
A Parametric Hierarchical Planner for Experimenting Abstraction Techniques

Giuliano Armano, Giancarlo Cherchi, Eloisa Vargiu
Department of Electrical and Electronical Engineering

University of Cagliari
1-09123, Cagliari, Italy

armano, cherchi, vargiu @diee.unica.it

Abstract
This paper presents a parametric system, devised
and implemented to perform hierarchical plan­
ning by delegating the actual search to an exter­
nal planner (the "parameter") at any level of ab­
straction, including the ground one. Aimed at
giving a better insight of whether or not the ex­
ploitation of abstract spaces can be used for
solving complex planning problems, compari­
sons have been made between instances of the
hierarchical planner and their non hierarchical
counterparts. To improve the significance of the
results, three different planners have been se­
lected and used while performing experiments.
To facilitate the setting of experimental envi­
ronments, a novel semi-automatic technique,
used to generate abstraction hierarchies starting
from ground-level domain descriptions, is also
described.

1 Introduction
There is experimental evidence that humans repeatedly
use abstractions while solving different kinds of prob­
lems [Stillings et ai, 1987], thus justifying the research
in the field of automated hierarchical planning.

It is apparent that abstraction is usually not effective
on simple problems, due to the overhead introduced by
the need of going back and forth across abstract spaces
while performing the search. In other words, enforcing
abstraction on simple problems may end up by wasting
computational resources. Yet, under certain assumptions
abstraction can significantly reduce the search time when
applied to complex problems [Knoblock, 1991].

In order to investigate the impact of abstraction
mechanisms on the search complexity, we devised and
implemented a hierarchical wrapper able to embody any
domain-independent planner provided that a compliance
with the STRIPS subset of PDDL 1.2 standard [McDer-
mott et al, 1998] is ensured. The embodied planner is
exploited at any level of the hierarchy, each level being
characterized by its own definitions. A suitable decoup­
ling between levels is guaranteed by using domain-
specific rules that establish the correspondence between

entities belonging to a level and its superior. Translation
rules are given in a PDDL-like format, explicitly defined
to support abstractions.

Experiments have been performed on some classical
planning domains, widely acknowledged by the planning
community -although not specifically tailored for ab­
straction. To better assess the significance of the results,
three different planners have been used while performing
experiments.

The remainder of this paper is organized as follows:
first, some relevant work on planning by abstraction is
briefly recalled, to give the reader a better insight of the
issues deemed relevant. Then, the overall architecture of
the system is illustrated, including the semi-automatic
technique we developed for generating abstract spaces.
Subsequently, experiments are described and results are
discussed. Finally, conclusions are drawn and future
work is outlined.

2 Related Work
Building an ordered set of abstractions for controlling the
search has proven to be an effective approach for dealing
with the complexity of planning tasks. This technique
requires the original search space to be mapped into cor­
responding abstract spaces, in which irrelevant details are
disregarded at different levels of granularity.

Two main abstraction mechanisms have been studied
in the literature: action- and state-based. The former
combines a group of actions to form macro-operators
[Korf, 1987]. The latter exploits representations of the
domain given at a lower level of detail; its most signifi­
cant forms rely on (i) relaxed models, obtained by drop­
ping operators' applicability conditions [Sacerdoti,
1974], and on (ii) reduced models, obtained by com­
pletely removing certain conditions from the problem
space [Knoblock, 1994]. Both models, while preserving
the provability of plans that hold at the ground level, per­
form a "weakening" of the original problem space, thus
suffering from the drawback of introducing "false" solu­
tions at the abstract levels [Giunchiglia and Walsh,
1990].

As for Knoblock's abstraction hierarchies, each predi­
cate is associated with a unique level of abstraction -

936 PLANNING

according to the constraints imposed by the ordered
monotonicity property [Knoblock, 1994]. Any such hier­
archy can be obtained by progressively removing certain
predicates from the domain (or problem) space.

From a general perspective, let us assume that abstrac­
tions might occur on types, predicates, and operators.
Relaxed models are a typical example of predicate-based
abstraction, whereas macro-operators are an example of
operator-based abstraction.

3 System Architecture
The system has been called HWQ, standing for (paramet­
ric) Hierarchical Wrapper. Note that square brackets are
part of the name, indicating the ability to embed an ex­
ternal planner; being P any such planner, the notation
HW[P] shall be used to denote an instance of HW[] able
to exploit the planning capabilities of P.

Figure 1 illustrates the architecture of the system, fo­
cusing on its main components, i.e., an engine and the
embedded planner. The former is devoted to controlling
the communication between adjacent levels, whereas the
latter is exploited to perform planning at any given level
of abstraction.

Any domain-independent planner can be embodied
within the system, provided that compliance with the
STRIPS subset of the PDDL 1.2 standard is ensured.

Figure 1. The architecture of the system.

Although the system supports a multiple-level hierar­
chy, for the sake of simplicity, in the following we as­
sume that only one abstract level exists, giving rise to a
two-level (i.e., ground and abstract) hierarchical descrip­
tion.

3.1 The Planning Algor i thm
Once instantiated with an external planner P, HW[P]
takes as inputs a ground-level problem and a structured
description of the corresponding domain, including a set
of rules to be used while mapping ground into abstract
states and vice-versa. In fact, to perform planning at dif­
ferent levels of abstraction, the engine of HW[] must op­
erate bi-directional translations (upwards and down­
wards) to permit communication between adjacent levels.

To find a solution of a given problem, first the engine
of HW[P] translates the init and goal sections from the
ground to the abstract level. P is then invoked to search
for an abstract solution. Subsequently, each abstract op­
erator is refined by repeatedly invoking P. The refine­
ment of an abstract operator is performed by activating P,

at the ground level, on the goal obtained by translating
downward its effects. Note that the initial state of each
refinement depends on the previous refinement; hence,
refinements must be performed according to the order
specified by the abstract plan. To avoid incidental dele­
tion of subgoals already attained during previous refine­
ments, they are added to the list of subgoals that results
from translating downward the effects of the current ab­
stract operator to be refined.

When the attempt to refine the current abstract solution
fails P is invoked to find the next abstract solution,]

unless the number of abstract solutions found so far ex­
ceeds a given threshold If no abstract solution could
be successfully refined, to ensure the completeness of the
algorithm, an overall search is performed at the ground
level. The whole process ends when a ground solution is
found or the overall search fails.

3.2 Extending PDDL for Dealing with
Abstraction

A problem and its corresponding domain are described in
accordance with the standard PDDL 1.2 syntax, using the
'''define problem" and "define domain" statements, re­
spectively. To describe how bi-directional communica­
tion occurs between adjacent levels an extension to the
standard PDDL has been devised and adopted.

More precisely, the syntactic construct "define hierar­
chy" has been introduced. It encapsulates an ordered set
of domains, together with a corresponding set of map­
pings between adjacent levels of abstraction. Since the
mappings are given in term of types, predicates and op­
erators, three subfields have been introduced (i.e.,
: types, : predicates, and : actions), to represent the
abstraction over such dimensions. The general form of
the construct is:

(define (hierarchy <name>)
(:domains <domain-name>*)
(imapping (<src-domam> <dst-domain>)
[:types <types-def>]
[:predicates <predicates-def>]
[tact ions <actions-def>]) *)

The following notation is adopted in the : types field
to represent a clause for mapping types:

(a b s t r a c t - t y p e g round- type)

It specifies that ground-type becomes
abstract - type while performing upward translations.
To disregard a type, the following notation must be used:

Due to the limitations of most of the existing planners, the
process of incrementally querying for another solution may be
simulated by preliminarily querying for m abstract solutions,
to be released incrementally on demand.

PLANNING 937

Tabic 1. Heuristics for pruning the operators1 graph.

(n i l ground-type)

Moreover, the following notation is adopted in the
:predicates field to represent a clause for mapping
predicates:

It specifies that ground-predicate must be pre­
served while going upward and vice-versa. Note that, if
no differences exist in mapping a predicate between adja­
cent levels, the corresponding clause can be omitted.

To disregard a predicate while performing upward
translations, the following notation is used:

(n i l
(ground-predicate ?pl2 t l 2 ?p22 - t22 ...))

It specifies that ground-predicate is not translated
into any abstract-level predicate.

In addition, abst rac t -pred icate can be expressed
as a logical combination of some ground-level predicates.

To describe how to build the set of operators for the
abstract domain, in the -.actions field, four kinds of
mapping can be expressed:

- an action remains unchanged or some of its parame­
ters are disregarded;

- an action is removed;
- an action is expressed as a combination of actions

belonging to the ground domain;
- a new operator is defined from scratch.

3.3 Generating Abstractions
To facilitate the setting of abstract spaces, as an alterna­
tive to the hand-coded approach used in [Armano et ai,
2003], a novel semi-automatic technique for generating
abstraction hierarchies starting from ground-level domain
descriptions has been devised and adopted.

From our particular perspective, performing abstrac­
tion basically involves executing two steps: (i) searching
for macro-operator schemata through a priori or a poste­
riori analysis, (ii) selecting some of the schemata evi­
denced so far and translating them into abstract operators.

In this subsection, we concentrate on the task of find­
ing macro-operator schemata throughout an a-priori
analysis performed on the given domain and problem,
rather than adopting the a-posteriori technique illustrated
in [Armano and Vargiu, 2001], aimed at finding macro-
operator schemata according to a post-mortem analysis
performed on plan "chunks".

938 PLANNING

Step (i) is performed by an algorithm for building and
then pruning a directed graph, whose nodes represent
operators and whose edges represent relations between
effects of the source node and preconditions of the desti­
nation node. In particular, for each source node A and for
each destination node B, representing operators defined
in the given domain, the corresponding edge is labeled
with a pair of non-negative numbers, denoted by
The pair accounts for how many predicates A can estab­
lish and negate that are also preconditions of B. It
is worth noting that source and destination node may co­
incide, thus giving rise to a self-reference.

Pruning is performed according to the domain-
independent heuristics reported in Table 1. Note that the
pruned graph does not contain edges labeled the
corresponding operators being completely independent.

At this point, the most promising macro-operator
schemata can be easily extracted from the pruned graph,
each path being related with a candidate macro-operator.

<0 1>

Figure 2. The directed graph (before pruning), representing static
relations between operators of the blocks-world domain.

As an example, let us consider the well-known blocks-
world domain, encompassing four operators: stack, pick­
up, unstack, put-down. The corresponding graph is shown
in Figure 2. Bearing in mind that the same mechanism
has been applied to all operators' pairs, let us concentrate
-for instance- on the relation that holds between stack
(source node) and pick-up (destination node).

Considering that the effects of the stack operator are:

(not (holding ?x))
(not (clear ?y))
(clear ?x)
(handempty)
(on ?x ?y)

and that the preconditions of the pick-up operator are:

(clear ?x)
(ontable ?x)
(handempty)

we label the corresponding edge with the pair It is
apparent that stack establishes two preconditions for
pick-up, while negating another.

As for the pruning activity, Figure 3 shows the result­

ing graph for the blocks-world domain.2 The resulting
macro-operator schemata are (";" being used for concate­
nation): pick-up;stack, unstack;put-down, pick-up ;put-
down, and stack;unstack.

Figure 3. The directed graph (after pruning), representing static
relations between operators of the blocks-world domain.

Step (ii) is performed by selecting a subset of the re­
sulting macro-operator schemata, and by translating them
into abstract operators. In principle, generating an ab­
stract operator is not a deterministic task; for this reason
in the current implementation of the system this mecha­
nism has not yet been completely automated. Neverthe­
less, the simplest way of generating an abstract operator
consists of deleting from the abstract level all predicates
that do not occur among preconditions or effects of any
selected macro-operator. This process influences (and is
influenced by) the translation rules that apply to both
types and predicates. For instance, the absence of a
predicate as a precondition or effect of any induced ab­
stract operator entails its deletion from the abstract level.

As for the blocks-world example, two macro-operator
schemata have been disregarded (i.e., stack.unstack and
pick-up;put-down), as they do not alter the state of the
domain (the resulting set of effects being empty). In fact,
it is apparent that they are composed of complementary
actions.

It is worth pointing out that the approach described
above can be used also for generating abstractions tai­
lored to a given problem, by simply adding a dummy
operator representing the goal(s) of the problem itself.
This "goal" operator has only preconditions (its set of
effects being empty), representing a logic conjunct of
predicates that characterize the goal of the input problem.
In this way, all sequences deemed relevant to solve the
problem are easily put into evidence (as they end with the
"goal" operator).

4 Experimental Results
The current prototype of the system has been imple­
mented in C++. Experiments have been performed with
three planners: GRAPHPLAN [Blum and Furst, 1997],
BLACKBOX [Kautz and Selman, 1998], and LPG [Ger-
evini and Serina, 2002]. In the following, GP, BB, and
LPG shall be used to denote the GRAPHPLAN,
BLACKBOX, and LPG algorithms, whereas HW[GP],

Since we are interested in finding macro-operators, we do
not take into account self-references.

PLANNING 939

HW[BB], and HW[LPG] shall be used to denote their
hierarchical counterparts.

To assess the capability of abstraction to improve the
search, we performed some tests on five domains taken
from the 1998, 2000, and 2002 MPS planning competi­
tions [Long, 1998; Bacchus, 2000; Long, 2002]: elevator,
logistics, blocks-world, gripper, and zeno-travel. Experi­
ments were conducted on a machine powered by an Intel
Celeron CPU, working at 1200 Mhz and equipped with
256Mb of RAM. A time bound of 1000 CPU seconds has
also been adopted.

1-4
3-1
4-1
4-4
5-1

4-2
5-2
7-0
8-1
10-0
15-0

4-0
6-0
8-0
10-0
11-0
14-0
15-0
17-0
20-0
22-0 1
25-0

1
8
9
11
13
14

2 1
3
4
5
6
9 |

GP

1 0.01
0.23
1.96
10.11
364.7

1 0.68
0.08
~
-
-
-

0.34
3.04
31.61

-
--
-
~
~
-
-
-

0.02
-
-
~
-
-

4.72
7.91
18.32
57.21

--
-

/GP/

0.06
0 36
0.83
0.84
2.03

1.22
0.16
10.93
16.26
43.43
203.4

0.32
1.82
11.13
--
--
-
--

--
~
-
~

0.52
42.55

--
-
-

--

0.56
1.73
2.63
4.38
7.97

24.29 |

BB HW

elevator
0.1 0.33
1.34 1.20
1.03 1.74

311.5 1.79
180.8 2.54

- 3.89
logistics

0.27 0.46
0.15 0.46
4.49 2.17
2.90 3.02
8.27 3.76
10.91 6.33

blocks-world
0.16 0.67
0.26 1.68
0.92 2.46
6.82 5.00
16.23 4.25

9.84
..
--
-
-
--

zeno-travel
0.22 0.36
0.94 2.36
0.34 3.37
11.20 2.78
62.99 20.52

20.04 |
gripper

0.42 0.63
5.22 1.20

268.7 1.55
421.1 1.54
586.4 2.26

3.63

LPG

0.01
0.02
0.02
0.02
0.02
0.03

17.93
0.02
2.12
1.55
2.17
0.15

0.02
0.05
0.36
0.62
4.23
5.00
7.49
33.93
66,78
183.16
668.98

0.02
0.14
0.13
0.16
0.42
3.90

0.02
0.02
0.02
0.03
0.03
0.05

HW
LPG

0,11
0.15
0.16
0.16
0.18
0.29

-
"
""
-
-

0.08
0.23
0.31
0.67
0.83
1.91
2.07
3.49
7.88
12.21
24.94

0.03
0.49
1.08
1.06
2.47

21.93

0.07
0.12
0.14
0.15
0.17
0.36

Table 2. Performance comparison of BB, GP, and LPG with
their hierarchical counterparts.

All domains have been structured according to a
ground and an abstract level, the latter having been gen­
erated following the approach described in the previous
subsection. For each domain, several tests have been per­
formed -characterized by increasing complexity. Table 2

compares the CPU time of each planner over the set of
problems taken from the AIPS planning competitions.
Dashes show problem instances that could not be solved
by the corresponding system within the adopted time-
bound.

Elevator. Experiments show that -for GP and BB- the
CPU time increases very rapidly while trying to solve
problems of increasing length, whereas HW[GP] and
HW[BB] keep solving problems with greater regularity
(although the relation between number of steps and CPU
time remains exponential). LPG is able to solve long
plans in a very short time, thus doing away with the need
to resort to HW[LPG].

Figure 4. CPU time comparisons in the blocks-world domain.
Logistics. In this domain GP easily solves problems up

to a certain length, but it is unable to solve problems
within the imposed time limits if a given threshold is ex­
ceeded. On the other hand, HW[GP] succeeds in solving
problems of increasing length without encountering the
above difficulties. BB performs better than HW[BB] for
small problems, whereas HW[BBJ outperforms BB on
more complex problems. LPG is able to solve long plans
in a few seconds at the most. For unknown reasons LPG
was not able to refine any abstract operator when invoked
by the engine of HW [LPG].

Blocks-world. Tests performed on this domain reveal a
similar trend for GP and HW[GP], although the latter
performs slightly better than the former. BB performs
better than HW [BB] for simple problems, whereas
HW[BB] outperforms BB on problems of medium com­
plexity. LPG is able to solve problems whose solution
length is limited to 100 steps. In this domain, HW[LPG]
clearly outperforms LPG on more complex problems.

Figure 5. CPU time comparisons in the blocks-world domain.
Zeno-travel. Unfortunately, in this domain, neither GP

nor HW[GP] are able to successfully tackle most of the
problems of this domain. An improvement of HW[BB]

940 PLANNING

over BB can be observed, similar to the one shown for
the blocks-world domain. LPG is able to solve long plans
in a few seconds at the most, thus avoiding the need to
resort to HWfLPGJ.

Gripper. For the gripper domain, both HW[GP] and
HW[BB] clearly outperform their non-hierarchical coun­
terparts. LPG is able to solve long plans in a very short
time.

For the sake of brevity, only two plots (i.e., Figures 4-
5 concerning the blocks-world domain) of relative per­
formances -i.e. non hierarchical vs. hierarchical- are
reported.

5 Conclusions and Future Work
In this paper a parametric system has been presented,
devised to perform hierarchical planning by delegating
the actual search to an external planner (the parameter).
Aimed at giving a better insight of whether or not the
exploitation of abstract spaces can be useful for solving
complex planning problems, comparisons have been
made between any instances of the hierarchical planner
and its non-hierarchical counterpart.

To better investigate the significance of the results,
three different planners have been used to make experi­
ments. To facilitate the setting of experiments, a novel
semi-automatic technique for generating abstract spaces
has been devised and adopted. Experimental results high­
light that abstraction is useful for classical planners, such
as GP and BB. On the contrary, the usefulness of resort­
ing to hierarchical planning for the latest-generation
planner used for experiments (i.e., LPG) clearly emerges
only in the blocks-world domain.

As for future work, we are currently addressing the
problem of automatically generating abstract operators.

References
[Armano and Vargiu, 2001] Giuliano Armano and Eloisa
Vargiu. An Adaptive Approach for Planning in Dynamic
Environments. Proceedings of the International Confer­
ence on Artificial Intelligence (1C-AI2001), Special Ses­
sion on Learning and Adapting in Al Planning, pages
987-993, Las Vegas, Nevada, June 2001.

[Armano et al, 2003] Giuliano Armano, Giancarlo Cher-
chi, and Eloisa Vargiu. Experimenting the Performance
of Abstraction Mechanisms through a Parametric Hierar­
chical Planner. Proceedings of 1ASTED International
Conference on Artificial Intelligence and Applications
(A1A '2003), Innsbruck, Austria, Febbraio 2003.

[Bacchus, 2000] Fahiem Bacchus. Results of the AIPS
2000 Planning Competition, 2000.
U R L : h t t p : / / w w w . c s . t o r o n t o . e d u / a i p s 2 0 0 0 .

[Blum and Furst, 1997] Avrim L. Blum and Marrick L.
Furst. Fast Planning through Planning Graph Analysis.
Artificial Intelligence, 90(l-2):279-298, 1997.

[Gerevini and Serina, 2002] Alfonso Gerevini and Ivan
Serina. LPG: A Planner Based on Local Search for Plan­
ning Graphs. Proceedings of the 6th International Confer­
ence on Al Planning and Scheduling, AAAI Press, Menlo
Park, 2000.

[Giunchiglia and Walsh, 1990] Fausto Giunchiglia and
Toby Walsh. A theory of Abstraction, Technical Report
9001-14, IRST, Trento, Italy, 1990.

[Kautz and Selman, 1998] Henry Kautz and Bart Selman.
BLACKBOX: A New Approach to the Application of
Theorem Proving to Problem Solving. In Working notes
of the Workshop on Planning as Combinatorial Search,
AIPS-98, pages 58-60, Pittsburg, PA, 1998.

[Korf, 1987] Rich E. Korf. Planning as Search: A Quanti­
tative Approach. Artificial Intelligence, 33(1):65—88,
1987.

[Knoblock, 1991] Craig A. Knoblock. Search Reduction
in Hierarchical Problem Solving. Proceedings of the 9th

National Conference on Artificial Intelligence, pages
686-691, Anaheim, CA, 1991.*

[Knoblock, 1994] Craig A. Knoblock. Automatically
Generating Abstractions for Planning. Artificial Intelli­
gence, 6S(2):243~302, 1994.

[Long, 2002] Derek Long. Results of the AIPS 2002
Planning Competition, 2000.
URL: http://www.dur.ac.Uk/d.p.long/competition.html.

[Long, 1998] Derek Long. The AIPS-98 Planning Com­
petition. Al Magazine, 21(2): 13-33, 1998.

[McDermott et al., 1998] Drew McDermott, Malik Ghal-
lab, Adele Howe, Craig Knoblock, Anshwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins.
PDDL - The Planning Domain Definition Language,
Technical Report CVC TR-98-003 / DCS TR-1165, Yale
Center for Communicational Vision and Control, October
1998.

[Sacerdoti, 1974] Earl D. Sacerdoti. Planning in a hierar­
chy of abstraction spaces. Artificial Intelligence, 5:115—
135,1974,

[Stillings et al., 1987] Neil A. Stillings, Christopher H.
Chase, Mark H. Feinstein, Jay L. Garfield, Edwina L.
Rissland, and Steven E.Weisler. Cognitive Science: An
Introduction. MIT Press, Cambridge, Massachusetts,
1987.

PLANNING 941

