-camouflaged graph
respectively, as well as its text representation mi.

Then we concatenate them to form two feature vectors of
pi, which are P ′i = [h′i;mi] and Pi = [hi;mi]. Next, we
feed P ′i and Pi into the fully-connected layers respectively
and obtain

ŷ′i = softmax(WT
1 P ′i + b1) (13)

ŷi = softmax(WT
2 Pi + b2) (14)

where {W1,W2} ∈ R(d+d′)×|c| are the weight parameters
and {b1, b2} ∈ R|c| are the bias terms. ŷ′i and ŷi are the
predicted probability distributions of pi over two classes.

Then we use the cross-entropy loss as the optimization ob-
jective which consists of two parts. One is the standard loss
L1 based on the original adjacency matrix A. The other loss
L2 is based on the camouflaged adjacency matrix A′. There-
fore, the overall loss L is

L =
N∑
i=1

∑
c∈{0,1}

−yilogŷi︸ ︷︷ ︸
L1(θd)

+β
N∑
i=1

∑
c∈{0,1}

−yilogŷ
′
i︸ ︷︷ ︸

L2(θs,θd)

(15)

where yi is [1, 0] when pi is a rumor post and [0, 1] when it
is a non-rumor post. N is the number of training data. θs
denotes parameters in the camouflaged adjacency matrix A′

except the node embedding matrix B. The remaining param-
eters are denoted as θd. β is a hyperparameter to control the
scale of L2.

Adversarial Learning
Given the optimization object L in Eq. 15, we adopt an ad-
versarial learning method to infer the parameters. It can be
viewed as playing a minimax game as follows

min
θd

max
θs
L(θs; θd) (16)

The overall training process is shown in Algorithm 1. In
each iteration, we first optimize the parameters θs in Eq. 2 to
generate a camouflaged graph A′ that can cause the largest
classification loss L (Lines 7-9). We then optimize the other
parameters θd to minimize L (Lines 10-12), encouraging the
model to make the correct classification.

5 Experiments
5.1 Datasets
We evaluate our model on two real-word datasets: Weibo
[Song et al., 2018] and Twitter [Zubiaga et al., 2016], which
were collected from the most influential social media in China

Algorithm 1 Model training with a minimax game
Input: Graph G = (V,E,A), a set of post contents T , learn-
ing rate ε
Parameter: θs and θd

1: for epoch from 1 to maxEpoch do
2: for G = (V,E,A) and a batch of T do
3: Compute the camouflage adjacency matrix A′ using

Eq. 1;
4: Extract structure features using Eq. 6;
5: Generate text representations using Eq. 12;
6: Compute CrossEntropy loss L using Eq. 15;
7: /* Maximize L w.r.t.θs */
8: Compute gradient∇(θs);
9: Update: θs ← θs + ε∇(θs);

10: /* Minimize L w.r.t. θd */
11: Compute gradient∇(θd);
12: Update: θd ← θd − ε∇(θd);
13: end for
14: end for

Statistic Source Tweets Rumors Non-rumors Users Comments

Weibo 3,387 1,838 1,849 1,067,410 1,275,180
Twitter 5,802 1,972 3,830 49,345 97,410

Table 2: Statistic of Datasets.

and the U.S respectively. For a specific post, both of the
datasets contain two labels, i.e., rumor (R) or non-rumor (N),
and also contain rich information such as post texts, com-
ments, and user profiles. Table 2 shows the statistics of the
datasets.

5.2 Baselines
We compare the following baseline models with our model:
HAN [Yang et al., 2016] applies a hierarchical attention net-
work to the post contents at the word-level and sentence-level.
Text-CNN [Kim, 2014] uses convolutional neural networks
to capture text semantics for classification tasks.
GRU [Ma et al., 2016] adopts recurrent neural networks for
learning hidden representations to capture the variation of
contextual information of relevant posts over time.
RvNN [Ma et al., 2018] adopts two recursive neural models
based on a bottom-up and a top-down tree-structured neural
networks, which are denoted as RvNNBU and RvNNTD.
EANN [Wang et al., 2018] is a GAN-based model that can
extract event-invariant features and thus benefit the detection
of newly arrived events. Note that different from the original
EANN, we don’t consider pictures as input due to the lack of
pictures in our dataset.
GAN-GRU [Ma et al., 2019] is a GAN-based model where
a generator will produce conflicting voices to force the dis-
criminator to learn stronger rumor indicative representations.
GLAN [Yuan et al., 2019] adopts a global-local attention net-
work for rumor detection, which jointly encodes the local se-
mantic and the global structural information.
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Method Weibo Twitter
Class Acc. Prec. Rec. F1 Class Acc. Prec. Rec. F1

GRU R
N 0.839 0.757

0.885
0.789
0.865

0.773
0.875

R
N 0.852 0.773

0.892
0.784
0.886

0.779
0.889

Text-CNN R
N 0.807 0.802

0.811
0.748
0.853

0.774
0.831

R
N 0.839 0.757

0.885
0.789
0.865

0.773
0.875

HAN R
N 0.833 0.924

0.782
0.704
0.949

0.799
0.857

R
N 0.851 0.757

0.885
0.789
0.865

0.773
0.875

RvNNBU
R
N 0.903 0.909

0.894
0.859
0.935

0.884
0.916

R
N 0.789 0.782

0.795
0.793
0.784

0.788
0.790

RvNNTD
R
N 0.847 0.810

0.877
0.843
0.851

0.826
0.864

R
N 0.824 0.829

0.818
0.817
0.830

0.823
0.824

EANN R
N 0.866 0.872

0.863
0.808
0.911

0.838
0.886

R
N 0.794 0.811

0.782
0.735
0.847

0.771
0.813

GAN-GRU R
N 0.867 0.854

0.878
0.859
0.874

0.856
0.876

R
N 0.783 0.761

0.809
0.825
0.741

0.792
0.773

GLAN R
N 0.902 0.917

0.891
0.871
0.931

0.893
0.910

R
N 0.853 0.871

0.847
0.654
0.952

0.747
0.896

CGAT R
N 0.940 0.959

0.925
0.906
0.968

0.932
0.946

R
N 0.892 0.823

0.931
0.871
0.903

0.846
0.917

Table 3: The performance results of the comparison methods on two datasets.

Method CGAT-TEXT CGAT-ADJ CGAT-GP CGAT-M CGAT

Weibo Acc.
F1

0.882
0.882

0.910
0.909

0.912
0.917

0.913
0.912

0.940
0.939

Twitter Acc.
F1

0.854
0.823

0.869
0.846

0.872
0.854

0.871
0.845

0.892
0.882

Table 4: Experimental results of the variations of CGAT.

CGAT is our proposed model, which is short for simulating
Camouflages on Graph with Adversarial Training

Among the above baselines, Text-CNN, GRU, HAN, and
RvNN are deep learning methods. EANN and GAN-GRU
deal with rumor contents based on the idea of the generative
adversarial network. GLAN combines text contents with so-
cial network structures to detect rumors.

We split the datasets for training, developing, and testing
with a ratio of 7:1:2. We adopt the accuracy, precision, recall,
and F1 score as the evaluation metrics. We use the Adam
algorithm [Kingma and Ba, 2015] to optimize our objective
function with β1 = 0.9 and β2 = 0.999. The learning rate
used in the training process is 0.002.

5.3 Results and Discussion
Table 3 shows the performance of the comparison methods. It
can be observed that CGAT significantly outperforms all the
baselines which confirms that considering the camouflages on
the graph would benefit the rumor detection task.

Most baseline models cannot perform well on both of the
two datasets. The possible reason is these models are based
on text representations, and it is hard to design a good text
model that can capture the semantics across two very differ-
ent languages. On the contrary, GLAN and CGAT also con-
sider social structures which are independent of languages,
and thus achieve consistent performance improvements.

Besides our model and GLAN, GAN-GRU and RvNNBU
perform better than the other baselines on Weibo dataset. The
reason is that, in addition to post contents, they also involve
the user comments for detection. However, they perform not
very well on Twitter dataset. The possible reason is that ac-
cording to Table 2, the number of comments on Twitter is less
than that in Weibo, limiting the benefits of the comments.

5.4 Performance of the Variations
To show the effectiveness of different components in CGAT,
we compare it with the following variations:
CGAT-TEXT only uses rumor texts. As all the other varia-
tions utilize texts, we omit it in the remaining for simplicity.
CGAT-ADJ only uses the structure features from the original
graph, without involving the camouflaged graph.
CGAT-GP uses another graph adversarial attack method [Bo-
jchevski and Günnemann, 2019] to perturb the graph struc-
ture A, and the resulting graph takes the role of A′ in CGAT.
CGAT-M doesn’t use the action mask matrix M and thus
enables edges are added or removed between any two nodes.

The comparison results are shown in Table 4. It can be
observed that: (i) all the other methods outperform CGAT-
TEXT, indicating the structure features are important for ru-
mor detection; (ii) models with the perturbed graph structure
outperform CGAT-ADJ, which shows the benefits of the ad-
versarial attacks on the graph; (iii) CGAT-M and CGAT-GP
are only a little better than CGAT-ADJ, but much worse than
CGAT, indicating that attacking the graph structures without
domain constraints would introduce unnecessary noises in the
model and thus limit the performance improvements.

6 Conclusion
In this paper, we propose a graph-based rumor detection
method which takes into account the camouflages of rumors
from an adversarial perspective. By dynamically generating
the perturbations on the heterogeneous social graph with do-
main constrains, we learn to extract more distinctive structure
features, which cooperates with text representations to im-
prove the performance of the model. Evaluations with both
English and Chinese rumor datasets demonstrate our model
can outperform the state-of-the-art baselines.
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