
Pyconstruct: Constraint Programming Meets Structured Prediction∗

Paolo Dragone1,2, Stefano Teso3 and Andrea Passerini1
1 University of Trento

2 TIM-SKIL, Trento, Italy
3 KU Leuven, Leuven, Belgium

paolo.dragone@unitn.it, stefano.teso@cs.kuleuven.be, andrea.passerini@unitn.it

Abstract
Constructive learning is the task of learning to syn-
thesize structured objects from data. Examples
range from classical sequence labeling to layout
synthesis and drug design. Learning in these sce-
narios involves repeatedly synthesizing candidates
subject to feasibility constraints and adapting the
model based on the observed loss. Many synthe-
sis problems of interest are non-standard: they in-
volve discrete and continuous variables as well as
arbitrary constraints among them. In these cases,
widespread formalisms (like linear programming)
can not be applied, and the developer is left with
writing her own ad-hoc solver. This can be very
time consuming and error prone. We introduce
Pyconstruct, a Python library tailored for solving
real-world constructive problems with minimal ef-
fort. The library leverages max-margin approaches
to decouple learning from synthesis and constraint
programming as a generic framework for synthe-
sis. Pyconstruct enables easy prototyping of work-
ing solutions, allowing developers to write com-
plex synthesis problems in a declarative fashion
in few lines of code. The library is available at:
http://bit.ly/2st8nt3

1 Introduction
Many real-world problems involve learning to synthesize (po-
tentially novel) structures or solutions from examples. Appli-
cations range from classical problems like syntactic parsing
and image segmentation to design tasks like layout synthe-
sis [Yu et al., 2011; Dragone et al., 2016], interface optimiza-
tion [Gajos and Weld, 2005], and drug design [Lavecchia,
2015]. Learning in this setting involves iteratively synthe-
sizing structures according to the current model, usually via
mathematical optimization, and updating the latter based on
some estimate of the corresponding loss. Well-known models

∗PD is a fellow of TIM-SKIL Trento and is supported by a TIM
scholarship. This work has received funding under the European
Union’s Horizon 2020 research and innovation programme (ERC
grant agreement No [694980] SYNTH: Synthesising Inductive Data
Models and grant agreement No [732194] the QROWD project).

include structured-output SVMs [Tsochantaridis et al., 2004]
and conditional random fields [Sutton and McCallum, 2012].

A major issue with existing implementations is that they
assume synthesis to be easily encodable in standard for-
malisms, like linear programming or dynamic programming.
However, many problems of interest can not be reformulated
in such a way. Indeed, they may involve discrete and con-
tinuous variables (e.g. type and position of furniture pieces
in layout synthesis) and arbitrary constraints between them
(non-overlap, design guidelines). In this case, the developer
is left with the task of writing her own ad-hoc solver.

We introduce Pyconstruct, a Python library specifically tai-
lored for non-standard constructive tasks. Our goal is to
cut the effort needed for writing a working learner. Py-
construct combines two ingredients. First, synthesis is ex-
pressed in MiniZinc [Nethercote et al., 2007], a compact
and general declarative language for constraint programming.
MiniZinc enables writing non-standard synthesis problems in
few lines of code. Other inference problems (such as sep-
aration [Joachims et al., 2009]) are expressed in the same
way, reusing code snippets whenever possible. MiniZinc
comes with several state-of-the-art backends for combinato-
rial, numerical and mixed problems, e.g., OptiMathSAT [Se-
bastiani and Trentin, 2015], Gecode [Schulte et al., 2010]
and Gurobi [Gurobi Optimization, 2016]. Second, learn-
ing employs max-margin techniques, which decouple synthe-
sis from learning. Therefore, the developer can change the
synthesis problem without worrying about the learning algo-
rithm at all. This speeds up prototyping solutions to non-
standard constructive problems and adapting existing solu-
tions to different settings. The library stems from several
papers on constructive learning [Teso et al., 2016; 2017a;
2017b; Dragone et al., 2016; 2017; 2018a; 2018b].

2 Structured Prediction with Pyconstruct
We follow the usual structured output setting [Bakir et al.,
2007], where the goal is to induce a mapping f : X → Y
from inputs x ∈ X (e.g., sentences, images, empty room
layouts) to output structures y ∈ Y (tags, segments, fur-
nished rooms). Synthesis, or inference, amounts to solving
the optimization problem f(x) = argmaxy∈Y〈w,φ(x, y)〉.
Here φ : X × Y → Rd is a joint input-output feature
map and w ∈ Rd is a vector of parameters to be estimated

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5823



1 %%~~~~~~~~~~~~~~~~~ domain.pmzn ~~~~~~~~~~~~~~~~%%
2 %% Input: Length of the sequence and images
3 int: N; array[1..N, 1..9, 1..9] of {0, 1}: img;
4

5 %% Output: Sequence of symbols, digits "0" to "9"
6 %% plus and equal signs encoded with "10" and "11"
7 array[1 .. N] of var 0 .. 11: seq;
8

9 %% Indices of the two operators
10 array[1 .. 2] of var 2 .. N - 1: opr;
11 constraint increasing(opr);
12 constraint seq[opr[1]] == 10 /\ seq[opr[2]] == 11;
13 constraint count(seq, 10, 1) /\ count(seq, 11, 1);
14

15 array[1 .. 3] of var int: num = [
16 %% Numbers computed by summing powers of ten
17 ];
18

19 %% Numbers are positive and equation must be valid
20 constraint forall(i in 1 .. 3)(num[i] >= 0);
21 constraint num[1] + num[2] == num[3];
22

23 %% OCR features, correlate images to symbols
24

25 {% from ’pyconstruct.pmzn’ import solve %}
26 {{ solve(problem, model) }}
27

28 %%~~~~~~~~~~~~~~~~~ learn.py ~~~~~~~~~~~~~~~~~~~%%
29 from pyconstruct import Domain, SSG
30 ssg = SSG(Domain(’domain.pmzn’)).fit(X, Y)

Figure 1: Example of Pyconstruct domain encoded with MiniZinc.

from data. Learning can be performed in a number of ways.
We focus on max-margin approaches [Tsochantaridis et al.,
2005], since they only require an oracle able to solve infer-
ence (or related problems [Joachims et al., 2009]) for the
target structures. Existing implementations are usually lim-
ited to structures for which an efficient oracle is known, such
as sequences, trees or graphs. In stark contrast, Pyconstruct
makes the inference oracle programmable. In Pyconstruct the
oracle is a solver-agnostic MiniZinc program, allowing the
domain of objects to be defined independently from the in-
ference algorithm, which can be chosen and plugged in at
runtime. This layer of abstraction enables performing in-
ference on non-standard objects and enforcing arbitrary con-
straints on them. Our library has two main components: (i)
a Python learning framework implementing several state-of-
the-art algorithms (e.g. SSG [Shalev-Shwartz et al., 2011]
and Block-Coordinate Frank-Wolfe [Lacoste-Julien et al.,
2013]); (ii) a constraint programming inference engine pow-
ered by MiniZinc [Nethercote et al., 2007]. A MiniZinc file
encodes the domain of the structured objects, which defines
the input and output variables, the feasibility constraints, the
feature vector, and methods for solving the different inference
problems. Upon inference, Pyconstruct runs a MiniZinc-
compatible solver on the domain file, specifying which in-
ference problem to solve and which model to use. Models are
objects holding the learned parameters, e.g. a linear model
contains a vector w of weights. A model is usually the out-
put of a learner, which estimates the model parameters from
data using some learning algorithm. Learners in Pyconstruct
are compatible with Scikit-learn [Pedregosa et al., 2011], and
can be used in conjunction with most of its utilities.

3 Example: OCR Equation Recognition
In this demo, we demonstrate how our library can be used
to solve quite complex structured-output prediction problems
in just a few lines of MiniZinc code. In particular, here we
showcase a simple problem of handwritten equation recogni-
tion. In this task we have to recognize equations of the form
a + b = c, where a, b ≥ 0. The input is a sequence of N
images, one per symbol. Notice that N is not fixed and de-
pending on the number of digits of each number it may grow
arbitrarily. We assume there are also two images for the “+”
and “=” symbols, and that the equations are all valid. En-
coding this prior knowledge inside a standard, Viterbi-like,
inference algorithm over sequences would be quite verbose
and difficult to optimize. Using Pyconstruct we can code this
problem very easily1, as shown in the domain.pmzn file in
Figure 1. The length of the sequence N and the sequence
of images (assumed to be 9 by 9 black or white pixels) are
given as inputs. The output sequence seq is the only output
variable and is encoded as a vector of length N of integers in
[0, 11], where 0 to 9 represent the digits themselves, while 10
and 11 represent + and = respectively. In line 10 we define
an array containing the indices of the two operators. The fol-
lowing three lines encode what we know about those indices,
i.e. their order and their correspondence with their respective
symbols in the sequence. Also, the sequence must contain
exactly one + and one = (line 13). Next, we define the three
actual numbers as ni =

∑
0≤j<mi

10j · di,j , where mi is the
number of digits in number i and di,j is the j-th digit of the i-
th number, from the least to the most significant digit (omitted
in Figure 1 for brevity). Finally, we constrain the numbers to
be positive and the equation to be valid (lines 20 and 21). For
space limitations, we also omitted the code describing the fea-
ture array. This should be an array of features that correlate
the images to the symbols, e.g. [Taskar et al., 2004]. The last
two lines contain templating code that Pyconstruct compiles
to a proper MiniZinc solve statement, depending on the infer-
ence problem to be solved and the current model. After defin-
ing the MiniZinc file encoding the objects domain, one can
estimate a structured-output model over it. All is needed is to
instantiate a Domain providing the MiniZinc file in Figure 1,
instantiate a Learner and fit it with the data. This takes
exactly two lines of Python code, as shown in the learn.py
file in Figure 1, where we use an SSG learner and fit it with
some data (X,Y). As an example, we used Pyconstruct to
solve the above formula recognition task on a small dataset
extracted from the ICFHR’14 CROHME competition data2.
We used an SSG learner and compared the performance of
the domain in Figure 1 against a similar domain lacking the
prior knowledge encoded with the MiniZinc constraints. Af-
ter training the algorithm with 800 samples, the constrained
model achieves an average Hamming loss on the predicted
sequences over the test set (200 samples) of 0.102, while the
unconstrained one stops at 0.373 (p < 10−30). The learning
curves are also widely separated: the training losses are on
average 22% lower for the constrained domain (p < 10−6),
confirming that the constraints help learning with less data.

1Code and data available at http://bit.ly/2LX0sMO
2Data available at http://bit.ly/2J7Dh4v

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5824



References
[Bakir et al., 2007] Gükhan H. Bakir, Thomas Hofmann,

Bernhard Schölkopf, Alexander J. Smola, Ben Taskar, and
S. V. N. Vishwanathan. Predicting Structured Data. MIT
Press, 2007.

[Dragone et al., 2016] Paolo Dragone, Luca Erculiani,
Maria Teresa Chietera, Stefano Teso, and Andrea
Passerini. Constructive layout synthesis via coactive
learning. In Constructive Machine Learning workshop,
NIPS, 2016.

[Dragone et al., 2017] Paolo Dragone, Stefano Teso, and
Andrea Passerini. Constructive preference elicitation.
Frontiers in Robotics and AI, 4:71, 2017.

[Dragone et al., 2018a] Paolo Dragone, Stefano Teso, Mohit
Kumar, and Andrea Passerini. Decomposition strategies
for constructive preference elicitation. In AAAI, 2018.

[Dragone et al., 2018b] Paolo Dragone, Stefano Teso, and
Andrea Passerini. Constructive preference elicitation over
hybrid combinatorial spaces. In AAAI, 2018.

[Gajos and Weld, 2005] Krzysztof Gajos and Daniel S Weld.
Preference elicitation for interface optimization. In Pro-
ceedings of the 18th annual ACM symposium on User in-
terface software and technology, pages 173–182. ACM,
2005.

[Gurobi Optimization, 2016] Inc. Gurobi Optimization.
Gurobi optimizer reference manual, 2016.

[Joachims et al., 2009] Thorsten Joachims, Thomas Finley,
and Chun-Nam John Yu. Cutting-plane training of struc-
tural svms. Machine Learning, 77(1):27–59, 2009.

[Lacoste-Julien et al., 2013] Simon Lacoste-Julien, Martin
Jaggi, Mark Schmidt, and Patrick Pletscher. Block-
coordinate frank-wolfe optimization for structural svms.
In ICML 2013 International Conference on Machine
Learning, pages 53–61, 2013.

[Lavecchia, 2015] Antonio Lavecchia. Machine-learning ap-
proaches in drug discovery: methods and applications.
Drug discovery today, 20(3):318–331, 2015.

[Nethercote et al., 2007] Nicholas Nethercote, Peter J
Stuckey, Ralph Becket, Sebastian Brand, Gregory J
Duck, and Guido Tack. Minizinc: Towards a standard
cp modelling language. In International Conference
on Principles and Practice of Constraint Programming,
pages 529–543. Springer, 2007.

[Pedregosa et al., 2011] F. Pedregosa, G. Varoquaux,
A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830,
2011.

[Schulte et al., 2010] Christian Schulte, Guido Tack, and
Mikael Z Lagerkvist. Modeling and programming
with gecode. Schulte, Christian and Tack, Guido and
Lagerkvist, Mikael, (2015), 2010.

[Sebastiani and Trentin, 2015] Roberto Sebastiani and
Patrick Trentin. Optimathsat: a tool for optimization mod-
ulo theories. In International Conference on Computer
Aided Verification, pages 447–454. Springer, 2015.

[Shalev-Shwartz et al., 2011] Shai Shalev-Shwartz, Yoram
Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Pri-
mal estimated sub-gradient solver for svm. Mathematical
programming, 127(1):3–30, 2011.

[Sutton and McCallum, 2012] Charles Sutton and Andrew
McCallum. An introduction to conditional random fields.
Found. Trends Mach. Learn., 4(4):267–373, April 2012.

[Taskar et al., 2004] Ben Taskar, Carlos Guestrin, and
Daphne Koller. Max-margin markov networks. In Ad-
vances in neural information processing systems, pages
25–32, 2004.

[Teso et al., 2016] Stefano Teso, Paolo Dragone, and Andrea
Passerini. Structured feedback for preference elicitation in
complex domains. In BeyondLabeler Workshop at IJCAI
2016, 2016.

[Teso et al., 2017a] Stefano Teso, Paolo Dragone, and An-
drea Passerini. Coactive critiquing: Elicitation of prefer-
ences and features. In AAAI, 2017.

[Teso et al., 2017b] Stefano Teso, Roberto Sebastiani, and
Andrea Passerini. Structured learning modulo theories.
Artificial Intelligence, 244:166–187, 2017.

[Tsochantaridis et al., 2004] Ioannis Tsochantaridis,
Thomas Hofmann, Thorsten Joachims, and Yasemin
Altun. Support vector machine learning for interdepen-
dent and structured output spaces. In ICML, page 104.
ACM, 2004.

[Tsochantaridis et al., 2005] Ioannis Tsochantaridis,
Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. Large margin methods for structured and in-
terdependent output variables. JMLR, 6:1453–1484,
2005.

[Yu et al., 2011] Lap Fai Yu, Sai Kit Yeung, Chi Keung
Tang, Demetri Terzopoulos, Tony F Chan, and Stanley J
Osher. Make it home: automatic optimization of furni-
ture arrangement. ACM Transactions on Graphics (TOG)-
Proceedings of ACM SIGGRAPH 2011, v. 30, no. 4, July
2011, article no. 86, 2011.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5825


