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Abstract

In this paper, we propose a deep propagation
based image matting framework by introducing
deep learning into learning an alpha matte propa-
gation principal. Our deep learning architecture is
a concatenation of a deep feature extraction mod-
ule, an affinity learning module and a matte prop-
agation module. These three modules are all dif-
ferentiable and can be optimized jointly via an
end-to-end training process. Our framework re-
sults in a semantic-level pairwise similarity of pix-
els for propagation by learning deep image repre-
sentations adapted to matte propagation. It com-
bines the power of deep learning and matte propa-
gation and can therefore surpass prior state-of-the-
art matting techniques in terms of both accuracy
and training complexity, as validated by our exper-
imental results from 243K images created based on
two benchmark matting databases.

1

Image matting aims to extract a foreground object image F’
together with its alpha matte « (taking values in [0 1]) from
a given image /. Techniques for achieving image matting are
mostly founded on the following convex combination of F’
and a background image B:

I=aF+(1—-a)B.

Introduction

ey

A follow-up composition process of image matting is to blend
F" with a new background image B by using Eq. (1) again for
creating a new image. Image matting is critical for commer-
cial television and film production due to its power to insert
new elements seamlessly into a scene or transport an actor
into a totally new environment [Wang and Cohen, 2007].
Image matting is a highly ill-posed problem because it in-
volves an estimation of seven unknowns (3 color components
for each of F' and B, plus the « value) from three equations
for each pixel as shown in Eq. (1). Among a large variety of
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matting techniques (as summarized in Sec. 2), propagation-
based image matting [Levin er al., 2008; Chen er al., 2013;
Zheng and Kambhamettu, 2009] constitutes one of the most
prominent matting approaches in literature. The related tech-
niques leverage pixel similarities to propagate the alpha matte
values from manually-drawn regions where the alpha values
are known to unknown regions. They model a complicated
image structure simply by measuring pairwise similarity be-
tween pixels, resolve matte typically with a closed-form fash-
ion, are easy to implement and can result a smooth matte.

However, most of the existing propagation-based image
matting techniques deteriorate inevitably in practice consid-
ering the fact that they are built on a low-level pairwise
similarity which is typically measured by using image color
or other hand-designed visual features [Levin ef al., 2008;
Chen et al., 2013]. As widely known, image matting is of a
high-level vision task and therefore demands a semantic-level
pairwise similarity [Liu et al., 2017]. In order to deal with
this limitation, the ubiquitous deep learning techniques have
been recently applied to achieving a semantic-level analysis
of the image for matting [Cho et al., 2016; Xu et al., 2017,
Shen et al., 2016; Aksoy et al., 2017; Liu et al., 2017;
Bertasius er al., 2016]. They behave as learning an alpha
matte or a pairwise similarity in an end-to-end fashion given
an image plus a trimap. However, for the former, the prop-
agation process is not involved and learning an alpha matte
directly is well-known to be hard due to the high dimension-
ality of the parameter space to be specified during training,
especially when considering the fact that the size of alpha
matte dataset is usually very limited in practice [Xu et al.,
2017]. For the latter, the propagation process is treated as a
followed but totally-independent procedure. Therefore, the
benefits of matting propagation can’t be combined with the
power of deep learning, which limits the performances of the
related approaches.

In this paper, we introduce a novel deep propagation based
image matting framework with an motivation to deal with
the above challenges by propagating alpha matte values us-
ing a propagation principle learned via a deep learning ar-
chitecture. Different from the existing deep learning based
image matting techniques, our deep learning architecture is a
concatenation of a deep feature extraction module, an affin-
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ity learning module and an alpha matte propagation mod-
ule. These three modules are all differentiable and can there-
fore be jointly trained using the stochastic gradient descent
(SGD). They result in deep image representations adapted to
matting propagation and semantic-level pairwise similarities.
The complete training pipeline is driven by the fact that the
propagated alpha matte via the learned propagation principle
should be as close as possible to the ground-truth.

The proposed deep propagation based framework is dis-
tinguished from many existing matting techniques for sev-
eral of its strengths. First, it can learn a semantic-level pair-
wise similarity for propagation via a deep learning architec-
ture in a data-driven manner. This is in contrast to tradi-
tional hand-designed similarities which may not adequately
describe pixel-pixel relationships for a high-level vision task.
Second, the learned pairwise similarities are adapted to matte
propagation, which is superior to techniques of learning sim-
ilarity directly. Third, it combines both the power of deep
learning and propagation by training the image representation
and pairwise similarity jointly. Fourth, the dimensionality of
its parameter space to be specified during training is signifi-
cantly smaller than learning an alpha matte directly. Exper-
imental results obtained from 243K images validate that our
network obviously outperforms several representative state-
of-the-art matting techniques.

2 Related Work

There exist three main approaches to digital matting: sam-
pling based techniques [Chuang er al., 2001; Feng et al.,
2016], propagation based frameworks [Levin ef al., 2008;
Chen et al., 2013; Zheng and Kambhamettu, 2009] and
a hybrid of these two [Zheng and Kambhamettu, 2009;
Wang and Cohen, 2005]. The sampling based techniques are
founded on an assumption that two pixels with similar colors
should be close in their alpha matte values. The propaga-
tion based framework propagates the alpha values from user-
drawn foreground & background scribbles into unknown re-
gions. It leverages a pairwise similarity of pixels to represent
a complicated image structure.

Propagation based techniques constitute one of the promi-
nent approaches in literature for not only image matting
[Levin er al., 2008; Chen et al., 2013; Zheng and Kamb-
hamettu, 2009] but also image segmentation & editing (very
similar problems to image matting) [Chen er al., 2012;
Endo et al., 2016]. This benefits from the availability of
a clear mathematical formulation determined mainly by an
inter-pixel affinity measurement characterizing simply local
interactions between neighboring pixels. This formulation
can be solved in closed-form and implemented easily [Levin
et al., 2008]. However, most of the existing propagation
based approaches determine the pairwise similarity by us-
ing image color, resulting in a low-level pairwise similarity
measurement. This is in essence equivalent to two basic as-
sumptions: the linear alpha-color relation, meaning that the
alpha matte value is a linear function of image color for each
pixel; and the color-line model, denoting that the local im-
age colors distribute on a line in the color space [Zheng and
Kambhamettu, 2009]. These propagation-based techniques
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deteriorate inevitably when the above assumptions are vi-
olated in practice, typically when image color is not good
enough for characterizing each pixel. The violation may re-
sult in “smearing” or “chunky” artifacts in alpha matte as de-
scried in [Chen et al., 2013; Cho et al., 2016; Xu et al., 2017;
Aksoy et al., 2017].

A variety of solutions have been proposed to resolve the
challenges in propagation based techniques, including relax-
ing the local color distribution by searching neighbors in
a nonlocal domain [Lee and Wu, 2011; He et al., 2010;
Chen et al., 2013], defining more complex affinity mea-
surements by using a feature vector instead of only image
color [Chen et al., 2013; Cho et al., 2016; Xu et al., 2017;
Shen er al., 2016; Maire et al., 2016], or adapting the mea-
surement to different image regions [Aksoy et al., 2017].
However, these approaches cannot absolutely lead to obvi-
ous improvements because neither the specification of proper
nonlocal neighbors nor the more effective features for better
measuring affinity is a trivial [Cho ef al., 2016].

We noticed that the ubiquitous deep learning techniques
have recently been exploited to learn a more advanced
semantic-level pairwise similarity [Cho er al., 2016; Xu et al.,
2017; Shen et al., 2016; Aksoy et al., 2017; Liu et al., 2017;
Bertasius et al., 2016; Sui et al., 2017]. This seems to be a
promising research direction to resolving the challenges of
image matting. However, they are accomplished as learn-
ing the affinity of propagation or the matte/segmentation/edit
end-to-end given an image plus a trimap/label/edit. The for-
mer treats the propagation process as a followed but inde-
pendent part and therefore the benefits of deep learning and
propagation can’t be combined. The latter excludes the prop-
agation process and is plagued with the high dimensionality
of the parameter space during training, especially when con-
sidering the fact that the size of alpha matte dataset is usually
very limited in practice [Xu et al., 2017].

3 Method

We construct a DeepMattePropNet to learn deep image rep-
resentations with an adaption to alpha matte propagation,
which results in a more effective pairwise similarity for prop-
agation. Our motivation to design DeepMattePropNet arises
from the need to reveal not only pixel-level description but
also semantic-level coherence between pixels when measur-
ing the pairwise similarity for matte propagation. As illus-
trated in Fig. 1, DeepMattePropNet connects a deep feature
extraction module to an affinity learning module, followed by
a matte propagation module. All modules are differentiable
and can be trained jointly using SGD.

3.1 Deep Feature Extraction Module

Our deep feature extraction module is comprised of two
branches: a semantic-level feature extraction branch and a
low-level feature extraction branch. They learn deep image
representations which will be used to measure the pairwise
similarity for the matte propagation module. The input to
these two branches is both a 4-channel matrix constructed
by concatenating the original image and the corresponding
manually-drawn trimap along the channel dimension.
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Figure 1: An illustration of our DeepMattePropNet architecture. It consists of 3 modules for deep feature extraction, affinity learning and
matte propagation, respectively. They are all differentiable and the parameters of the entire architecture can be jointly optimized.

The network structure of the semantic-level feature extrac-
tion branch is identical to the SegNet [Badrinarayanan et al.,
2017] which consists in an encoder network and a corre-
sponding decoder network. The encoder network transforms
the input into downsampled feature maps through convolu-
tional layers and max-pooling layers. Specifically, it con-
sists in 13 “Conv+ReLU” layers and 5 max-pooling layers.
The “Conv+ReLU” layers correspond to the first 13 convolu-
tional layers of the VGG16 network [Simonyan and Zisser-
man, 2014] and each of them performs convolution with a
filter bank to produce a set of feature maps, batch-normalizes
the feature maps and then applies an element-wise rectified-
linear nonlinearity (ReLU) max(0,x). The max-pooling is
carried out with a 2 x 2 window and stride 2. The followed
decoder network semantically upsamples the features learnt
by the encoder via unpooling layers and convolutional layers
to get dense features for predicting pairwise similarities. It
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is structured in a fashion that each of its layers corresponds
to one encoder lays (e.g. “Conv+ReLU” vs. “Conv+ReLU”,
unpooling vs. max-pooling ). As in [Badrinarayanan et al.,
2017], the max-pooling indices are memorized and then re-
sued in the upsampling process in the decoder network.

The branch for low-level features extraction is a network
composed of 3 convolutional layers (with a 3 x 3 kernel),
each of which is followed by a nonlinear“ReLU” layer. As
shown in [Xu et al., 2017], low-level features can result in
more matte details.

The semantic-level feature extraction branch outputs N, X
N, x Ts features, where N,., N. and T represent the num-
ber of rows of the original image, columns of the original
image and features output by this branch, respectively. The
low-level feature extraction branch produces N, x N, x T;
features, where 7; denotes the number of output features.
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3.2 Affinity Learning Module

The affinity learning module learns pairwise affinity of pix-
els for propagation and is connected with the semantic-level
feature extraction branch and the low-level feature extraction
branch of the deep feature extraction module. The input to
the affinity learning module is a N,, x 2(Ts 4+ T;) matrix for
which each row stores the learned 2(7Ts + T;) deep features
for each pair of neighboring pixels, where N,, denotes the to-
tal number of neighboring-pixel pairs. The neighborhood can
be defined as 4-connection as in our paper.

The affinity learning module consists of a 1 x 1 x2(Ts+1;)
convolutional layer and an exponential layer. It predicts the
affinity value for each pair of neighboring pixels. All affinity
values output from this module form a (N, N.) x (N, N,)
symmetric and sparse affinity matrix W which will be then
fed into the matte propagation module. Note that these twos
layers are both differentiable.

3.3 Matte Propagation Module

The matte propagation module propagates alpha matte speci-
fied by the input trimap based on the affinity matrix W. It gen-
erates a refined matte which will be then attached to the loss
module. We provide below the mathematics related to matte
propagation and prove that this module is differentiable.

From the affinity matrix W, we define a diagonal matrix
D for which each diagonal element equals to the sum of the
corresponding row of W. A typical alpha matte propagation
module [Levin et al., 2008] can be expressed as

a=arg min o’ La+(a—a*) Cla—-a*) @)

a€R(N,.N.)

where o denotes a vector (in length N,.[N.) of alpha matte
values for all pixels, T' means transpose, o* represents a vec-
tor (in length NV,.N.) containing all alpha values known from
the trimap, £ = D — Wis a (IV,N.) x (N,N.) Laplacian
matrix, C stands for a (N,.N.) x (N,.N,.) diagonal matrix
for which a diagonal element takes zero if the corresponding
pixel belongs to unknown regions and a constant value c oth-
erwise. The value of ¢ adjusts the importance of the labeled
pixels when propagating the alpha matte and is set as 0.8 in
our paper. The solution to Eq. (2) is written as

a=(L+C)'Ca*

=D -W+C)"'Ca”. ©)

Taking the derivative of c relative to an element of W;; of
W, where ¢ and j index the row and column of W, respec-
tively, we have

da  AL+C)L
= Ca
8W]‘i 8Wji (4)

=(L+C)"'J;;(L+C)'Ca’

where J;; is a (N, N.) x (N, N.) matrix for which the element
corresponding to the sth row and jth column is 1 and all other
elements are zero.

In Eq. (4), the resulted matrix from (£ + C) is huge and
its inverse is hard to compute. As in [Bertasius et al., 2016],
we shrink this matrix using a simple but efficient technique
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in [Arbeldez et al., 2014]. The work in [Bertasius et al.,
2016] requires the inverse of a huge matrix to be computed
for each random-walk step and demands a couple of random-
walk steps for each image during training. In contrast, our
scheme requests only one time of computation. Eq. (4) proves
the differentiability of the propagation module.

The dimensionality of the parameter space of DeepMat-
tePropNet is significantly smaller than a network predicting
per-pixel alpha matte value (e.g. the works in [Xu ef al., 2017,
Cho et al., 2016]). Tt is because the convolutional layer in
this affinity learning module of DeepMattePropNet share the
same weights across all pixel pairs, as shown in Fig. 1. For
example, the work in [Xu et al., 2017] requires a parameter
space in a dimensionality equaling to the number of image
pixels, e.g. N, N,.. In contrast, our network only needs to
learn the 2(7Ts + T;) parameters of the convolutional kernels
plus the ones for the exponential layer in the affinity learning
module, which are much fewer than the number of pixels.

3.4 Losses

The average over the alpha prediction loss and composition
loss in [Xu et al., 2017] is treated as the overall loss for train-
ing DeepMattePropNet. These two losses measure the Eu-
clidean distance between the ground-truth and the predicted
one for the alpha matte and composited color image, respec-
tively, as shown by the following equation’s computation for
one pixel:

L=V@-aPrerVe-ere 6

where & and a* denote the estimated and ground-truth al-
pha matte values, respectively, € is very small number (e.g.
10712), and ¢ and ¢* represents the composited and ground-
truth image colors, respectively. Note that the loss compu-
tation can involve only the pixels in the unknown regions in
order to reduce the computational complexity.

3.5 Implementation Details

We train the deep feature extraction module, affinity learn-
ing module and matte propagation module in the DeepMat-
tePropNet jointly and hence they are integral parts of the net-
work during testing. The training is carried out in an end-to-
end (original image plus trimap to alpha matte) fashion.

We implement the DeepMattePropNet using Caffe and
conduct training and testing on a NVIDIA Titan X graphics
card. The training is carried out with a fixed learning rate of
0.1 and momentum of 0.9. The overall training phase requires
about 20 epochs.

4 Experimental Results

4.1 Dataset

We evaluate the performance of the proposed DeepMat-
tePropNet on two matting tasks, the benchmark alphamat-
ting.com dataset [Rhemann et al., 2009] and our own dataset.
As the benchmark challenge for image matting, the alphamat-
ting.com dataset makes both the original images and ground
truth mattes available online (at www.alphamatting.com). It
includes 27 images for training and 8 images for testing, and
for each of which, a low-resolution trimap and a high one are
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Figure 2: Quantitative comparisons of alpha matte estimation errors on all the testing images in terms of SAD (sum of absolute differences)
and MSE (mean square error) between our DeepMattePropNet and 5 representative state-of-the-art techniques. Bars represent the standard
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Figure 3: Quantitative comparisons of alpha matte estimation errors on the 8 alphamatting.com testing images in terms of SAD and MSE
between DeepMattePropNet and 5 representative state-of-the-art techniques.

provided. We only use the more challenging low-resolution
trimaps in our experiments.

Our own dataset consists of 46 images captured by filming
46 target objects in front of a computer monitor displaying
an out-door scene. To obtain their ground-truth alpha matte,
we first film these objects in front of five additional constant-
color backgrounds and then derive alpha matte by solving an
overdetermined linear system of the composition equations
(as in Eq. (1)) using singular value decomposition (SVD)
[Chuang et al., 2001]. For each of the 46 images, we draw
a low-resolution trimap manually. Therefore, we have totally
81 original images for which a ground-truth alpha matte and
a low-resolution trimap are available. All images and trimaps
are resized to 600 x 800.

We also augment these original images by composing new
images using the corresponding ground-truth alpha matte.
The new background images are composed of 500 indoor
image selected randomly from the indoor scene recognition
database [Quattoni and Torralba, 2009] plus 500 outdoor im-
ages chosen randomly from the Places database [Zhou et
al., 2014]. All indoor and outdoor images are resized to

600 x 800. In addition, we also exploit 3 different rotations
of the foreground and alpha matte when composition. We fi-
nally obtain a total of 243K images. We treat the 50 images
including the 8 alphamatting.com testing images plus 42 im-
ages selected randomly from other 73 original images and all
their composited images as the training set and all the left
images as the testing set.

Training the DeepMattePropNet takes around 3~4 days.
For the testing phase, the running time on a 600 x 800 image
is about 1.2 seconds (about 7.4 seconds if conducted on a
CPU using the Inte]l MKL-optimized Caffe).

4.2 Evaluation

We compare the performances of our DeepMattePropNet
with several state-of-the-art techniques including the deep
image matting (DeepMatteNet) [Xu et al., 20171, the CNN
based method (MatteCNN) in [Cho et al., 2016], the closed-
form (CF) matting [Levin ef al., 2008], the CSC method pro-
posed in [Feng et al., 2016] and the regression algorithm in
[Xiang et al., 2010]. All networks are carried out on the same
training and testing images. We provide both quantitative as-
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Figure 4: Visual comparison of alpha mattes produced by DeepMattePropNet and 4 state-of-the-art techniques from 4 exampling images.
For each exampling image, top to bottom and left to right: original image, trimap, ground-truth matte, mattes from DeepMattePropNet,
DeepMatteNet, MatteCNN, CF and CSC, respectively. Yellow rectangles contain a larger view of a local region.
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sessments and visual evaluations.

We show SAD (sum of absolute differences) and MSE
(mean square error) values over all the testing images in our
datasets in Fig. 2 and the ones for each of the alphamat-
ting.com testing images in Fig. 3. From these error statistics,
we have at least two findings. First, deep learning based al-
pha matting techniques perform overwhelmingly better than
traditional techniques. This may benefit from the superior-
ity of deep image representations learned from a huge image
dataset in contrast to the hand-designed features. Second, our
deep matte propagation based method outperforms other two
deep learning based matting techniques. This may arise from
the fact that our method learns deep image representations for
a better matte propagation while others focus on learning the
alpha matte directly.

Our visual comparisons show that the DeepMattePropNet
is more stable and visually pleasing for various structures of
foreground object, including solid boundary, transparent ar-
eas, overlapped color distribution between foreground and
background and long slim structures. As shown by the re-
sults from the upper exampling image in Fig. 4, our network
outperforms other techniques obviously especially at the re-
gion where the “purple hair” locates in front of the “purple
book™.

The power of our DeepMattePropNet comes from several
of its advantages. First, it propagates matte based on not only
low-level but also semantic-level image features. The for-
mer enables extraction of matte details while the latter may
help to recognize objects and resolve problems such as the
one caused by overlapped color distributions between fore-
ground and background. Second, our network predicts simi-
larities instead of alpha matte. This reduces significantly the
dimensionality of the parameter space. Third, it combines the
strengths of deep learning and propagation.

5 Conclusion

Propagation based image matting techniques treat each pixel
of an image as a graph’s node and connect each pair of neigh-
boring pixels by the graph’s edge. The edge weight measures
the affinity between pixels and reflects the pairwise similar-
ity for the image matting task. As pointed out in [Aksoy et
al., 2017; Liu et al., 2017], as image matting is a high-level
vision task, the affinity used in propagation based matting
techniques should reveal semantic-level pairwise similarity.
This may be the reason why many of previous image matting
techniques can fail in various practical cases because they are
mostly based on low-level pairwise similarity.

In this paper, we show that a semantic-level pairwise sim-
ilarity for propagation based image matting can be learned
in a purely data-driven manner via a deep learning mecha-
nism. We carry out our learning process by inserting a sim-
ilarity learning module and a matte propagation module into
the sequence of operations between feature learning and im-
age matte. We also prove that these two modules are both
differentiable and therefore the complete deep learning archi-
tecture can be optimized jointly using backpropagation and
stochastic gradient descent (SGD). Our framework is more
efficient than state-of-the-art image matting techniques be-
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cause it combines the power of deep image representations
from deep learning techniques and the propagation based
matting techniques. In addition, unlike most deep learn-
ing based matting techniques which predict alpha matte di-
rectly, the proposed network learns similarity for propaga-
tion, which reduces the dimensionality of parameter space
significantly. Experimental results from the public alphamat-
ting.com database and our own database show the superior-
ity of the proposed framework against several representative
state-of-the-art matting techniques. Especially, we show that
the proposed framework can help to deal with difficulties in
matting when the foreground colors overlap with background
colors.

Our future work would include an extension of our Deep-
MattePropNet to other propagation based image editing tasks,
e.g. image colorization and image segmentation. In addition,
we would extend our own matting evaluation database in or-
der to include more images and replace the exponential layer
in our affinity learning module for eliminating the potential
gradient saturation problem.
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