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Abstract
Personalized recommendation has proven to be
very promising in modeling the preference of users
over items. However, most existing work in this
context focuses primarily on modeling user-item
interactions, which tend to be very sparse. We pro-
pose to further leverage the item-item relationships
that may reflect various aspects of items that guide
users’ choices. Intuitively, items that occur within
the same “context” (e.g., browsed in the same ses-
sion, purchased in the same basket) are likely re-
lated in some latent aspect. Therefore, accounting
for the item’s context would complement the sparse
user-item interactions by extending a user’s pref-
erence to other items of similar aspects. To real-
ize this intuition, we develop Collaborative Context
Poisson Factorization (C2PF), a new Bayesian la-
tent variable model that seamlessly integrates con-
textual relationships among items into a person-
alized recommendation approach. We further de-
rive a scalable variational inference algorithm to fit
C2PF to preference data. Empirical results on real-
world datasets show evident performance improve-
ments over strong factorization models.

1 Introduction
Recommender systems are essential in guiding users as they
navigate the myriads of options offered by modern applica-
tions. They rely chiefly on information about which items
users have consumed—rated, purchased, etc.—in the past,
which can be represented as user-item preference matrix. A
predominant framework for recommendation is Matrix Fac-
torization (MF) [Mnih and Salakhutdinov, 2008; Hu et al.,
2008; Koren et al., 2009]. The principle is to decompose the
preference matrix into low-dimensional user and item latent
factor matrices. The bilinear combination of user and item’s
latent factors can be used to predict unknown preferences.

Classical probabilistic MF models [Mnih and Salakhut-
dinov, 2008] typically assume that a user’s preference for
an item is drawn from a Gaussian distribution centered at
the inner product of their latent factor vectors. A distinct
form of probabilistic MF, referred to as Poisson Factoriza-
tion (PF) [Canny, 2004; Cemgil, 2009]—where the Poisson

distribution is substituted for the usual Gaussian—recently
demonstrates natural aptness for modeling discrete data such
as ratings or purchases commonly found in recommenda-
tion scenarios. As documented in [Gopalan et al., 2015],
thanks to the properties of the Poisson distribution, PF realis-
tically models user preferences, fits well to sparse data, enjoys
scalable variational inference with closed-form updates, and
substantially outperforms previous state-of-the-art MF mod-
els based on Gaussian likelihoods [Mnih and Salakhutdinov,
2008; Shan and Banerjee, 2010; Koren et al., 2009].

Nevertheless, existing PF models for recommendation are
primarily focused on user-item interactions, which are very
sparse. A PF model that relies on user-item interactions alone
may not necessarily associate similar items with similar rep-
resentations in the latent space. This is due to the fact that
such items are not necessarily rated by exactly the same users.
Furthermore, on average, any given user may have had the op-
portunity to rate or purchase relatively few items. Thus, mod-
eling and generalizing her preference across the large vocab-
ulary of items based on the few user-item interactions alone is
an onerous task. Fortunately, there are auxiliary information
that could augment user-item interactions. One that we focus
on in this paper is the contextual relationships among items.

Real-world behavior data often hold clues on how items
may be related to one another. For instance, items found in
the same shopping cart may work well together, e.g., shirt
and matching pair of jeans. Items clicked or viewed on an
e-commerce site in the same session may be alternatives for
a particular need, e.g., shopping for a phone. Songs found
in the same playlist probably share a coherent theme, e.g.,
country music of the 90s. As an abstraction of such scenar-
ios, we introduce the notion of “context”, which may refer
to a shopping cart, session, playlist, etc., depending on the
specific problem instance. Intuitively, items that share simi-
lar contexts are implicitly related to one another in terms of
some aspect that guides the choices one makes, such as spec-
ification, functionality, visual appearance, compatibility, etc.
Note that contextual relatedness is not necessarily synony-
mous with feature-based similarity, e.g., shirt and jeans may
share similar contexts, though they have different features.

The question is how to exploit and incorporate such con-
textual relationships among items within the PF framework.
In this work, we posit that there could be two reasons that
might explain the preference of a user for an item. The first
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reason is that the user’s latent preference matches the latent
attributes of the item of interest. The second reason is that the
user’s latent preference matches those of other related items,
i.e., those sharing similar contexts with the item of interest.

Based on the above assumption, we propose Collaborative
Context Poisson Factorization (C2PF), a new Bayesian latent
variable model of user preferences which takes into account
contextual relationships between items; this is our first con-
tribution. Under C2PF, the preference of a user for an item is
driven by two components. One component is the interaction
between the user’s and item’s latent factors, as in traditional
PF. The other component consists of interactions between the
user’s latent factor and item’s context latent factors. In this
paper, “the context set of an item i” refers to the set of items
sharing the same contexts (e.g., browsing sessions) with i. As
the second contribution, we derive a scalable variational al-
gorithm for approximate posterior inference, to fit our model
to preference data. As the third contribution, through exten-
sive experiments on six real-world datasets, we demonstrate
the benefits of leveraging item context; C2PF noticeably im-
proves upon the performance of Poisson factorization models,
especially in the sparse scenario in which users express few
ratings only.

2 Related Work
Given the breadth of scope of recommender systems in the
literature [Bobadilla et al., 2013], we focus on those closely
related to ours, to sharpen and clarify our contributions.

Approaches based on matrix factorization rely primarily
on user-item interactions [Mnih and Salakhutdinov, 2008;
Hu et al., 2008; Koren et al., 2009]. The sparsity of such
information motivates the exploration of side information in
several directions. On the users’ side, these include lever-
aging social networks [Ma et al., 2008; Zhou et al., 2012]
or common features [Rao et al., 2015] to bring related users’
latent factors closer. On the items’ side, these include exploit-
ing item content [Wang and Blei, 2011] or product taxonomy
[Koenigstein et al., 2011] to pull together item latent factors.

In this work, we focus on item-item relationships. The
closest such work to ours is [Park et al., 2017], which pro-
poses Matrix Co-Factorization (MCF) model. The latter falls
into the large class of collective matrix factorization [Singh
and Gordon, 2008], which consists in jointly decomposing
multiple data matrices, user-item and item-item matrices in
MCF, with shared latent factors. This is a widely used ap-
proach in the recommendation literature to exploit different
sources of data. The model we propose is radically differ-
ent from MCF. First, here we investigate another architec-
ture for leveraging item relationships with new modeling per-
spectives. More precisely, as opposed to collective MF-based
models like MCF, in our approach, the user-item preferences
are the only observations being factorized, and the auxiliary
information (item-item relationships) is embedded into the
model’s architecture. Second, MCF relies on the Gaussian
distribution and uses stochastic gradient descent for learning,
whereas our model builds on the Poisson distribution and en-
joys scalable variational inference with closed-form updates.
The benefits of our model are reflected in experiments.

In contrast, the CoFactor model [Liang et al., 2016] in-
duces item relationships from the same user-item matrix, in-
stead of a separate item-item matrix. It is also an instance of
collective MF, relies on a Gaussian likelihood, and designed
specifically for implicit feedback data [Hu et al., 2008].

Our model is also a novel contribution to the body of work
on recommendation models based on Poisson factorization
[Canny, 2004; Cemgil, 2009]. To our best knowledge, item
context has not been explored within the PF framework.

Various other extensions of PF have been proposed.
Gopalan et al. [2014a] develop Bayesian non-parametric PF,
which does not require the dimension of the latent factors
to be specified in advance. Gopalan et al. [2014b] propose
Collaborative Topic Poisson Factorization (CTPF) to model
both article contents and reader preferences. CTPF is also an
instance of collective MF and could be viewed as a “Pois-
son” alternative to MCF. Chaney et al. [2015] extend PF to
incorporate social interactions. Charlin et al. [2015] propose
a model which accounts for user and item evolution over time.

3 Collaborative Context Poisson Factorization
This section describes Collaborative Context Poisson Factor-
ization (C2PF), a Bayesian latent variable model of user pref-
erences that accounts for the item’s context.

Let X = (xui) denote the user-item preference matrix of
size U×I , where xui is the integer rating1 that user u gave to
item i, or zero if no preference was expressed. Let C = (cij),
of size I × J , be the item-context matrix, where cij = 1 if
item j belongs to the context of item i, and cij = 0 otherwise.
Subsequently, we refer to j as the context item, and to the set
of items j for which cij = 1 as the context of item i.

C2PF builds on Poisson factorization [Friedman et al.,
2001] to jointly model user preferences and leverage item’s
context. Formally, C2PF represents each user u with a vec-
tor of latent preferences θ>u ∈ RK+ , each item i with a vector
of latent attributes β>i ∈ RK+ , and each context item j with
a vector of latent attributes ξ>j ∈ RK+ . C2PF also assumes
additional latent variables κij ∈ R+, one for each observed
item-context pair, that we shall discuss shortly. Conditional
on these latent variables, the user preferences xui are assumed
to come from a Poisson distribution as follows:

xui ∼ Poisson(θ>u βi +
∑
j cijκijθ

>
u ξj). (1)

The preference xui is affected by both how well the user u’s
latent factors θu matches the target item i’s latent factors βi,
and how well θu matches the context latent factors ξj of other
items in i’s context. Given that i may have multiple context
items, it is natural to expect that different context items may
affect i to different degrees. This is the intuition behind each
variable κij , which represents the effect a context item j has
on item i; we refer to these variables as the context effects.

The user latent preferences θuk, item attributes βik, con-
text item attributes ξjk and context effects κij are all drawn
from Gamma distributions. The Gamma is an exponential
family distribution over positive random variables, governed

1Other user-item interactions indicative of preferences are also
possible, e.g., number of clicks.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2668



xuiθu

βi ξj κij

γi δ

αθ

αξ αsκαβ

j∈ci

U I

Figure 1: C2PF as a graphical model, α = (αs, αr), δ = (δs, δsc),
the super scripts s, r and sc stand respectively for shape, rate and
scale parameters, ci is the context set of item i, i.e., ci = {j | cij =
1}. The context factors ξj are shared across items, please refer to
the generative process for details.

by a shape and rate parameters [Bishop, 2006], which is a
conjugate prior to the Poisson distribution.

Moreover, in real-world data the items have very unbal-
anced context sizes, i.e., some have many more items in their
context set than others. To account for this diversity in context
size, C2PF assumes additional priors on the rate parameter of
the Gamma distribution over the context effects κij , which
govern the average magnitude of the latter variables. This
induces a hierarchical structure over the κij’s that makes it
possible to model item context more realistically.

The graphical model of C2PF is depicted in Figure 1, and
its generative process is as follows:

1. Draw user preferences: θuk ∼ Gamma(αsθ, α
r
θ).

2. Draw context item attributes: ξjk ∼ Gamma(αsξ, α
r
ξ).

3. For each item i:
(a) Draw attributes: βik ∼ Gamma(αsβ , α

r
β).

(b) Draw the average magnitude of the context effects:
γi ∼ Inverse-Gamma(δs, δsc).

(c) For each context item j of i draw a context effect:
κij ∼ Gamma(αsκ,

αsκ
γi
).

4. For each user-item pair (u,i) sample a preference:
xui ∼ Poisson(θ>u βi +

∑
j cijκijθ

>
u ξj).

Note that C2PF includes as special cases other simpler
models, such as the original Bayesian PF, which can be de-
rived by modifying C2PF’s specific components. In experi-
ments, we consider some of such simpler variants of C2PF.

In practice, we are given X and C, and we are interested in
reversing the above generative process so as to infer the poste-
rior distribution of the latent user preferences, context effects,
item and context item attributes, i.e., p(θ,β, ξ,κ|X,C). The
latter will allow us to predict unknown ratings and generate
recommendations. Once this posterior is fit, we can estimate
the unknown ratings for each user-item pair (u, i) as follows:

x̂ui = E(θ>u βi|X,C) +
∑
j cijE(κijθ

>
u ξj |X,C), (2)

where the expectation is with respect to the posterior. These
predicted values are then used to rank unrated items for each
user so as to provide him/her with a recommendation list.

As in many Bayesian models, exact posterior inference is
challenging, i.e., the exact inference of the above posterior is
intractable. We therefore resort to approximate inference.

4 Approximate Inference
Approximating the posterior is central to our work. In this
section, we rely on variational inference and develop a scal-
able approximate inference algorithm for our model C2PF.

Variational Inference (VI) [Bishop, 2006] is a widely used
approach in statistical learning to fit complex Bayesian mod-
els. This approach transforms the inference problem into an
optimization problem. The key idea is to define a new pos-
terior distribution q, governed by its own free variational pa-
rameters ν, that is tractable to work with. The objective is
then to find the value of the variational parameters ν∗ which
indexes the distribution closest, in terms of the Kullback-
Leibler (KL) divergence, to the exact posterior. Finally, the
resulting variational distribution q(.|ν∗) is used as a surrogate
to the true posterior in subsequent analysis.

We start by introducing an additional layer of auxiliary hid-
den variables, which leave the original model intact when
marginalized out. For each observed rating xui we add K la-
tent variables zxuik ∼ Poisson(θukβik) andK×ci. latent vari-
ables zcuijk ∼ Poisson(cijκijθukξjk), where ci. =

∑
j cij .

These auxiliary variables deterministically define the user
preference. That is, xui =

∑
k(z

x
uik +

∑
j z

c
uijk). The latter

result follows from the additive property of Poisson random
variables [Kingman, 1993], i.e., if x1 ∼ Poisson(λ1), x2 ∼
Poisson(λ2) and x = x1 + x2, then x ∼ Poisson(λ1 + λ2).
Note that when xui is zero, zxuik and zcuijk are not random.
This is why we consider these variables for the non-zero ele-
ments in X only. As we shall see, with these auxiliary vari-
ables in place our model is conditionally conjugate [Ghahra-
mani and Beal, 2001], which will ease variational inference.

We now introduce our variational distribution q. We con-
sider a mean-field family [Jordan et al., 1999], q(·|ν) =
q(θ,β, ξ,κ,γ,Zx,Zc|ν), with a factorized form, i.e., the la-
tent variables are assumed to be independent and each gov-
erned by its own variational parameters, as follows:

q(·|ν) =
∏
u,k

q(θuk|λθuk)
∏
i,k

q(βik|λβik)
∏
j,k

q(ξjk|λξjk)∏
ij

q(κij |λκij)cij
∏
i

q(γi|ηi)
∏
u,i

q(zxui, z
c
ui|φui), (3)

where ν = {λ, η, φ}. The form of each factor in the above
equation is specified by the corresponding complete condi-
tional: the conditional distribution of each variable given the
other variables and observations. That is, the factors over the
Gamma variables are also Gamma distributions with varia-
tional parameters λ, e.g., λθuk = (λθ,suk , λ

θ,r
uk ), the superscripts

s and r refer to the shape and rate parameters.The factors over
the Inverse-Gamma varibles γi are also Inverse-Gamma dis-
tribution with shape (s) and scale (sc) variational parameters,
e.g., ηi = (ηsi , η

sc
i ). Finally, the factors over zui = (zxui, z

c
ui)

are Multinomial distributions with free parameters φui. The
latter result follows from the fact that, the conditional dis-
tribution of a set of Poisson variables given their sum is a
Multinomial; please refer to [Cemgil, 2009] for details.

Given the variational family q, VI is to fit its parameters by
solving the following optimization problem:

ν∗ = argmin
ν

KL(q(·|v)||p(·|X,C)) (4)
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This equation makes it clear how the observed data, X and
C, enter the variational distribution. Once ν∗ is found, we
use q(·|ν∗) as a surrogate to the true posterior to compute the
prediction in (2) and subsequently make recommendations.
Coordinate ascent learning. We derive an efficient coor-
dinate ascent mean-field algorithm to solve the optimization
problem (4). The principle is to alternate the update of each
variational parameter while holding the others fixed. Iterating
on such updates is guaranteed to monotonically decrease the
KL in (4), and to converge into a locally optimal solution.

Thanks to the auxiliary variables, our model is condition-
ally conjugate. That is, each complete conditional is in the
exponential family [Ghahramani and Beal, 2001; Blei et al.,
2017]. Thereby, each coordinate update can be performed
in closed form, by setting the variational parameter equal to
the expected natural parameter (w.r.t. q) of the corresponding
complete conditional. This is indeed the optimal update for
the variational parameter.

The complete conditional for the user preference, p(θuk|·),
is a Gamma with shape and rate parameters given by:

(αsθ +
∑
i

zxuik +
∑
i,j

zcuijk, α
r
θ +

∑
i

βik +
∑
i,j

cijκijξjk). (5)

The complete conditionals for the other Gamma variables are:

p(βik|·) = Gamma(αsβ +
∑
u
zxuik, α

r
β +

∑
u
θuk). (6)

p(ξjk|·) = Gamma(αsξ +
∑
u,i

zcuijk, α
r
ξ +

∑
u,i

cijκijθuk). (7)

p(κij |·) = Gamma(αsκ +
∑
u,k

zcuijk,
αsκ
γi

+
∑
u,k

θukξjk). (8)

The complete conditional for the average intensity of the con-
text effect is as follows:

p(γi|·) = Inv-Gamma(δs + αsκ
∑
j

cij , δ
sc + αsκ

∑
j

κij). (9)

The complete conditional for the auxiliary variables is:

p(zui|θ, β, ξ, κ,C,X) = Multinomial(xui, logpui), (10)

where zui = (zxui, z
c
ui), pui = (px

ui,p
c
ui) is a point on the

(K +K × ci.)-simplex, and for all k, j: pxuik ∝ θukβik and
pcuijk ∝ cijκijθukξjk.

The expected natural parameters (w.r.t. q) of these condi-
tionals give the optimal updates for the variational parame-
ters, e.g., the update for Gamma variational parameter λθuk is
obtained by taking expectation of (5), which yields:

λθ,suk = αsθ +
∑
i xui(φ

x
uik +

∑
j φ

c
uijk),

λθ,ruk = αrθ +
∑
i
λβ,sik
λβ,rik

+
∑
i,j cij

λξ,sjk

λξ,rjk

λκ,sij
λκ,rij

, (11)

where we have used the standard results about the expec-
tation of Gamma and Multinomial random variables. That
is, if θ ∼ Gamma(λs, λr), then E(θ) = λs

λr , and if zui ∼
Multinomial(xui,φui), then the expectation of the kth com-
ponent of zui is E(zuik) = xuiφuik. Using the standard re-
sults of the expectation of the log of a Gamma variable, i.e.,
E(log θ) = ψ(λs) − log λr with ψ(·) denoting the digamma

function, the updates for the components of the variational
Multinomial parameter φui = (φx

ui,φ
c
ui) are:

φxuik ∝ exp
(
ψ(λθ,suk )− log λθ,ruk + ψ(λβ,sik )− log λβ,rik

)
. (12)

φcuijk ∝ exp (E(log θuk) + E(log ξjk) + E(log κij)) , (13)

for brevity we did not develop the expectations in (13).
The updates for the remaining variational parameters can

be derived in the same way. The full variational inference for
C2PF is depicted in Algorithm 1.

Algorithm 1 Variational inference for C2PF.
Input: X, C, K, δ , αθ , αβ , αξ, αsκ
Output: The set of variational parameters ν∗

Steps:
1. Initialization: ηsi = δs + ci. × αsκ, randomly initialize the
remaining Gamma variational parameters λs, λr

repeat
2. For each observed preference xui, update the variational
Multinomial parameter φui using equations (12) and (13).
3. Update the user related parameters, ∀u, k:
λθ,suk = αsθ +

∑
i xuiφ

x
uik +

∑
i,j xuiφ

c
uijk

λθ,ruk = αrθ +
∑
i

λ
β,s
ik

λ
β,r
ik

+
∑
i,j cij

λ
ξ,s
jk

λ
ξ,r
jk

λ
κ,s
ij

λ
κ,r
ij

4. Update the item related parameters, ∀i, k:

λβ,sik = αsβ +
∑
u xuiφ

x
uik ; λβ,rik = αrβ +

∑
u

λ
θ,s
uk

λ
θ,r
uk

5. Update the context item related parameters, ∀j, k:

λξ,sjk = αsξ+
∑
u,i xuiφ

c
uijk ; λξ,rjk = αrξ+

∑
u,i cij

λ
θ,s
uk

λ
θ,r
uk

λ
κ,s
ij

λ
κ,r
ij

6. Update the context effects, ∀i, j, such that cij > 0:

ηsci = δsc + αsκ
∑
j

λ
κ,s
ij

λ
κ,r
ij

; λκ,sij = αsκ +
∑
u,k xuiφ

c
uijk

λκ,rij = αsκ
ηsi
ηsci

+
∑
u,k

λ
θ,s
uk

λ
θ,r
uk

λ
ξ,s
jk

λ
ξ,r
jk

until convergence

Efficient implementation. A key property of the variational
C2PF algorithm is efficiency. The operations involving users
and items need to be carried out for only the non-zero ele-
ments in X and C. Furthermore, we can avoid explicitly com-
puting and storing the Multinomial parameters φ. We need to
store only the following matrices, Lθ = (exp{Eq(log θuk)}),
Lβ = (exp{Eq(log βik)}), Lξ = (exp{Eq(log ξjk)}) and
Lκ = (exp{Eq(log κij)}). We can then use these quantities
directly in the updates of the variational shape parameters.
Computational time complexity. The Proposition below
shows that the computational complexity of Algorithm 1
scales linearly with the number of non-zero entries in X and
C. In practice X and C are extremely sparse, and Algorithm
1 converges within 100 iterations. Furthermore, the updates
of the variational parameters are trivially parallelizable across
users and items, hence our variational inference for C2PF can
easily scale to large datasets.
Proposition 1. Let nzx and nzc denote respectively the num-
ber of non-zero in X and C. The computational complexity
per iteration of Algorithm 1 is O(K · (nzx+nzc+U + I)).
Proof. The computation bottleneck of Algorithm 1 is with
the update blocks 3 to 6. The computational complexity of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2670



updating λθ,suk is O(nzux), such that nzux is the number of
ratings expressed by user u. This complexity holds since
the sum over j can be precomputed once for each i,k and
stored in a I × K matrix, the total cost of this operation is
O(K · nzc). The complexity of updating all λθ,ruk parame-
ters is O(K · (I + U + nzc)). Therefore, the computational
complexity of block 3 is O(K · (nzx + nzc + U + I)).

Similarly, we can show that the complexity of block 4 is
O(K · (nzx + U + I)) and that of blocks 5 and 6 is O(K ·
(nzc+nzx+U + J)). Putting it all together, the complexity
per iteration of Algorithm 1 is O(K · (nzx + nzc + U + I)),
where we have assumed that I is of the same order as J .�

5 Experimental Study
Our objective is to study the impact of item context, and our
modeling assumptions, on personalized recommendation.

5.1 Datasets
We use six datasets from Amazon.com2, provided by
McAuley et al.; McAuley et al. [2015b; 2015a]. These
datasets include both the user-item preferences and the “Also
Viewed” lists that we treat as the item contexts. We prepro-
cess all datasets so that each user (resp. item) has at least ten
(resp. two) ratings, and the sets of items and context items
are identical. Table 1 describes the resulting datasets.

Datasets
Characteristics

#Users #Items #Ratings nzX (%) #nzC nzC (%)

Office 3,703 6,523 53,282 0.22 108,466 0.25

Grocery 8,938 22,890 148,735 0.07 480,300 0.09

Automotive 7,280 15,635 63,477 0.05 365,634 0.15

Sports 19,049 24,095 211,582 0.04 531,148 0.09

Pet Supplies 16,462 20,049 164,017 0.05 631,102 0.16

Clothing 41,809 97,619 420,377 0.01 1,080,442 0.01

Table 1: Statistics of the Datasets.

5.2 Comparative Models
We benchmark our model, C2PF, against strong comparable
generative factorization models.
• MCF: Matrix Co-Factorization [Park et al., 2017], which

incorporates item-to-item relationships into Gaussian MF.
• PF: Bayesian Poisson Factorization [Gopalan et al., 2015]

which arises as a special case from our model without the
item context. Therefore, we can effectively assess the im-
pact of the item context by comparing C2PF to PF.

• CTPF: Collaborative Topic Poisson Factorization [Gopalan
et al., 2014b] is a co-factorization approach that jointly
models user preferences and item topics. It can also be
used to leverage the item context by substituting the item-
context matrix C for the item-word matrix.
• CoCTPF: Content-only CTPF [Gopalan et al., 2014b] is a

variant of CTPF without the document topic offsets; please
refer to [Gopalan et al., 2014b] for details.
2http://jmcauley.ucsd.edu/data/amazon/

Note that the above baselines have been found to perform
better than several other models on the task of item recom-
mendation. To examine the contributions of our modeling
choices, we also include the results for two simplified vari-
ants of C2PF.
• rC2PF: reduced C2PF that drops the item factors β, re-

sulting in a simpler model where only the context part in
(1) is responsible for explaining the user preferences xui3,

• tC2PF: tied C2PF that constrains the context factors ξ to
be the same as the item factors β, that is ξi = βi for all i.

5.3 Experimental Settings
For each dataset, we randomly select 80% of the ratings as
training data and the remaining 20% as test data. Random se-
lection is carried out five times independently on each dataset.
The average performance over the five samples is reported as
the final result.

For most experiments, we set the number of latent com-
ponents K to 100. Later, we will also vary K and indeed
find 100 to be a good trade-off between accuracy and model
complexity. To encourage sparse latent representations, we
set αθ = αβ = αξ = (0.3, 0.3) —resulting in exponentially
shaped Gamma distributions with mean equal to 1. We fur-
ther set δ = (2, 5) and αsκ = 2, fixing the prior mean over
the context effects to 0.5. Note that we set αsκ > 1 to avoid
sparse distributions over the κij variables and thereby encour-
age C2PF to rely on item’s context to explain user prefer-
ences. For an illustration, please refer to Figure 2 in [Cemgil,
2009]. We initialize the Gamma variational parameters, λs
and λr, to a small random perturbation of the correspond-
ing prior parameters. In order for the comparisons to be fair,
we use the same initial parameters for all PF-based models,
where it is possible.

To set the different hyperparameters of MCF, we follow the
same strategy, grid search, as in [Park et al., 2017].

5.4 Evaluation Metrics
We assess the recommendation accuracy on a set of held-out
items—the test set. We retain four widely used measures for
top-M recommendation, namely the Normalized Discount
Cumulative Gain (nDCG), Mean Reciprocal Rank (MRR),
Precision@M (P@M ) and Recall@M (R@M ), where M is
the number of items in the recommendation list [Bobadilla et
al., 2013]. Intuitively, nDCG and MRR measures the raking
quality of a model, while Precision@M and Recall@M as-
sess the quality of a user’s top-M recommendation list. These
measures vary from 0.0 to 1.0 (higher is better).

5.5 Empirical Results and Discussion.
Table 2 depicts the average performances of the various com-
peting models in terms of different metrics, over all datasets.
In order to ease interpretation, we provide another presen-
tation of Recall@20 in Figure 2—the results are consistent
across all metrics.

We note that C2PF, and its variants, substantially outper-
forms the other competing models on all datasets and across

3This variant considers only items with non-empty context sets
since the rate of the Poisson cannot be zero
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Figure 2: Comparison of average Recall@20 over different datasets.

Data Metric MCF PF CTPF CoCTPF rC2PF tC2PF C2PF

O
ffi

ce
Pr

od

nDCG 0.1525 0.1663 0.1718 0.1806 0.1870 0.1921 0.2005
MRR 0.0239 0.0414 0.0467 0.0558 0.0596 0.0674 0.0770
P@10 0.0052 0.0107 0.0123 0.0148 0.0156 0.0174 0.0197
R@10 0.0195 0.0290 0.0344 0.0446 0.0512 0.0566 0.0637
P@20 0.0041 0.0096 0.0111 0.0129 0.0133 0.0143 0.0160
R@20 0.0302 0.0541 0.0615 0.0768 0.0811 0.0891 0.1008

G
ro

ce
ry

nDCG 0.1286 0.1568 0.1553 0.1717 0.1722 0.1776 0.1763
MRR 0.0145 0.0452 0.0429 0.0529 0.0590 0.0595 0.0585
P@10 0.0031 0.0115 0.0118 0.0136 0.0145 0.0157 0.0151
R@10 0.0122 0.0343 0.0358 0.0440 0.0478 0.0519 0.0500
P@20 0.0024 0.0095 0.0095 0.0116 0.0114 0.0128 0.0121
R@20 0.0191 0.0571 0.0591 0.0739 0.0758 0.0817 0.0806

A
ut

om
ot

iv
e nDCG 0.1186 0.1123 0.1124 0.1417 0.1462 0.1460 0.1468

MRR 0.0121 0.0100 0.0103 0.0337 0.0394 0.0387 0.0392
P@10 0.0028 0.0019 0.0021 0.0075 0.0087 0.0087 0.0093
R@10 0.0151 0.0088 0.0094 0.0351 0.0417 0.0415 0.0439
P@20 0.0022 0.0015 0.0016 0.0058 0.0069 0.0066 0.0070
R@20 0.0228 0.0132 0.0143 0.0566 0.0645 0.0633 0.0673

Sp
or

ts

nDCG 0.1122 0.1179 0.1189 0.1398 0.1512 0.1521 0.1547
MRR 0.0071 0.0122 0.0119 0.0297 0.0390 0.0409 0.0427
P@10 0.0015 0.0022 0.0026 0.0067 0.0091 0.0093 0.0096
R@10 0.0061 0.0083 0.0101 0.0266 0.0361 0.0374 0.0393
P@20 0.0011 0.0018 0.0022 0.0054 0.0072 0.0073 0.0076
R@20 0.0096 0.0143 0.0170 0.0431 0.0574 0.0591 0.0613

Pe
tS

up
pl

ie
s nDCG 0.1201 0.1288 0.1317 0.1585 0.1627 0.1628 0.1678

MRR 0.0136 0.0207 0.0237 0.0441 0.0501 0.0516 0.0562
P@10 0.0028 0.0039 0.0048 0.0103 0.0110 0.0113 0.0122
R@10 0.0147 0.0184 0.0219 0.0499 0.0526 0.0550 0.0597
P@20 0.0022 0.0029 0.0034 0.0079 0.0089 0.0091 0.0095
R@20 0.0237 0.0271 0.0314 0.0752 0.0862 0.0897 0.0917

C
lo

th
in

g

nDCG 0.0896 0.0885 0.0896 0.0961 0.1014 0.1046 0.1061
MRR 0.0031 0.0018 0.0032 0.0065 0.0118 0.0122 0.0130
P@10 0.0006 0.0003 0.0006 0.0013 0.0020 0.0023 0.0026
R@10 0.0028 0.0014 0.0028 0.0062 0.0111 0.0114 0.0120
P@20 0.0004 0.0002 0.0005 0.0010 0.0016 0.0019 0.0021
R@20 0.0043 0.0022 0.0041 0.0097 0.0175 0.0184 0.0190

Table 2: Average recommendation accuracy over different datasets.

all measures. Recall that without the item context information
C2PF degenerates to the basic PF. We can therefore attribute
the performance improvements reached by C2PF, relative to

PF, to the modeling of the item context. The importance of
the item context is also strongly supported by the high perfor-
mance of rC2PF relative to PF, though rC2PF relies solely
on item’s context to make recommendations.

Overall, the results from Table 2 suggest that the item con-
text underlies different aspects of items that explain the user
behaviour. To gain further insights into the performance of
the proposed model and the impact of our modeling choices,
we now delve into specific research questions.
• Q1. How important is the Poisson distribution?

We observe that even though PF does not leverage the re-
lationships among items, it still outperforms MCF in most
cases. This provides empirical evidence that the Poisson
distribution is a better alternative to Gaussian in modeling
user preferences.

• Q2. How important are the C2PF’s modeling assumptions?
CTPF and CoCTPF offer alternative PF-based architec-
tures to C2PF for leveraging item’s context, with differ-
ent modeling assumptions. More precisely, CTPF and
CoCTPF fall into the class of collective matrix factoriza-
tion, and consist in jointly factorizing the user-item X and
item-context C matrices, with shared item factors. This is a
popular strategy in the recommendation literature to model
different sources of data. The proposed models, C2PF and
its variants, substantially outperform CTPF and CoCTPF
in all cases, demonstrating the benefits of the assumptions
behind C2PF.

• Q3. Why does CoCTPF performs better than CTPF?
CoCTPF arises as a special case from CTPF without the
item offset. Surprisingly, the former performs better than
the latter. A careful investigation reveals that the magni-
tudes of the item offsets (noted ε in the original paper) tend
to be bigger than those of the shared item attributes θ. This
means that, in CTPF, the item offsets, which are specific to
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Figure 3: Comparison of average Recall@20 on users with different number of ratings.

the user-item interaction component, dominate the predic-
tion of unknown preferences (please refer to equation 1 in
[Gopalan et al., 2014b]).

• Q4. When does C2PF offer the most improvements?
In Figure 3, we report the performances, in terms of Re-
call@20, of C2PF and PF, on users with different num-
ber of ratings. C2PF consistently achieves the best perfor-
mance over different scenarios. Though this may be data-
dependent, C2PF seems to provide the most improvement
on users with few ratings. The relative difference between
C2PF and PF tends to decrease with more ratings. It is
challenging to infer good user representations when there
is a lack of information in the preference matrix. By lever-
aging additional signals from items’ contexts, C2PF miti-
gates this lack of information.

• Q5. What is the impact of the number of factors on the per-
formance of C2PF?
In Figure 4, we report the performance of the different
models, on Office, over different K. C2PF consistently
outperforms the competing methods. It is not very sensi-
tive to the value of K and seems to provide better perfor-
mances when K ≥ 100. Because the complexity of the
models increases with K, we recommend to set the num-
ber of factors to 100, which is a good tradeoff between
recommendation quality and model complexity.

6 Conclusion & Perspectives
Based on the assumption that items sharing similar contexts
are related in some latent aspect that guides one’s choices, we
develop Collaborative Context Poisson Factorization (C2PF),
a Bayesian latent factor model of user preferences which
takes into account the contextual relationships among items.
Under C2PF, not only do items (through latent attributes)
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Figure 4: Model performance (Recall@20) as a function of K.

contribute to explain user behaviour, but so do their contexts.
Empirical results on real-world datasets show that C2PF no-
ticeably improves the performance of Poisson factorization
models, especially in the sparse scenario in which users ex-
press few ratings, suggesting that the item context underlies
aspects of items that can explain the user preferences.

A flexible model with strong theoretical foundations, C2PF
can be extended in several directions. For instance, it would
be interesting to extend C2PF to account for user-user social
relationships to further alleviate the sparsity issue. Another
possible line of future work is to compose C2PF with other
graphical models. For instance, one could combine C2PF and
CTPF to jointly model item’s context and textual content.
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