
A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality

Jasmin Christian Blanchette
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

j.c.blanchette@vu.nl

Mathias Fleury and Christoph Weidenbach
Max-Planck-Institut für Informatik

Saarland Informatics Campus
Saarbrücken, Germany

{mfleury,weidenbach}@mpii.de

Abstract
We developed a formal framework for SAT solving
using the Isabelle/HOL proof assistant. Through a
chain of refinements, an abstract CDCL (conflict-
driven clause learning) calculus is connected to a
SAT solver that always terminates with correct an-
swers. The framework offers a convenient way to
prove theorems about the SAT solver and experi-
ment with variants of the calculus. Compared with
earlier verifications, the main novelties are the in-
clusion of the CDCL rules for forget, restart, and
incremental solving and the use of refinement.

1 Introduction
Researchers in automated reasoning spend a significant por-
tion of their work time specifying logical calculi and proving
metatheorems about them. These proofs are typically car-
ried out with pen and paper, which is error-prone and can be
tedious. As proof assistants are becoming easier to use, it
makes sense to employ them.

In this spirit, we started an effort, called IsaFoL (Isabelle
Formalization of Logic), that aims at developing libraries and
methodology for formalizing modern research in the field, us-
ing the Isabelle/HOL proof assistant.1 Our initial emphasis
is on established results about propositional and first-order
logic. In particular, we are formalizing large parts of Weiden-
bach’s forthcoming textbook, tentatively called Automated
Reasoning—The Art of Generic Problem Solving.

The objective of formalization work is not to eliminate pa-
per proofs, but to complement them with rich formal compan-
ions. Formalizations help catch mistakes, whether superficial
or deep, in specifications and theorems; they make it easy to
experiment with changes or variants of concepts; and they
help clarify concepts left vague on paper.

This paper presents our formalization of the CDCL
(conflict-driven clause learning) calculus [Bayardo Jr. and
Schrag, 1996; Marques-Silva and Sakallah, 1996] as de-
scribed in Automated Reasoning. CDCL is a core algorithm
implemented in modern SAT solvers. We start with a fam-
ily of abstract transition systems, following Nieuwenhuis,
Oliveras, and Tinelli’s [2006] account of CDCL (Section 3).

1https://bitbucket.org/isafol/isafol

Some of the calculi include rules for learning and forgetting
clauses and for restarting the search. All calculi are proved
sound and complete, as well as conditionally terminating.

The abstract CDCL calculus is refined into the more con-
crete calculus presented in Automated Reasoning and recently
published [Weidenbach, 2015] (Section 4). The latter spec-
ifies a criterion for learning clauses representing first unique
implication points [Biere et al., 2009], with the guarantee that
learned clauses are derived at most once. The calculus also
supports incremental solving. This concrete calculus is then
refined further, as a certified functional program (Section 5).

Any formalization effort is a case study in the use of a proof
assistant. We relied on the following features of Isabelle:

• Isar [Wenzel, 2007] is a textual input format that makes
it possible to write structured, readable proofs—a requi-
site for any formalization that aims at clarifying an ab-
stract pen-and-paper proof.

• Locales [Ballarin, 2014] parameterize theories over op-
erations and assumptions, encouraging a modular style
of development. They are useful to express hierarchies
of related concepts and to reduce the number of param-
eters and assumptions that must be passed around.

• Sledgehammer [Blanchette et al., 2013] integrates au-
tomatic theorem provers in Isabelle to discharge proof
obligations. Many of the provers build on a SAT solver,
resulting in a situation where SAT solvers are employed
to prove their own metatheory.

Our work is related to other verifications of SAT solvers,
typically with the aim of increasing their trustworthiness
[Marić, 2010; Lescuyer, 2011; Shankar and Vaucher, 2011;
Oe et al., 2012]. This goal has lost some of its significance
with the emergence of formats for certificates that are easy to
generate, even in highly optimized solvers, and that can be
processed efficiently by verified checkers [Cruz-Filipe et al.,
2017; Lammich, 2017]. In contrast, our focus is on formaliz-
ing the metatheory of CDCL, to study and connect the various
members of the family. The main novelties of our framework
are the inclusion of rules for forget, restart, and incremental
solving and the application of stepwise refinement to trans-
fer results. The original version of this paper was presented
at the eighth edition of the International Joint Conference on
Automated Reasoning (IJCAR 2016) in Coimbra, Portugal
[Blanchette et al., 2016].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4786

2 Isabelle
Isabelle [Nipkow et al., 2002; Nipkow and Klein, 2014] is a
generic proof assistant that supports many object logics. The
metalogic is an intuitionistic fragment of higher-order logic
(HOL). Isabelle/HOL is the instantiation of Isabelle with
HOL, an object logic for classical HOL extended with rank-1
(top-level) polymorphism and Haskell-style type classes. It
axiomatizes a type bool and the familiar logical symbols.
Its syntax is similar to that of typed functional programming
languages such as Haskell, OCaml, and Standard ML.

Isabelle adheres to the tradition initiated in the 1970s by the
LCF system [Gordon et al., 1979]: All inferences are derived
by a small trusted kernel; types and functions are defined
rather than axiomatized to guard against inconsistencies.
High-level specification mechanisms let us define important
classes of types and functions, notably inductive predicates
(as in Prolog) and recursive functions (as in Haskell). Inter-
nally, the system synthesizes suitable low-level definitions.

Isabelle developments are organized as collections of text
files that build on one another. Each file consists of defini-
tions, lemmas, and proofs expressed in Isar, Isabelle’s input
language. Proofs are specified in a declarative format.

Isabelle locales are a convenient mechanism for structuring
large proofs. A locale fixes types, constants, functions, and
assumptions within a specified scope, which are instantiated
when using the locale. Locales support inheritance, union,
and embedding. For example, the semigroup locale is param-
eterized over an operator ∗ that is assumed to be associative.
The group locale inherits from semigroup and adds a 0 con-
stant and a −1 operator, with additional assumptions about
them. All lemmas and definitions provided in the context of
semigroup are available in group as well.

3 Abstract CDCL
The abstract CDCL calculus by Nieuwenhuis et al. [2006] is
the starting point of our refinement chain. Properties such as
correctness and termination are inherited by subsequent links.

We represent raw and annotated literals by freely gener-
ated datatypes parameterized by the types ′v (propositional
variable, or atom) and ′c (clause):

datatype ′v lit = datatype (′v, ′c) ann_lit =
Pos ′v Decided (′v lit)
| Neg ′v | Propagated (′v lit) ′c

Informally, we write A, ¬A, and L† for positive, negative,
and decided literals, and −L for the negation of a literal, with
−(¬A) = A. The simpler calculi do not use ′c.

A ′v clause is a (finite) multiset over ′v lit. To ease reading,
we write clauses using logical symbols. Given a set I of liter-
als, I � C is true if and only if C and I share a literal. This is
lifted to (multi)sets of clauses: I � N ←→ ∀C∈N. I �C. A set
is satisfiable if there exists a consistent set of literals I such
that I � N. Finally, N � N′ ←→ ∀I. I � N −�→ I � N′.

3.1 DPLL with Backjumping
Nieuwenhuis et al. present CDCL as a set of transition rules
on states. A state is a pair (M, N), where M is the trail and N
is the set of clauses to satisfy. The trail is a list of annotated

literals that represents the partial model under construction.
As such, it never contains both a literal L and its negation
−L at the same time. The trail grows on the left: Adding a
literal L to M results in the new trail LM. We build lists from
elements and other lists by simple juxtaposition.

The core of the CDCL calculus is defined as a transition
relation DPLL+BJ, a generalization of DPLL (Davis–Putnam–
Logemann–Loveland) [Davis et al., 1962] with nonchrono-
logical backtracking, or backjumping. We write S =⇒DPLL+BJ
S′ for DPLL+BJ S S′. The DPLL+BJ calculus consists of three
rules, starting from an initial state (ε, N):

Propagate (M, N) =⇒DPLL+BJ (LM, N)
if N contains a clause C∨ L such that M � ¬C and L is
undefined in M (i.e., neither M � L nor M �−L)

Backjump (M′L†M, N) =⇒DPLL+BJ (L′M, N)
if N contains a conflicting clause C (i.e., M′L†M � ¬C)
and there exist C′, L′ such that N �C′∨L′, M �¬C′, and
L′ is undefined in M but occurs in N or in M′L†

Decide (M, N) =⇒DPLL+BJ (L†M, N)
if the atom of L belongs to N and is undefined in M

The Backjump rule encompasses both DPLL, where C′ ∨ L′
is instantiated to ¬M∨−L, and CDCL backjumping, where
C′∨L′ is a new clause derived from N.

Theorem 1 (Termination). DPLL+BJ is well founded.

When formalizing the termination proof, we found some
inaccuracies in the proof by Nieuwenhuis et al. [Blanchette
et al., 2016, Section 3.2]. With this exception, we found their
proofs clear and easy to follow.

A final state is a state from which no transitions are pos-
sible. Given a relation =⇒, we write =⇒! for the right-
restriction of its reflexive transitive closure to final states.

Theorem 2 (Correctness). If (ε, N) =⇒!
DPLL+BJ (M, N), then

N is satisfiable if and only if M � N.

3.2 The CDCL Calculus
The abstract CDCL calculus extends DPLL+BJ with a pair of
rules for learning new lemmas and forgetting old ones:

Learn (M, N) =⇒CDCL_�NOT (M, N]{C})
if N � C and each atom of C is in N or M

Forget (M, N]{C}) =⇒CDCL_�NOT (M, N) if N � C

The Learn rule is normally applied to clauses built exclusively
from atoms in M, because the learned clause is false in M.
This property eventually guarantees that the learned clause is
not redundant. We call this calculus CDCL_�NOT after Nieuw-
enhuis, Oliveras, and Tinelli. In general, CDCL_�NOT does not
terminate, because it is possible to learn and forget the same
clause infinitely often. But for some parameter instantiations
with suitable restrictions on Learn and Forget, the calculus al-
ways terminates. In particular, DPLL+BJ always terminates.

Theorem 3 (Termination). Let C be an instance of the
CDCL_�NOT calculus (i.e., C ⊆ CDCL_�NOT). If C admits no in-
finite chains consisting exclusively of Learn and Forget tran-
sitions, then C is well founded.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4787

In many SAT solvers, the only clauses that are ever learned
are the ones used for backtracking. If we restrict the learning
so that it is always done immediately before backjumping,
some progress will be made between a Learn and the next
Learn or Forget. This idea is captured by the combined rule

Learn+Backjump
(M′L†M, N) =⇒CDCL_�NOT_�merge (L′M, N]{C′∨L′})
if C′, L†, L′, M, M′, N satisfy Backjump’s side conditions

The calculus variant that performs this rule instead of Learn
or Backjump is called CDCL_�NOT_�merge.

3.3 Restarts
Modern SAT solvers periodically restart the proof search to
apply the effects of a changed dynamic decision literal heuris-
tic. Upon a restart, some learned clauses may be removed,
and the trail is reset to ε. Since our calculus has a Forget
rule, Restart needs only to clear the trail. Adding Restart to
CDCL_�NOT yields CDCL_�NOT+restart. However, this calculus
does not terminate, because Restart can always be applied.

A working strategy is to gradually increase the number
of transitions between successive restarts. This is formal-
ized via a locale parameterized by a base calculus C and
an unbounded function f : N→ N. The extended calculus
C+restartT is defined by the two rules

Restart (S, n) =⇒C+restartT ((ε, N′), n+1)
if S =⇒m

C (M′,N′) and m≥ f n

Finish (S, n) =⇒C+restartT (S′′, n+1) if S =⇒!
C S′

In practice, the Luby sequence (1,1,2,1,1,2,4, . . .) [Luby
et al., 1993] is often used for f . We also formalized an
alternative strategy based on the number of conflicts or
learned clauses.

4 A Refined CDCL towards an
Implementation

The CDCL_�NOT calculus captures the essence of modern SAT
solvers without imposing a policy on when to apply specific
rules. In particular, the Backjump rule depends on a clause
C′ ∨ L′ to justify the propagation of a literal, but does not
specify a procedure for coming up with this clause. Weiden-
bach [2015] developed a calculus that is more specific in this
respect, and closer to existing implementations, while keep-
ing many aspects unspecified. This calculus, CDCL_�W, is also
formalized in Isabelle and connected to CDCL_�NOT.

4.1 The New CDCL Calculus
The CDCL_�W calculus operates on states (M, N,U, k, D),
where M is the trail; N and U are the sets of initial and learned
clauses, respectively; k is the decision level (i.e., the number
of decision literals in M); D is a conflict clause, or the distin-
guished clause > if no conflict has been detected. In M, each
decision literal is annotated with a level (Decided L k or Lk),
and each propagated literal is annotated with the clause that
caused its propagation (Propagated L C or LC). The level of a
propagated literal L is the level of the closest decision literal
that follows it in the trail, or 0 if no such literal exists. The
level of a clause is the highest level of any of its literals.

The calculus starts in a state (ε, N, /0, 0,>). The following
rules apply as long as no conflict has been detected:

Propagate (M, N,U, k,>) =⇒CDCL_�W (LC∨LM, N,U, k,>)
if C∨L ∈ N]U, M � ¬C, and L is undefined in M

Conflict (M, N,U, k,>) =⇒CDCL_�W (M, N,U, k, D)
if D ∈ N]U and M � ¬D

Decide (M, N,U, k,>) =⇒CDCL_�W (Lk+1M, N,U, k+1,>)
if L is undefined in M and occurs in N

Restart (M, N,U, k,>) =⇒CDCL_�W (ε, N,U, 0,>) if M 6� N

Forget (M, N,U]{C}, k,>) =⇒CDCL_�W (M, N,U, k,>)
if M 6� N and M contains no literal LC

Once a conflict clause is detected and stored in the state, the
following rules collaborate to reduce it and backtrack, explor-
ing a first unique implication point [Biere et al., 2009]:

Skip (LC M, N,U, k, D) =⇒CDCL_�W (M, N,U, k, D)
if D /∈ {⊥,>} and −L does not occur in D

Resolve (LC∨LM, N,U, k, D∨−L) =⇒CDCL_�W
(M, N,U, k,C∪D) if D is of level k

Jump (M′Ki+1M, N,U, k, D∨L) =⇒CDCL_�W

(LD∨LM, N,U]{D∨L}, i,>)
if L is of level k and D is of level i

In combination, these three rules can be simulated by
the combined learning and nonchronological backjump rule
Learn+Backjump from CDCL_�NOT_�merge.

CDCL_�W has a notion of conclusive state. A state (M, N,U,
k, D) is conclusive if D = > and M � N or if D = ⊥ and N
is unsatisfiable. The calculus always terminates but, without
suitable strategy, it can stop in an inconclusive state.

4.2 A Reasonable Strategy
To prove correctness, we follow Weidenbach [2015] and as-
sume a reasonable strategy: Propagate and Conflict are pre-
ferred over Decide; Restart and Forget are not applied. The re-
sulting calculus, CDCL_�W+stgy, refines CDCL_�W with the as-
sumption that derivations are produced by a reasonable strat-
egy. This assumption is enough to ensure that the calculus can
backjump after detecting a conflict clause other than ⊥. The
crucial invariant is the existence of a literal with the highest
level in any conflict, so that Resolve can be applied.

Theorem 4 (Correctness). If (ε, N, /0, 0,>) =⇒!
CDCL_�W+stgy S′,

then S′ is conclusive.

Once a conflict clause has been stored in the state, the
clause is first reduced by a chain of Skip and Resolve tran-
sitions. Then, two scenarios are possible: (1) the conflict is
solved by a Jump, at which point the calculus may resume
propagating and deciding literals; (2) the reduced conflict
is ⊥, meaning that N is unsatisfiable—i.e., for unsatisfiable
clause sets, U contains a resolution proof.

The CDCL_�W+stgy calculus is designed so that the same
clause cannot be learned twice:

Theorem 5 (Relearning). Let (ε, N, /0, 0,>) =⇒∗CDCL_�W+stgy

(M, N,U, k, D). No Jump transition is possible from the latter
state causing the addition of a clause from N]U to U.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4788

4.3 Connection with Abstract CDCL
In Automated Reasoning, Theorem 5 is used to establish the
termination of CDCL_�W+stgy. However, the argument for the
termination of CDCL_�NOT also applies to CDCL_�W regardless
of the strategy, a stronger result. To lift CDCL_�NOT_�merge’s
termination proof, we show that CDCL_�W refines CDCL_�NOT_�
merge. The states are easy to connect: We interpret a CDCL_�
W tuple (M, N,U, k,C) as a CDCL_�NOT pair (M, N).

The main difficulty is to relate the low-level conflict-related
CDCL_�W rules to their high-level counterparts. Our solution is
to introduce an intermediate calculus, called CDCL_�W_�merge,
that combines consecutive low-level transitions into a single
transition of a new rule called Reduce+Maybe_�Jump. This
calculus refines both CDCL_�W and CDCL_�NOT_�merge and is
sufficiently similar to CDCL_�W so that we can transfer termi-
nation and other properties from CDCL_�NOT_�merge through
it. Whenever the CDCL_�W calculus performs a low-level
sequence of transitions of the form Conflict(Skip |Resolve)∗

Jump?, the CDCL_�W_�merge calculus performs a single transi-
tion of Reduce+Maybe_�Jump.

Since CDCL_�W_�merge is mostly a rephrasing of CDCL_�
W, it makes sense to restrict CDCL_�W_�merge to a reason-
able strategy that prefers Propagate and Reduce+Maybe_�Jump
over Decide, yielding CDCL_�W_�merge+stgy. The two strategy-
restricted calculi have the same end-to-end behavior:

S =⇒!
CDCL_�W_�merge+stgy S′ ←→ S =⇒!

CDCL_�W+stgy S′

4.4 Incremental Solving
SMT (satisfiability modulo theories) solvers [Nieuwenhuis et
al., 2006] combine a SAT solver with theory solvers. The
main loop runs the SAT solver on a set of clauses. If the SAT
solver answers “unsatisfiable,” the SMT solver is done; other-
wise, the main loop asks the theory solvers to provide theory-
motivated clauses to exclude the current candidate model.
This design relies on incremental SAT solving: the possibility
of adding new clauses to the clause set C of a conclusive sat-
isfiable state and of continuing from there. As a step towards
formalizing SMT, we designed a calculus CDCL_�W+stgy+incr
that performs incremental solving on top of CDCL_�W+stgy:

Add_�StrengtheningC (M, N,U, k,>) =⇒CDCL_�W+stgy+incr S′

if M 6� ¬C and (M, N]{C},U, k,>) =⇒!
CDCL_�W+stgy S′

Add_�ConflictC (M′LM, N,U, k,>) =⇒CDCL_�W+stgy+incr S′
if LM�¬C,−L∈C, M′ contains no C literal, L has level
i in LM, and (LM, N]{C},U, i,C) =⇒!

CDCL_�W+stgy S′

Theorem 6 (Correctness). If S is a conclusive state and
S =⇒CDCL_�W+stgy+incr S′, then S′ is conclusive.

5 An Implementation of CDCL
The final link in our refinement chain is a deterministic SAT
solver that implements CDCL_�W+stgy, expressed as a func-
tional program in Isabelle. We choose to represent states
by tuples (M, N,U, k, D), where propositional variables are
coded as natural numbers and multisets are represented by
lists. Each transition rule in CDCL_�W+stgy is implemented by
a corresponding function.

The main function invokes the functions for the rules, look-
ing for conflicts before propagating literals. Termination is
proved by showing that the call graph is included in CDCL_�
W+stgy. The correctness and termination theorems can then
be lifted, meaning that the SAT solver is a decision procedure
for propositional logic. The program is not efficient, but it
satisfies the need for a proof of concept.

In subsequent, not-yet-published work, we perform fur-
ther refinement steps to derive an imperative SAT solver im-
plementation featuring efficient data structures, including the
well-known two-watched-literal optimization. Although our
solver is not competitive, it offers acceptable performance for
some applications, and custom heuristics can easily be added
to improve it. Going further and formalizing a competitive
SAT solver would be a huge effort. If trustworthiness is de-
sired, it seems preferable to rely on certificates, which can be
checked by verified tools.

6 Discussion
At the time when our IJCAR 2016 paper was written, the for-
malization consisted of about 28 000 lines of Isabelle text. It
had been developed over a period of 10 months almost en-
tirely by Fleury, who also taught himself Isabelle during that
time. It covered nearly all of the metatheoretical material of
Sections 2.6 to 2.11 of Automated Reasoning and Section 2
of Nieuwenhuis et al., including normal form transformations
and ground unordered resolution.

It is difficult to quantify the cost of formalization as op-
posed to paper proofs. For a sketchy paper proof, formaliza-
tion may take an arbitrarily long time; indeed, Weidenbach’s
nine-line proof of Theorem 5 initially took 700 lines of Isa-
belle. In contrast, given a very detailed paper proof, one can
obtain a formalization in less time than it took to write the pa-
per proof [Woodcock and Banach, 2007]. A hurdle to formal-
ization is often the lack of suitable libraries. For CDCL, we
spent considerable time adding definitions, lemmas, and au-
tomation hints to Isabelle’s multiset library but otherwise did
not need any special libraries. We also found that organizing
the proof at a high level—especially locale engineering—is
more challenging than discharging proof obligations.

The advantages of computer-checked metatheory are
well known from programming language research, where
papers are often accompanied by formalizations and proof
assistants are used in the classroom. This paper reported
on some steps we have taken to apply these methods to
automated reasoning. We presented a formal framework for
SAT solving in Isabelle/HOL, covering the ground between
an abstract calculus and a certified SAT solver. We intend to
keep following Automated Reasoning, thereby demonstrating
that interactive theorem proving is mature enough to be of
use to practitioners in automated reasoning.

Acknowledgments
We thank everyone who helped us with the conference ver-
sion of this paper. This work has received funding from
the European Research Council under the European Union’s
Horizon 2020 research and innovation program (grant agree-
ment No. 713999, Matryoshka).

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4789

References
[Ballarin, 2014] Clemens Ballarin. Locales: A module

system for mathematical theories. J. Autom. Reasoning,
52(2):123–153, 2014.

[Bayardo Jr. and Schrag, 1996] Roberto J. Bayardo Jr. and
Robert Schrag. Using CSP look-back techniques to solve
exceptionally hard SAT instances. In Eugene C. Freuder,
editor, CP96, volume 1118 of LNCS, pages 46–60.
Springer, 1996.

[Biere et al., 2009] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2009.

[Blanchette et al., 2013] Jasmin Christian Blanchette,
Sascha Böhme, and Lawrence C. Paulson. Extending
Sledgehammer with SMT solvers. J. Autom. Reasoning,
51(1):109–128, 2013.

[Blanchette et al., 2016] Jasmin Christian Blanchette,
Mathias Fleury, and Christoph Weidenbach. A verified
SAT solver framework with learn, forget, restart, and
incrementality. In Nicola Olivetti and Ashish Tiwari,
editors, IJCAR 2016, volume 9706 of LNCS, pages
25–44. Springer, 2016.

[Cruz-Filipe et al., 2017] Luís Cruz-Filipe, Marijn Heule,
Warren Hunt, Matt Kaufmann, and Peter
Schneider-Kamp. Efficient certified RAT verification. In
Leonardo de Moura, editor, CADE-26, LNCS. Springer,
2017.

[Davis et al., 1962] Martin Davis, George Logemann, and
Donald W. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[Gordon et al., 1979] Michael J. C. Gordon, Robin Milner,
and Christopher P. Wadsworth. Edinburgh LCF: A
Mechanised Logic of Computation, volume 78 of LNCS.
Springer, 1979.

[Lammich, 2017] Peter Lammich. Efficient verified
(UN)SAT certificate checking. In Leonardo de Moura,
editor, CADE-26, LNCS. Springer, 2017.

[Lescuyer, 2011] Stephane Lescuyer. Formalizing and
Implementing a Reflexive Tactic for Automated Deduction
in Coq. PhD thesis, 2011.

[Luby et al., 1993] Michael Luby, Alistair Sinclair, and
David Zuckerman. Optimal speedup of las vegas
algorithms. Inf. Process. Lett., 47(4):173–180, 1993.

[Marić, 2010] Filip Marić. Formal verification of a modern
SAT solver by shallow embedding into Isabelle/HOL.
Theor. Comput. Sci., 411(50):4333–4356, 2010.

[Marques-Silva and Sakallah, 1996] João P. Marques-Silva
and Karem A. Sakallah. GRASP—A new search
algorithm for satisfiability. In ICCAD ’96, pages
220–227. IEEE Computer Society Press, 1996.

[Nieuwenhuis et al., 2006] Robert Nieuwenhuis, Albert
Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract
Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM, 53(6):937–977, 2006.

[Nipkow and Klein, 2014] Tobias Nipkow and Gerwin
Klein. Concrete Semantics: With Isabelle/HOL. Springer,
2014.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C. Paulson,
and Markus Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[Oe et al., 2012] Duckki Oe, Aaron Stump, Corey Oliver,
and Kevin Clancy. versat: A verified modern SAT
solver. In Viktor Kuncak and Andrey Rybalchenko,
editors, VMCAI 2012, volume 7148 of LNCS, pages
363–378. Springer, 2012.

[Shankar and Vaucher, 2011] Natarajan Shankar and Marc
Vaucher. The mechanical verification of a DPLL-based
satisfiability solver. Electr. Notes Theor. Comput. Sci.,
269:3–17, 2011.

[Weidenbach, 2015] Christoph Weidenbach. Automated
reasoning building blocks. In Roland Meyer, André
Platzer, and Heike Wehrheim, editors, Correct System
Design: Symposium in Honor of Ernst-Rüdiger Olderog
on the Occasion of His 60th Birthday, volume 9360 of
LNCS, pages 172–188. Springer, 2015.

[Wenzel, 2007] Makarius Wenzel. Isabelle/Isar—A generic
framework for human-readable proof documents. In
Roman Matuszewski and Anna Zalewska, editors, From
Insight to Proof: Festschrift in Honour of Andrzej
Trybulec, volume 10(23) of Studies in Logic, Grammar,
and Rhetoric. University of Białystok, 2007.

[Woodcock and Banach, 2007] Jim Woodcock and Richard
Banach. The verification grand challenge. J. Univers.
Comput. Sci., 13(5):661–668, 2007.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4790

