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Abstract

The quality of crowdsourced data is often highly
variable. For this reason, it is common to collect
redundant data and use statistical methods to ag-
gregate it. Empirical studies show that the policies
we use to collect such data have a strong impact on
the accuracy of the system. However, there is little
theoretical understanding of this phenomenon. In
this paper we provide the first theoretical explana-
tion of the accuracy gap between the most popular
collection policies: the non-adaptive uniform allo-
cation, and the adaptive uncertainty sampling and
information gain maximisation. To do so, we pro-
pose a novel representation of the collection pro-
cess in terms of random walks. Then, we use this
tool to derive lower and upper bounds on the ac-
curacy of the policies. With these bounds, we are
able to quantify the advantage that the two adaptive
policies have over the non-adaptive one for the first
time.

1 Introduction

In the past decade crowdsourcing has emerged as an effective
way to gather a temporary workforce, and execute large num-
bers of small and repetitive tasks at a competitive price. This
allows an employer to complete large scale data-processing
projects when alternative methods are either too expensive
(e.g. hiring a team of full-time experts) or impractical (e.g.
developing an ad hoc machine learning system of equivalent
accuracy) [Lintott ef al., 2011]. The applications of this ap-
proach range from image and video annotation [Vondrick et
al., 2013], to speech recognition [Lasecki et al., 2013], lan-
guage processing [Snow et al., 2008] and even research stud-
ies and surveys [Buhrmester et al., 2011].

Currently, the most popular way of crowdsourcing data
involves an online platform like Amazon Mechanical Turk!
or Crowdflower?, where workers from all around the world
can login and execute the tasks submitted by the employers
in exchange for a small payment [Ross ef al., 2010]. De-
spite the efforts to screen the workers and introduce qual-
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ifications and reputation systems, the crowdsourced data
tends to contain a sizeable amount of errors or random an-
swers [Downs et al., 2010]. As cleaning the data by hand
goes against the very reason behind using crowdsourcing in
the first place, most of the literature focuses on automatically
singling out the errors by collecting redundant data and ag-
gregating it together [Whitehill er al., 2009; Liu et al., 2012;
Augustin et al., 2017]. On the theoretical side, the main
concern is uncovering the relationship between the number
of available data points and the accuracy of the aggregated
estimates. Specifically, Berend and Kontorovich [2014] de-
rive bounds on the accuracy of the weighted majority voting
rule given a fixed set of workers, Gao et al. [2016] compare
the asymptotic performance of several probabilistic inference
methods and Bonald and Combes [2017] propose an optimal
algorithm to estimate the reliability of the individual workers.

However, the aforementioned research focuses solely on
the aggregation phase of a crowdsourcing project (see Figure
1), which happens after all the data has been collected. Due to
the iterative nature of crowdsourcing, where the data is col-
lected over several days or weeks, there is also an opportu-
nity to improve the efficiency of the collection phase. In this
regard, the simplest collection strategy is the non-adaptive
uniform allocation policy, i.e. always collect a fixed number
of data points on each task [Karger er al., 2014]. Alterna-
tively, some authors have proposed the use of adaptive poli-
cies, which use the data collected so far to inform their future
decisions, in an attempt to optimise the subsequent aggrega-
tion phase. In particular, Barowy et al. [2012] suggest col-
lecting more data on the tasks where a clear majority has not
formed yet, Welinder and Perona [2010] propose retraining
the aggregator on every new data point and collecting more
data on the tasks with larger uncertainty, and Simpson and
Roberts [2014] attempt to estimate the information gain of
future data points.

S Data > Data
====>| Collection Aggregation

Figure 1: High-level view of the crowdsourcing process. The data is
collected from the crowd over a period of time and then aggregated
in a final prediction over the classification of the tasks.
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While these adaptive policies have been shown to have an
empirical advantage over non-adaptive ones [Welinder and
Perona, 2010; Barowy et al., 2012; Simpson and Roberts,
20141, we are still missing a clear theoretical understanding
of their performance. More specifically, a prominent result by
Karger et al. [2014] states that every policy exhibits an expo-
nential tradeoff between the number of data points R and the
final accuracy in the form IP(error) < exp(—cR). However,
the authors provide a value of the constant factor ¢ only for
non-adaptive policies. In contrast, other authors have proven
the advantage of adaptive policies for some specific scenar-
ios, but failed to address the general case above. In particular,
Chen et al. [2013] assume that we can summon specific work-
ers from the crowd at any time, while Ho et al. [2013] assume
we can test the accuracy of each worker beforehand.

In this paper we provide the first theoretical explanation
of the impact of the data collection process on the accuracy
of a crowdsourcing system. Furthermore, we derive new
bounds on the accuracy tradeoff of the most popular collec-
tion policies: uniform allocation, uncertainty sampling and
information gain maximisation. More specifically, we make
the following contributions to the state of the art. First, we
propose a new way to represent the runtime behaviour of a
collection policy in terms of a random walk in the log-odds
domain. Second, we use this tool to analyse the tradeoff
P(error) < exp(—cR) of the existing collection policies un-
der a weighted majority voting aggregator. In so doing, we
are able to bound the performance of the uncertainty sam-
pling policy proposed by Welinder and Perona [2010] from
both sides, and show its equivalence with the information
gain maximisation policy of Simpson et al. [2014]. Third,
we repeat our analysis on the more challenging case of prob-
abilistic inference aggregators, improve the bound of Karger
et al. [2014] and derive new upper and lower bounds on the
error rate of adaptive policies. Finally, with these bounds we
are able to quantify the advantage that adaptive policies have
over non-adaptive ones.

The paper is structured in the following way. In Section 2
we introduce all the relevant data aggregators and collection
policies. In Section 3 we study the performance of the poli-
cies under weighted majority voting. In Section 4 we repeat
our analysis under probabilistic inference. In Section 5 we
conclude and outline possible future work. All the proofs of
our theorems are collated in Appendix A.

2 Preliminaries

Among the models for crowdsourced classification, the one-
coin Dawid-Skene model [Dawid and Skene, 1979] has re-
ceived most attention from the theoretical literature [Liu et
al., 2012; Karger et al., 2014; Bonald and Combes, 2017].
The reason for this lies in the simplicity of the model, cou-
pled with its ability to capture all the major characteristics of
the crowdsourcing scenario.

According to this model, we assume that the objective of
the system is to recover the correct classification of M dis-
tinct tasks. We denote the underlying ground-truth vector as
y, with y; € {£1} being the true class of task ¢. Moreover,
we assume the presence of a crowd of N workers who pro-
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vide us with a set of labels X = {x;;} over the course of the
crowdsourcing effort. These workers become available one
by one in random order, get assigned to a task ¢ and provide
a label z;; € {£1} in exchange for a unitary payment. We
assume that a maximum budget B << M N can be spent on
collecting new labels, and we set by convention x;; = 0 for
any missing task-worker pair. Furthermore, we assume that
the probability of observing a correct label depends only on
the accuracy of the individual worker, which we denote by
P(z;; = y;) = p;. In other words, we assume that the work-
ers act independently from each other, and their accuracy is
not affected by the task they are assigned to (we plan to extend
our analysis to more complicated models as future work, see
Section 5). Finally, we assume that the population of workers
is extracted from a common distribution p; ~ f,, and that the
prior on the ground-truth labels is P(y; = +1) = 1/2 (it is
trivial to extend our results to other priors).

2.1 Label Aggregation Methods

Given a set of labels X, we need a way to aggregate them into
a vector y of predictions over the task classes (where §; is the
prediction on task 7). Here we consider two of the most com-
mon aggregators, one that assumes perfect knowledge over
the workers’ accuracy vector p and one that does not need
this piece of information.

Weighted Majority Voting. The simple majority voting
rule predicts the class of a task by g; = Sign{ZéVZO Tij ks
where ties are broken randomly. However, the presence of
workers with varying degrees of accuracy, particularly when
p; < 1/2, may dramatically decrease the performance of
this system. When the workers’ accuracy p is known, it
is possible to assign a larger weight to the more accurate
workers, hence increasing the reliability of the system. This
method is known as weighted majority voting. Nitzan and
Paroush [1982] show that, by assigning each worker a weight
w; = log(p;/(1 — pj;)), the resulting aggregation method
Ui = sign{zé\fzo x;;w;} achieves optimal accuracy. No-
tably, these weights stem from a probabilistic interpretation
of the weighted majority rule. In particular, it is possible to

show that the weighted sum z; = Z;V:O x;5w; is equal to the
posterior log-odds as follows:

TP\ P(yi=+1/X,p)
st [ [ (2)7*] o[B8
' ng:[O 1—p; ¢ Pyi=1x.p))
Probabilistic Inference. When the workers’ accuracy p is
not known, we can resort to several unsupervised probabilis-
tic methods [Liu et al., 2012; Zhang et al., 2014; Gao et al.,
2016; Bonald and Combes, 2017]. This family of methods
infer an estimate p &~ p from the set of labels X itself, which
can then be plugged into the weighted majority voting rule
to compute the log-odds 2; = Z;V:O x5 log(p; /(1 —p;)). In
particular in Section 4 we present a result for the approximate
variational inference method proposed by Liu et al. [2012] as
it fits our theoretical framework well. This method computes
p in an expectation-maximisation fashion as follows:

D im0 O (@ij2i) + o
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where the prior distribution of the workers’ accuracy is f,, ~
Beta(a, ) and the sigmoid function o (2) = 1/(1+exp(—2))
is the inverse of the log-odds function.

2.2 Label Collection Policies

During the course of the crowdsourcing effort, we need to
decide which task ¢ we want to label next. The sequence of
decisions is usually formalised in terms of a collection policy,
a rule or heuristic that selects ¢ given the incoming worker 5*
and the set of labels X collected so far. The existing lit-
erature provides us with the following three main collection
policies.

Uniform Allocation (UNI). This non-adaptive policy as-
signs the same number R = B/M of labels to each task.
Using a variant of this policy, Karger et al. [2014] are able
to bound the probability of a classification error under proba-
bilistic inference to:

P(g; # yi) < 2exp(—qR/32) 3)

where ¢ = By {(2p; — 1)?}. We will improve upon this
bound in Section 4.1.

Uncertainty Sampling (US). This adaptive policy main-
tains a measure of uncertainty over the current set of pre-
dictions y, and collects new labels over the most uncertain
tasks. Proposed first in the active learning community [Lewis
and Gale, 1994], uncertainty sampling has been empirically
shown to be successful for crowdsourcing in a number of ap-
plications [Welinder and Perona, 2010; Barowy et al., 2012].
We derive the first bounds on the performance of this policy
in Sections 3.3 and 4.2.

Information Gain Maximisation (IG). This adaptive pol-
icy always chooses the action that maximises the ex-
pected information gain on the current posterior distribu-
tion [MacKay, 1992]. The empirical performance of this pol-
icy in crowdsourcing applications is described by Simpson
and Roberts [2014]. We provide the first theoretical analysis
on this policy in Section 3.4.

3 Data Collection under Weighted Majority

In this section, we analyse the performance of the col-
lection policies when the workers’ accuracy p is known
and weighted majority voting is used to aggregate the data.
More specifically, we take advantage of the properties of the
weighted majority aggregator to model the data collection
process as a random walk. In turn, this enables us to bound
the performance of the policies.

3.1 Modeling as a Random Walk

From the point of view of a single task ¢, the collection policy
selects a subset of workers N; C N to work on ¢ throughout
the crowdsourcing process. The subset of labels X; C X
provided by these workers move the log-odds on task i from
its starting point z; = 0 to its final value z; = ) jeN; TijWj.
Since the labels are collected one-by-one iteratively, we can
model the evolution of z; as a random walk that is made of a
sequence of independent steps s;; = ;;w;.
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Key to our analysis is how these steps s;; are distributed.
First, let us derive the probability density function of the
weights w; from that of the workers’ accuracy p; ~ f:

fuw) = o(w)[1 = o(w)] f(o(w)) @)

Now, assume by convention that the true class of task ¢ is
y; = +1, and that the collection policy does not base its de-
cisions on the accuracy of the incoming worker j¢. Then, if
we consider that a step s; can be taken either by workers with

weight w; = s; or w; = —s;, we can write the common
probability density function of the steps as:
fs(s) = () [fu(s) + fu(—s)] (5)

In general, we have E{f,} > 0 for any f,, with equality
holding only if all the workers have p; = 1/2 or, in other
terms, when the whole crowd provides only random answers.
This is due to the fact that workers with p; < 1/2 get as-
signed a negative weight, so that even their labels move the
weighted majority in the right direction. As a consequence,
the random walk on the log-odds z; of each task ¢ will always
drift towards the true class y;. However, we show in the fol-
lowing sections how different policies capitalise on this drift
at different rates.

3.2 Performance of the UNI Policy

The UNT policy always collects at least R = | B/M | labels
on each task 7. We can thus interpret its behaviour as a sum
of R independent random steps extracted from the same dis-
tribution s;; ~ f,. Keeping the convention that y; = +1,
we can compute the probability density function of the sum
zi=> jeN, Sij as the convolution between R copies of f;.
The probability of a classification error is thus given by:

P(j; # y:) = P(5 < 0) = /_OOO (£< f)ds  (©)

where 3k is the convolution operator.

While Equation 6 provides us with the exact performance
of the UNT policy, it suffers from two drawbacks. First, it
might be difficult to compute it without access to the full
probability density function f;. Second, its lack of a sim-
ple closed form makes it difficult to compare it theoretically
with the performance of other policies. We can solve both
drawbacks by measuring the concentration of z; around its
expected value. This leads us to the following theorem:

Theorem 1. Assume that f, is subgaussian, with parameter
7 such that {exp(ts)} < exp(v*t?/2) for all t € R. Then,
the probability of a classification error under the UNI policy
is bounded by:

REUFY g

22

Equation 7 clearly exposes the exponential tradeoff be-
tween number of labels and accuracy achieved by the UNI
policy. We use this result to compare it with the other poli-
cies in Section 3.5. At the same time, note that the bound in
Equation 7 is only tight in an asymptotical sense. For small
values of R there exists a tighter bound that, however, quickly
becomes inefficient as R increases in value (see Appendix A).

P(9: # yi) < exp (—
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3.3 Performance of the US Policy

We move now to our analysis of the performance of the US
policy. This policy always chooses the task with the largest
uncertainty, i.e. the one whose log-odds are closest to zero:

i* = argmin{|z; |} 8)

Due to this specific behaviour, the magnitude of the log-odds
|z;] tends to increase at the same pace on all M tasks during
the collection process. This phenomenon allows us to prove
the following two bounds:

Theorem 2. The probability of a classification error under
the US policy is upper bounded by:

P(§: # yi) < exp (—EB{f}(R—1)) )]

Theorem 3. The probability of a classification error under
the US policy is lower bounded by:

P(i # 91) > 3 oxp (~ B{f)R -~ E{|£.]) - 0.56) (10)

Notice that the bounds in Equations 9 and 10 match asymp-
totically and guarantee that the US policy has an exponential
tradeoff with constant ¢ = IE{ f, }. This means that the policy
fully exploits the drift in the random walk over the log-odds z;
to reduce the probability of an error. We compare this result
with the other policies in Section 3.5.

3.4 Performance of the IG Policy

The IG policy always selects the task that yields the largest
information gain. Since we cannot predict the value of the
next label z;; in advance, we evaluate the impact of adding it
to our current set X ¢ in expectation:

i* = argmax {EW {Z(X' Uy, pHXt,p)}} (11)

where the information gain 7 is defined as the Kullback-
Leibler divergence between the future posterior and the cur-
rent one. Given this definition, we can prove that the policies
US and IG are in fact equivalent:

Theorem 4. Given the current log-odds zt and a worker with
weight w; # 0, the two policies US and IG select the same
task i*, except in case of a tie.

3.5 Policy Comparison

We now have the tools to compare the performance of the
non-adaptive UNT policy with the adaptive US and IG ones.
On the one hand, all of them exhibit an asymptotic trade-
off between the number of labels R and the final accuracy
in the form P(error) < exp(—cR). However, the specific
constant factor ¢ varies from policy to policy. In fact, for the
UNT policy we have c,,; = E{f;}?/27? (see Equation 7),
whereas for the two equivalent policies US and IG we have
Cada = E{fs} (see Equation 9).

In general, a higher value of c means that the policy is more
efficient in using additional labels to improve the accuracy. In
this respect, we can prove that adaptive policies offer superior
guarantees by examining the ratio cuqq /Cuni = 272 /E{fs}:
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Figure 2: Comparison between the theoretical bounds and the empir-
ical performance of the UNI, US and IG policies under the weighted
majority voting aggregator.

Theorem 5. For any distribution fs bounded in [—a,+al)
with 0 < a < +o0o, the efficiency ratio between adaptive
(US, IG)and non-adaptive (UNI) policies is Coda/Cuni > 4.

On the other hand, the result in Theorem 5 is derived from
upper bounds on the error rate of the policies, and thus it
might not reflect the actual performance gap between the
UNTI, US and IG policies at runtime. For this reason, we run
synthetic experiments with M = 10000 tasks and a uniform
distribution of workers f,, over the interval [0.4, 0.8] to simu-
late a mixed crowd (similar results can be obtained with dif-
ferent choices of f,). We report the results in Figure 2, where
each point is the average of 100 runs and has standard error
below 5 x 10~%. As the figure shows, the error rate of the US
and IG policies quickly diverges from that of the UNI pol-
icy as the average budget per task R increases. At the same
time, the observed ¢qqq/Cun; ratio has a value of 1.9. In or-
der to overcome this discrepancy with the result in Theorem
5, tighter bounds on the UNT policy are needed.

4 Data Collection under Probabilistic
Inference

We now remove the assumption that the workers’ accuracy
p is known, and repeat our analysis of the collection policies
assuming that some unsupervised probabilistic method is em-
ployed to aggregate the crowdsourced data. In general, our
results are valid for any state-of-the-art probabilistic method
that is provably better than majority voting (see [Gao et al.,
2016]).

4.1 Performance of the UNI Policy

Similarly to our analysis in Section 3.2, we take advantage of
Hoeffding’s concentration inequality to bound the accuracy
of the UNT policy:

Theorem 6. The probability of a classification error under
the UNT policy is bounded by

P(ji £ ) < exp(— g (B} -1 (12)
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This bound is an improvement over the result of Karger
et al. [2014] for two reasons. First it only depends on the
number of labels R and the average accuracy of the workers
P, instead of the quantity ¢ = E{(2p; — 1)?} which is more
difficult to estimate in a practical scenario (see Equation 3).
Second, for any distribution with the property (2p — 1)2 >
¢/16 our bound is tighter.

4.2 Performance of the US and IG Policies

Let us move on to the performance of adaptive collection poli-
cies. It is worth noting that the equivalence result between the
US and IG policies shown in Section 3.4 is not valid here be-
cause the estimates p’ may change upon receiving a new label
at time ¢. Nevertheless, the two following results still apply
to both policies.

Theorem 7. The performance of the US and IG policies is
upper bounded by

P(g: # yi) < exp(|o|(1 — R[2p — 1)) (13)

Theorem 8. The performance of the US and IG policies is
lower bounded by

P(ji £ ) 2 5 exp (~ B{f5} R~ B{

where f3 is the distribution of steps given the weight estimates
w; provided by the probabilistic inference method of choice
at the end of the crowdsourcing process.

fs|} —0.56) (14)

Theorem 8 can be adapted to any probabilistic method by
providing a value for IE{ 3} and IE{|fs|}. In most cases this
can be done only by numerical estimation. However, for the
approximate variational inference algorithm proposed by Liu
et al. [2012] we can derive an upper bound as follows:

Theorem 9. Given a population of workers with accuracy
pj ~ Beta(a, ), the expected value of a step under the
approximate variational inference algorithm in [Liu et al.,
2012] is bounded by:

Quias Q .
By < S P@Y (Q> Bleta, Q-ctp)

2 M2\ )" B
c+a 2c—Q
o (55 15) ¥ 1

where Q is the number of labels provided by a single worker.

Finally, the value of IE{|f;|} can be computed from the
result in Theorem 9 by taking the absolute value of the loga-
rithm and discarding the % term.

4.3 Policy Comparison

We now have the tools to compare the performance of the
three policies UNI, US and IG. As for the case with known
workers’ accuracies p in Section 3, all the policies have an
asymptotic tradeoff between the number of labels R and the
expected accuracy in the form PP (error) < exp(—cR). How-
ever, the constant factor c differs between the non-adaptive
(UNI) and adaptive (US, IG) policies. For the UNI policy
Equation 12 yields a factor c,,; = %(2;5 — 1)2, whereas
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Figure 3: Comparison between the theoretical bounds and the em-
pirical performance of the UNI, US and IG policies under the prob-
abilistic inference aggregator in [Liu ef al., 2012].

for the UNI and IG policies Equation 13 yields a factor
Cada = W(2p — 1) instead.

Given this, we can prove that both US and IG offer superior
guarantees over UNI when used in conjunction with a prob-
abilistic inference method. In particular, by comparing the
ratio Cqdq/Cuni = 2w/ (2p — 1) we can state the following:

Theorem 10. For any distribution of the workers’ accuracy
Ip with E{f,} # 1/2, the efficieny ratio between adaptive
(US, IG) and non-adaptive (UNI) policies is Cada /Cuni > 4

At the same time, the result in Theorem 10 is again de-
rived from upper bounds on the error rate of the policies, and
thus it might not reflect the actual performance gap between
the UNT, US and IG policies at runtime. In order to rule out
this eventuality, we run synthetic experiments with M = 200
tasks, Q = 10 labels per worker and f, ~ Beta(a =4, 5=3)
to simulate a mixed crowd. Moreover, we use the approx-
imate variational inference method in [Liu ef al., 2012] to
aggregate the labels, and average the results over 1000 runs,
which yields a standard error below 2 x 10~3. Note that sim-
ilar results can be achieved with different values of (), o and
B, whereas the use of the Beta distribution is necessary to
match the assumptions of Liu’s algorithm. We report the re-
sults in Figure 3, which shows that the error rate of the US and
IG policies becomes smaller than that of the UNT policy as
the average budget per task R increases. On the other hand,
the observed value of the cyqq/Cun; ratio is 1.3, which sug-
gests that the empirical advantage of the adaptive US and IG
policies is smaller than the theoretical prediction in Theorem
10.

5 Conclusions

We have analysed the performance of a number of the most
common data collection policies for crowdsourced classifica-
tion. By representing them as random walks in the log-odds
domain, we derived new upper and lower bounds on their ac-
curacy. Consequently, we were able to quantify the advantage
that some adaptive policies can have over non-adaptive ones
for the first time.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

We believe that the techniques presented here can be ex-
tended to additional scenarios, both in terms of data aggre-
gators and crowdsourcing models. Among them, the case of
tasks with varying degrees of difficulty is of particular interest
to us. Under this model, Khetan [2016] have already shown
an exponential tradeoff in the form P(error) < exp(—cR),
but the values of ¢ for different policies are still unknown.
We aim to compute them using our methods as future work.
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A Proofs

Proof of Theorem 1. Hoeffding’s concentration inequality
can be written as follows:

2
P(z; —E{z;} <t) <exp ( 2]1;72> (16)

where RE{f,} = E{z;} since the R steps in the random
walk are independent. Then, by substituting ¢ = —E{z;} and
noting that P(§; # y;) = P(2; < 0) we get the result in the
theorem. O

As mentioned in Section 3.2, for small values of R there
exist a tighter (but non-exponential) bound:

Theorem 1 bis. Assume that f, has finite variance. Then,
the probability of a classification error under the UNI policy
is bounded by:

) Var{fs}
PO 7)< vy T B

Proof. This result can be derived in the same way as Theorem
1, by using the Chebyshev-Cantelli inequality:

Var{z;}
P(z; —E{z} <t) < Var(z} + 22

a7

(18)

0
Proof of Theorem 2. From the perspective of a single task
1, the US policy operates in short bursts of activity, as ¢ keeps
receiving new labels until it is no more the most uncertain
one. We define z5 = min;{|z;|} as the threshold that all
tasks have crossed at some point of the crowdsourcing effort.
In this respect, we can model the evolution of the log-odds z;
as a bounded random walk, which starts in z; = 0 and ends
when z; leaves the interval (—zp, +2p).

Given this, let us assume that we can fix the threshold zp
and then collect as many labels as needed in order to cross
it. We denote the log-odds after crossing the threshold as
zl', where 2z & (—zp,+zp), and the log-odds at the step
before as z{fl. According to this definition, r is a stopping
time since it is uniquely defined by the information collected
before step . Thus, we can use Wald’s equation [Wald, 1944]
to link the expected value of 2] and the stopping time 7:

E{z} = E{r}E{f:} (19)
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Recall, however, that 2] is the sum of 7 i.i.d random vari-
ables, and that zf_l € (—zp, +2zp) by definition. As a con-
sequence, we can further bound the expected value of z; by:

E{2} = B{z] '} + E{f,} < 2p + E{f,}  (20)

Putting Equations 19 and 20 together, we can derive a bound
for the threshold zp:

zp > B{f}(E{r} — 1) Q1)

At the same time, we also know that the random walks on
the M tasks are independent, and that the variance of r for
a bounded random walk with i.i.d. steps is finite. There-
fore, as M — oo the total number of steps required to
cross the threshold will converge to its expected value, i.e.
B — MTE{r}. This property allows to substitute E{r} = R.

However, we also know that the confidence in our predic-
tion is P(y; = y;) = o(]z:|). Thus, we can bound the final
accuracy as:

P(j; = yi) = o (E{f;}(R — 1)) (22)
which yields Equation 9 after some simple algebraic manip-
ulations. O

Proof of Theorem 3. Similarly to the proof of Theorem 2,
we can bound the value of the threshold z g as follows:

op <E{|]} = B{el} - 2/

—0o0

—zB

zP(z] = 2)dz  (23)
where

Can
/ 2P (2] =2)dz = —zpP(z] <—2zp)

— 00

0
+/ tP (2] =t—2zp)dt 24

> —zpo(—25) — LB{If.1)

Now, we can compute max.>o{zo(—z)} ~ 0.28. Addition-
ally, we know that E{z2]} = RE{f}. Thus, the following is
true:

25 < RE{fs} + B{|fs[} +0.56 (25)
By noting that P(j; # y;) = o(—2p) > 3exp(—zp) we
obtain the result of the theorem. O

Proof of Theorem 4. Let us write the information gain in
closed form as follows:

I(XtUxij7p‘|Xt,p)
o2 +xiw;)
)
o(—zf - xijwj))

o)

_ t Can .
= o(z; + x;;w;) log < 26)

+0(—z — zijw;) log (
since the log-odds vector z changes on task i only. The ex-
pected value of Equation 26 is the following:
B, {Z(X* Uiy, p| X' p)

- Z I(XtUxij,pHXt,p)IP(fEiﬂXt,P) 27)
@i €{£1}
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where
P(zi4| X", p) = 0(2))o(zijw;) + o(—=2f)o(—ziyw;) (28)

First, note that Equation 27 is even in zf and w; (this can
be easily proven by substitution). Given this, we can focus
on the positive intervals z!,w; € (0,00) and show that the
function is monotonically decreasing. We can do so by taking
the derivative of Equation 27 and proving that it is negative
by contradiction:

d E,, {ZT(Xx* Xt

dizf{ ai {Z( Uxij’p“ ,p)}}

exp(z;) (exp(w;) — 1)

= 29
(L + exp(=0))2(1 + exp(;)) @
1+ exp(z} — wj)
. L >0
{“’J e (1 +exp(al +wy) )|
which yields:
1 U ws
+eXp(Z7, w]) Z eXp(—wj) (30)

1+ exp(z! + wj)

which is false for any z!,w; € (0,00). Finally, we can see
that both the objective function |z!| for the US policy and
Equation 27 for the IG policy are even in z!, monotonically
increasing (decreasing) for z! — oo and have a minimum
(maximum) in 2} = 0 for any w; # 0. Hence, if a task 4; is
preferred to ¢5 under one policy, it is also preferred under the
other. O
Proof of Theorem 5. The best-case scenario for the UNI
policy is when f; is such that IE{fs} has the largest pos-
sible value and  has the smallest possible one. First, no-
tice that the subgaussian parameter of f; is v = a since
fs is bounded. Second, from Equation 5 we can derive
that f5(s) = fs(—s)exp(s), thus the best-case is achieved
when all the mass of f; is concentrated in +a and E{fs} =
a(20(a) — 1). Under this scenario, the efficiency ratio be-

comes:
Cada 2a

Cuni  20(a) —1 (3D
While numerator and denominator of Equation 31 are both
zero for a = 0, the former has first-order derivative equal to
2 whereas the latter has derivative less than 1/2. Hence, the
ratio is larger than 4. U
Proof of Theorem 6. If we set our estimates of the workers’
accuracy to p; = p = E{f,}, V4, the distribution of steps f
reduces to s;; = -+ with probability p, and s;; = —w with
probability 1 — p. Hence, f, has mean E{f,} = w(2p — 1)
and is bounded in [—@, +w], yielding the subgaussian pa-
rameter v = w. By plugging these values into Equation 7
we get the result of the theorem. Finally, note that by setting
D; = b, Vj the aggregation method becomes a simple major-
ity voting rule. Therefore, any provably superior probabilistic
aggregation method (see [Gao et al., 2016]) must achieve a
lower error rate and thus satisfy Equation 12. O
Proof of Theorem 7.  As per the proof of Theorem 6,
we set our estimates of the worker’s accuracy to p; = p =
E{f,}, Vj. In terms of the random walk interpretation, the
presence of workers with the same weight w = log(p/(1—p))

means that all the steps have the same length, ie. s;; €
{xw}. Thus, we can use a classic results on bounded dis-
crete random walks [Feller, 1968] to derive the number of
steps 7 required to reach one of the two boundaries +Kw
(with K € N) from the initial starting point z; = 0:
Kw K|w|

E{r} = ——20(Kw)—-1) <
E{fs} E{fs}
By inverting this relationship, we can compute the minimum
threshold +Kw we can reach given a budget of R labels in
expectation:

(32)

> RE{/:}

||

1 (33)

P etal

||
Thus, at the end of the crowdsourcing process the posterior
on the majority class is, in expectation:

P9 = yi) > o(K[w]) = o(RE{fs} — |w]) (34

which by substituting E{fs} = w(2p — 1) and considering
the posterior probability of an error §J; # y; yields the result
in the theorem. O
Proof of Theorem 8. Define 25 = min{|%;| : |X| = B} as
the minimum estimated log-odds at the end of the collection
process. Also, note that any non-trivial probabilistic infer-
ence method updates its estimates p’ during the collection
process as new information comes in. As a consequence, the
US and IG policies may collect additional labels on a task @
whose log-odds |Z;| are already above Zp (according to the
final estimates p?). If the policies had access to Zp from
the beginning, they would avoid this inefficiency and achieve
a larger Zp in expectation. Thus, the error rate in this ideal
scenario is a lower bound on the real error rate and can be
computed according to Theorem 3. O
Proof of Theorem 9. As the accuracy on the tasks increases
to 1, i.e. 2; — oo, the estimates in Equation 2 converge to
pj = (¢ + @)/(Q; + a + B), where c; is the number of
the worker’s correct answers. Moreover, the probability of
¢; given that p; ~ Beta(a, ) is (%)B(c] +0,Q;—c;+
B)/B(a, 3). Finally, a worker with ¢; correct answers has
weight w; = log((¢; + a)/(Q; — ¢; + £)) and makes ¢;/Q;
positive steps and (Q; — ¢;)/c; negative ones, which yields
the equality in the theorem. For any Z; < oo this result be-
comes an inequality. [
Proof of Theorem 10. The theorem can be proven by tak-
ing the first-order approximation of both the numerator and
denominator of ¢qg44/Cyn; centred in p = 1/2. For the for-
mer, notice that 2w = 2log(p/(1 — p), whose derivative in
P = 1/2 yields the following value:

d(2w 2
Go)l  __2 | _s (35)
dp 1/2 p(l - p) 1/2
Also note that w is monotonic in p and that w = 4-o0 for
p = land w = —oo for p = 0. Thus in general the

derivative of 2w is always greater than the value in Equa-
tion 35. Finally, the first-order derivative of the denominator
is d(2p — 1)/dp = 2 and both c,4, and ¢y, are zero with
P = 1/2. Hence, for any p # 1/2 the ratio cada/Cuni > 8/2
which proves the theorem. O
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