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Abstract
Asynchronous stochastic gradient descent (ASGD)
is a popular parallel optimization algorithm in ma-
chine learning. Most theoretical analysis on AS-
GD take a discrete view and prove upper bounds for
their convergence rates. However, the discrete view
has its intrinsic limitations: there is no characteri-
zation of the optimization path and the proof tech-
niques are induction-based and thus usually com-
plicated. Inspired by the recent successful adop-
tions of stochastic differential equations (SDE) to
the theoretical analysis of SGD, in this paper, we s-
tudy the continuous approximation of ASGD by us-
ing stochastic differential delay equations (SDDE).
We introduce the approximation method and study
the approximation error. Then we conduct theo-
retical analysis on the convergence rates of ASGD
algorithm based on the continuous approximation.
There are two methods: moment estimation and en-
ergy function minimization can be used to analyze
the convergence rates. Moment estimation depends
on the specific form of the loss function, while en-
ergy function minimization only leverages the con-
vex property of the loss function, and does not de-
pend on its specific form. In addition to the conver-
gence analysis, the continuous view also helps us
derive better convergence rates. All of this clearly
shows the advantage of taking the continuous view
in gradient descent algorithms.

1 Introduction
Asynchronous stochastic gradient descent (ASGD) is a pop-
ular parallel optimization algorithm in machine learning
[Langford et al., 2009; Agarwal and Duchi, 2011; Recht et
al., 2011; Lian et al., 2015; Zhang et al., 2015]. It has
been broadly used in solving deep neural network and re-
ceived many successes in practice recently, which signifi-
cantly reduce the communication overhead by avoiding i-
dleness. The main issue with asynchronous algorithms lies
on using delayed stochastic gradient information. Suppose
{(a1, b1), · · · , (ai, bi), · · · , (an, bn)} is the training data set,

∗This work was done when the authors were visiting Microsoft
Research Asia.

where the input vector ai ∈ Rd and the output bi ∈ R. Su-
pervised machine learning algorithms aim to minimize the
empirical risk, i.e.,

min
x

F (x) =
1

n

n∑
i=1

fi(x), (1)

where fi(x) = l(x; ai, bi) is the loss of model x for the
training instance (ai, bi). ASGD uses multiple threads or lo-
cal workers to calculate the gradient of the loss function us-
ing a mini-batch of training instances. Then the local work-
er push the gradient to a master and pull the latest param-
eter from the master. The master uses the received gradi-
ent to update the parameter x. Because there is no syn-
chronization between the local workers, the gradient which
the master received may be a delayed information for the
parameter [Agarwal and Duchi, 2011; Recht et al., 2011;
Lian et al., 2015]. The update rule for ASGD at iteration
k can be described as:

xk+1 = xk − ηkgMk (b, xk−lk ), (2)

where ηk is the learning rate, gMk
(b, xk−lk) is the stochastic

gradient calculated using the minibatch Mk with minibatch
size b, lk ≥ 0 denotes the stochastic delay. In general, it
assumes that lk, ∀k or Elk is upper bounded [Agarwal and
Duchi, 2011; Lian et al., 2015].
The delayed information will influence the convergence

rate of the optimization algorithms. Theoretical analyses have
been conducted on ASGD for various problem settings, most-
ly from a discrete view, in which the convergence rate is
proved by induction for the sequence of iterative of the op-
timization algorithm. Then they compare it with the conver-
gence rate of sequential stochastic gradient descent to get the
speedup condition. For example, [Recht et al., 2011] shows
that for convex problem, if the training data is sparse enough,
ASGD can achieve linear speedup. [Lian et al., 2015] shows
that for nonconvex problems, if the delay is upper bounded
by the stochastic sampling variance, ASGD can achieve lin-
ear speedup.
However, the discrete view has its intrinsic limitations.

(1) It cannot provide an explicit characterization of the opti-
mization path, thus lacks insights about the optimization pro-
cess. (2) The proofs of optimization algorithms are usually
induction-based and somehow unavoidably complicated.
In recent years, researchers study the dynamics of op-

timization algorithms by taking a continuous view. They
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derive the corresponding differential equations of the ex-
isting discrete-time optimization methods by regarding the
optimization rule as the numerical solution of a differen-
tial equation. Many works [Raginsky and Bouvrie, 2012;
Wibisono et al., 2016; Su et al., 2014; Li et al., 2016;
Yang et al., 2017; Mandt et al., 2016; Krichene et al., 2015]
study sequential optimization algorithms using continuous
view from various aspects. For example, [Raginsky and Bou-
vrie, 2012] used the continuous time analysis to study mir-
ror descent algorithm. In [Wibisono et al., 2016] and [Su
et al., 2014], some accelerated methods were studied by the
continuous techniques such as second-order ordinary differ-
ential equations. In [Li et al., 2017], the authors developed
the method of stochastic modified equations (SME), in which
stochastic gradient algorithms are approximated in the weak
sense by continuous-time SDE. These works provide a clearer
understanding of the dynamic optimization process than the
previous works that only take the discrete view, thus have the
potential in addressing the aforementioned limitations of the
discrete view. However, most of the above works are focusing
on sequential algorithms, and using continuous techniques to
study asynchronous algorithms has not been studied yet.
Inspired by these works, in this paper, we study the contin-

uous approximation of asynchronous stochastic gradient de-
scent. First, we propose a procedure to approximate asyn-
chronous stochastic gradient based algorithms by using s-
tochastic differential delay equations. Then we analyze the
approximation error and show that the approximation error is
related to the number of iterationK and mini-batch size b.
Second, within this approximation, we study the conver-

gence rates by using continuous techniques and show the
following results. (1) For the linear regression problem
which is solved by SGD with constant learning rate, we
can attain full information of the optimization path, includ-
ing the first and second-order moments. (2) For SDDEs,
although it is hard to obtain full information, we can stil-
l analyze the optimization path by using moment estima-
tion and energy function minimization. Moment estimation
depends on the specific form of the loss function but has
nothing to do with its convexity property, whereas energy
function minimization leverages the convexity property but
does not depend on its specific form. (3) By using these t-
wo techniques, in addition to characterizing the optimization
path, we also get the convergence rates of optimization al-
gorithms, with a much simpler proof than that from discrete
view. Specifically, we prove a tighter convergence rate for
ASGD than the other existing results [Zheng et al., 2017;
Recht et al., 2011].
All of these results clearly demonstrate the advantages of

taking the continuous view in analyzing ASGD algorithm.

2 Backgrounds
In this section, we briefly review the basic settings of asyn-
chronous stochastic gradient descent algorithm, and intro-
duce the stochastic differential delay equations.

2.1 Basic Settings of ASGD
Asynchronous Stochastic Gradient Descent is an efficien-
t parallel algorithm. Local workers or threads do not need

to wait for others to do synchronization, thus the model is
updated faster compared with the synchronous SGD. AS-
GD updates the parameter using a delayed gradient and has
been proved achieving linear or sub-linear speedup under
certain conditions such as the training data are sparse or
the delay can be upper bounded [Agarwal and Duchi, 2011;
Recht et al., 2011; Lian et al., 2015]. In this paper, we consid-
er the update rule of ASGD under the consistent read setting
[Lian et al., 2015]. Let Mk be the index of a mini-batch with
size b and ηk be the learning rate for k-th iteration. We de-
note gMk (b, xk) =

1
b

∑
i∈Mk

∇fi(xk) as the averaged gradient
calculated by a mini-batch. The update rule of ASGD is

xk+1 = xk − ηkgMk (b, xk−lk ), (3)

where lk is a random delay satisfying 0 ≤ lk ≤ l.1 Sequential
SGD is a special case of ASGD with lk = 0, ∀k.

2.2 Stochastic Differential Delay Equation
Stochastic differential delay equation (SDDE) for a d-
dimensional continuous process X = (X(t))t≥0 is a nat-
ural generalization of stochastic differential equation (SDE)
by allowing the coefficients depending on values in the
past, which has been studied by researchers [Mao, 2007;
Bao et al., 2016]. We consider the following form:

dX(t) = g1(t,Xt)dt+ g2(t,Xt)dB(t), t ∈ [t0, T ],

where Xt = {X(t − θ(t)) : 0 ≤ θ(t) ≤ τ} is the segment (or
the functional solution), θ(t) is a random variable describing
the random delay and τ is its upper bound. The symbol B(t)
denotes r-dimensional Brownian motion [Durrett, 2010]. De-
note by C([−τ, 0];Rd) the family of continuous functions ξ
from [−τ, 0] to Rd with the norm ∥ξ∥ = sups∈[−τ,0]∥ξ(s)∥.
Then Xt is regarded as a C([−τ, 0];Rd)-valued stochastic
process. The vector g1 ∈ Rd and the matrix g2 ∈ Rd×Rr are
appropriate functions. For the sake of simplicity, we consider
the case of d = r in this paper. SDE can be regarded as a
special case of SDDE with θ(t) = 0, ∀t.

3 Continuous Approximation of
Asynchronous Optimization Methods

In this section, we first propose the continuous approxima-
tion of ASGD by using SDDE and describe the approxima-
tion procedure in detail. Then we analyze the approximation
error for the continuous approximation of ASGD.
First, we introduce some notations. We relate the discrete

iterations with continuous stochastic process by introducing
the ansatz xk ≈ X(kδ) where X(t) : R+ ∪ {0} → Rd is a
continuous function of t. Given t ∈ [0, T ], we have T = δK,
whereK is the total number of discrete iterations and δ is the
interval to do discretization of X(t) which we call the time
step. The discrete index of iterations and continuous index of
time have the relation: X(t + δ) ≈ x(t+δ)/δ := xk+1, X(t) ≈
xt/δ := xk. We define the covariance matrix of ∇fi(xk) as

Σ(xk) := E(∇fi(xk)− E∇fi(xk))(∇fi(xk)− E∇fi(xk))
T .

Since gMk
(b, xk) is a sum of b i.i.d random vectors∇fi(xk),

then the covariance matrix of gMk
(b, xk) is

Σ(xk)
b

[Balles et
al., 2017; Li et al., 2017].

1ASGD under inconsistent read setting will be studied as the fu-
ture work.
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3.1 Asynchronous Gradient Methods
Most existing approximations are built for sequential algo-
rithms [Li et al., 2017; Mandt et al., 2016], while asyn-
chronous gradient methods are widely used due to its effi-
ciency in utilizing multiple computational nodes [Recht et
al., 2011; Agarwal and Duchi, 2011; Dean et al., 2012;
Zhang et al., 2015; Zheng et al., 2017]. Therefore, in this
section, we describe how to approximate the update rule of
ASGD using SDDEs.
Consider the following asynchronous gradient methods

xk+1 = xk − ηukgMk (b, xk−lk ), (4)

where η is a deterministic learning rate and uk ∈ [0, 1] is
an adjustment function of k. The symbol lk denotes the ran-
dom delay and gMk

(b, xk−lk) denotes the delayed informa-
tion such as delayed gradient.
We first give the following proposition (Theorem 3.9.6,

[Durrett, 2010], [Balles et al., 2017]), on which our trans-
formation and approximation error analysis are based.
Proposition 3.1 The∇F (xk−lk)−gMk

(b, xk−lk) converges
weakly to a multivariate normal distribution with mean 0⃗ and
covariance matrix Σ(xk−lk

)/b.
Moreover, we assume positive definiteness and a square root
decomposition of the covariance matrix of Σ(xk−lk

)/b, i.e.,
Σ(xk−lk

)

b
= σ(xk−lk )σ(xk−lk )

T . Reformulating Eq.(4) as:
xk+1 =xk − ηuk∇F (xk−lk )

+ ηuk(∇F (xk−lk )− gMk (b, xk−lk )).

Let zks be i.i.d random vectors which follow standard nor-
mal distribution N (⃗0, Id×d). Thus, we can use σ(xk−lk)zk
to approximate the noise term (by Central Limit Theorem).
Therefore, the above equation can be approximated by

xk+1 = xk − ηuk∇F (xk−lk ) + ηukσ(xk−lk )zk. (5)

Choosing a precision δ, we can view the Eq.(5) as an Euler-
Maruyama approximation of the following SDDE [Mao,
2007]:

dX(t) =− η

δ
U(t)∇F (X(t− θ(t)))dt (6)

+
η

δ

√
δU(t)σ(X(t− θ(t)))dB(t),

where θ(t) = lkδ. We assume that 0 ≤ lk ≤ l and denote
τ := lδ. In the following, we give several possible choices
for the time step under different cases. (a) For ASGD with
constant learning rate η = η0 and uk = 1, we choose the
δ = η0. (b) For decreasing learning rate η = η0 and uk = 1

k ,
we have U(t) = δ

t . We can choose any precision. (c) For
η = η0 and uk = 1√

k
, since U(t) =

√
δ√
t
, we choose δ = η0.

In summary, we used SDDE to approximate ASGD
through Eq.(4), Eq.(5) and Eq.(6). Many asynchronous gra-
dient methods can be represented by Eq.(4), such as ASGD,
asynchronous SVRG, etc.
Using above similar technique, Nesterov’s accelerated and

momentum stochastic gradient methods can be transformed
into two stage SDEs. Besides, the continuous approximation
can be described by a second-order SDE. We omit the explicit
transform because it is not the main case which will be stud-
ied in this paper. For more details, it can be referred in [Su et
al., 2014; Li et al., 2017].

3.2 Approximation Error
In this subsection, we study the approximation error between
X(tk), produced by the continuous process and xk which is
produced by the discrete process. We applied Central Lim-
it Theorem and Euler-Maruyama approximation of stochas-
tic delay differential equation in analyzing approximation er-
ror. Now we give the following Theorem 3.2-3.4 and proof
sketches, which show the approximation error between the
update produced by ASGD (Eq.(4)) and its corresponding S-
DDE (Eq.(6)) in different cases.

Theorem 3.2 Assume that∇F (x) is L-Lipschitz continuous,
and b is the mini-batch size. Consider delay lk with upper
bound l and uk = 1 for k = 1, . . . ,K . If we consider ASGD
with δ = η, η = 1

K and ηL(l + 1) ≤ 1, we have

E∥X(tK)− xK∥ ≤ C1(
1√
K

+
l

K3/2
) + C2

eL(l+1)

√
b(l + 1)

,

where C1, C2 are constants.

Proof sketch: (1) For SDDE with U(t) = 1, the Euler-
Maruyama scheme with δ = η is

x̃k+1 = x̃k − η∇F (x̃k−lk ) +
√
η(B(tk+1)−B(tk))σ(x̃k−lk ),

where B(tk+1) − B(tk) is usually modeled by
√
ηzk. It is

well-known that the Euler-Maruyama scheme is strongly con-
vergent with order 1

2 . According to (Theorem 5.5.5 [Mao,
2007]), we have E(∥X(tk)− x̃k∥) ≤ C̃1η

3/2(k+ l)e2(ηk)
2

. Let
η = 1

K , we can obtain

E(∥X(tK)− x̃K∥) ≤ C1(
1√
K

+
l

K3/2
).

(2) Next, let us consider the relationship between xk+1 and
x̃k+1. By the central limit theorem (CLT), we can get that
∇F (xk−lk)−gMk

(b, xk−lk) converges to σ(xk−lk)zk in dis-
tribution with the increasing minibatch size b. Assume that
∇F (xk) is L-Lipschitz continuous and using Theorem 3.4.9
in [Durrett, 2010], the gap between their distribution func-
tions goes to zero at rate b−

1
2 . Since ASGD uses a de-

layed gradient, it will cause the mismatch between xk and
gMk

(b, xk−lk) when we expand the series. We have

E∥xk+1 − x̃k+1∥
=E∥xk − x̃k − η(∇F (xk−lk )−∇F (x̃k−lk ))

− η[σ(x̃k−lk )zk −∇F (xk−lk ) + gMk (b, xk−lk )]∥
≤E∥xk − x̃k − η(∇F (xk−lk )−∇F (x̃k−lk ))∥

+ E∥η[σ(x̃k−lk )zk −∇F (xk−lk ) + gMk (b, xk−lk )]∥.

Denote E∥η[σ(x̃k−lk )zk − ∇F (xk−lk ) + gMk (b, xk−lk )]∥ as
Φ(k), then we have

Φ(k) ≤η(E∥σ(x̃k−lk ))zk∥
2)

1
2

+ η(E∥gMk (b, xk−lk )−∇F (xk−lk )∥
2)

1
2

=η

√
tr(Σ(x̃k−lk ))

b
+ η

√
tr(Σ(xk−lk ))

b
,

where tr(Σ) denotes the trace of the matrix and we derived
the last step by simple matrix computations.
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Denote ηΦ√
b
= supks=0Φ(s) as an upper bound. Let Ak =

E∥xk − x̃k∥ and A0 = 0. We consider a probability qj is as-
sumed for each lk = j, j = 0, 1, · · · , l. 2 Taking expectation
and using upper bound, it becomes

Ak ≤ Ak−1 + ηL

l+1∑
j=1

qjAk−j +
ηΦ√
b

≤ Ak−1 + ηL

l+1∑
j=1

Ak−j +
ηΦ√
b
.

Thus we have Ak ≤ ηL
∑l+1

j=1(A1−j + · · · + Ak−j) + k ηΦ√
b
≤

ηL(l+ 1)(A0 +A1 + · · ·+Ak−1) + k ηΦ√
b
, where A0 = 0, A1 =

ηL(l + 1)A0 +
ηΦ√

b
. Using this recursion, we obtain

Ak ≤ k
ηΦ√
b
+ ηL(l + 1)

ηΦ√
b

k−2∑
j=0

(1 + ηL(l + 1))j(k − j − 1)

≤ k
ηΦ√
b
+ ηL(l + 1)

ηΦ√
b

(1 + ηL(l + 1))k

(ln(1 + ηL(l + 1)))2

≤ k
ηΦ√
b
+ ηL(l + 1)

ηΦ√
b

eηLk(l+1)

(ln(1 + ηL(l + 1)))2

≤ k
ηΦ√
b
+

4 ηΦ√
b
eηLk(l+1)

ηL(l + 1)
,

where we used integration approximation. In the last step, we
assumed that ηL(l+1) ≤ 1 and used ηL(l+1)

2 ≤ ηL(l+1)−
(ηL(l+1))2

2 ≤ ln(1 + ηL(l + 1)). Let η = 1
K , we have

E∥X(tK)− xK∥ ≤ C1(
1√
K

+
l

K3/2
) + C2

eL(l+1)

√
b(l + 1)

,

where C1, C2 are constants. �
If we consider the upper bound l = 0, ASGD reduces to

SGD. We give the following corollary.
Corollary 3.3 Assume that ∇F (x) is L-Lipschitz continu-
ous, and b is the mini-batch size. Consider delay lk with up-
per bound l = 0 and uk = 1 for k = 1, . . . ,K . The SGD
with δ = η, η = 1

K and ηL ≤ 1, we have

E∥X(tK)− xK∥ ≤ C1
1√
K

+ C2
eL√
b
,

where C1, C2 are constants.
The above theorem just assumes that the delay can be upper

bounded. If we further assume that the randomness of the
delay can be neglected, for example, a cyclic delayed update
architecture [Agarwal and Duchi, 2011], the results can be
improved. In this case, we give the following theorem.
Theorem 3.4 Assume that∇F (x) is L-Lipschitz continuous,
and b is the mini-batch size. Consider delay lk = l and uk =
1 for k = 1, . . . ,K . If we consider ASGD with δ = η, η = 1

K
and ηLl ≤ 1, we have

E∥X(tK)− xK∥ ≤ C3(
1√
K

+
l

K3/2
) + C4

eL√
b
.

where C3, C4 are constants.
2It should be noted that for k ≤ l, the random delay lk only take

values from the set {0, 1, · · · , k}.

Proof sketch: The analysis between X(tk) and x̃k follows
from the proof of Theorem 3.2. We analyze the relationship
between xk and x̃k. Using the above inequality and A0 = 0,
we can get

Akl ≤ ηL

(k−1)l∑
i=1

Ai +
ηΦ√
b
· kl.

Furthermore, we have the following recursion relation:

(A(k−1)l + · · ·+A(k−2)l+1) ≤ ηLl

(k−2)l∑
i=1

Ai +
ηΦ√
b
· (k − 1)l2.

Using that Al + · · ·+A1 ≤ 2(1+ηL)l

ln (1+ηL) , we conclude that

Akl ≤ηL(1 + ηLl)k−1 ·
2(1 + ηL)l · ηΦ√

b

ln (1 + ηL)

+
η2l2LΦ√

b

k−1∑
i=0

(1 + ηLl)i(k − 1− i)

≤ηL(1 + ηLl)k−1 ·
2(1 + ηL)l · ηΦ√

b

ln (1 + ηL)
+

η2l2LΦ(1 + ηLl)k

(ln (1 + ηLl))2
√
b

≤
2ηLeηLlk · ηΦ√

b

ln (1 + ηL)
+

η2l2LΦeηLlk

(ln (1 + ηLl))2
√
b
.

Assume that ηLl ≤ 1 and using ηLl
2 ≤ ln(1+ηLl), we obtain

Akl ≤ 4eηLlk · ηΦ√
b
+

4ΦeηLlk

L
√
b

≤ C4
eηLlk

√
b

.

Let η = 1
K , now we have the following bound

E∥X(tK)− xK∥ ≤ C3(
1√
K

+
l

K3/2
) + C4

eL√
b
,

where C3, C4 are constants. �
The Lipschitzs coefficient is relatively a small constant.

For example, we have L ≤ 1 and L ≤ 0.25 for linear re-
gression and logistic regression, respectively. Theorem 3.2
shows that the approximation error of ASGD will be small if
the number of iterationsK and the minibatch size b are large.
The delay l has influence on the two parts. This is consis-
tent with the intuition that delay will cause mismatch of the
updates. From Theorem 3.4, when the delay equals to a con-
stant, its approximation error is similar to that of SGD since l
does not have influence on the part of eL√

b
.

4 Convergence Analysis: Techniques and
Examples

In this section, we show some techniques using SDDE for
convergence analysis. Firstly, we introduce the measure for
convergence analysis. Taking SDE as a simple example,
for fixed t, the SDE becomes an ODE after taking expecta-
tion of X(t). We can get the optimum x∗ by taking limits
limt→∞ EX(t). Secondly, we can calculate E(X(t)− x∗) and
E||X(t)− EX(t)||2 for each fixed t. Combining them we can
get the convergence of E||X(t)− x∗||2.
Usually, SDEs can be classified into two cases: analyt-

ic solution case and non-analytic solution case. An exam-
ple of SDE with analytic solution is linear regression solved
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by SGD with constant learning rate. The objective func-
tion is F (x) = 1

2n
∥Ax − B∥2, with A = (aT1 , . . . , a

T
n )

T and
B = (b1, . . . , bn)

T , x ∈ Rd, ai ∈ Rd and bi ∈ R. De-
note Ã = 1

nA
TA. The solution of its SDE is an Ornstein-

Uhlenbeck process [Uhlenbeck and Ornstein, 1930]:

X(t) = x∗ + e−Ãt(X(0)− x∗) +

∫ t

0

eÃ(s−t)√ηGdB(s).

We can calculate the moments directly, i.e.,

E[X(t)− x∗|X(0) = x0] = e−Ãt(x0 − x∗),

E[∥X(t)− EX(t)∥2|X(0) = x0] ≤
∫ t

0

∥eÃ(s−t)√ηG∥2ds.

From the above results, we can get many insights about the
dynamics of SGD, such as the oscillation of the sample path
which has been discussed in [Li et al., 2017].
However, SDDEs are more difficult to obtain analytic so-

lution. For non-analytic solution case, it is hard to calculate
the exact moments of X(t)− x∗, we can use two methods to
estimate them to achieve the convergence for ASGD:moment
estimation and energy function minimization.

4.1 Moment Estimation
We show the moment estimation technique by taking linear
regression as an example. It can also be used for noncon-
vex loss functions. Before showing the details, we need to
guarantee the existence and uniqueness of the solutions for
SDDEs. Uniform Lipschitz condition and linear growth con-
dition are two conditions to guarantee the existence and u-
niqueness of the solutions for SDDE [Mao, 2007]. We should
see that these two conditions have no direct relation with con-
vexity. For our continuous approximation, we do not care the
explicit form of σ(X(t − θ(t))) (except for variance reduced
techniques are involved such as SVRG [Johnson and Zhang,
2013]) and just assume that it has an upper bound thus it is a
constant aboutX(t−θ(t)). In this case, the diffusion term sat-
isfies linear growth and Lipschitz conditions. We just need to
check whether −∇F (X(t−θ(t))) satisfies the two conditions.
We use Theorem 5.2.2 in [Mao, 2007] to guarantee the ex-

istence and uniqueness of the solution to SDDE. We consider
the ASGD with constant learning rate η for the linear regres-
sion. The corresponding SDDE is

dX(t) = −(ÃX(t− θ(t))− B̃)dt+
√
ησ(X(t− θ(t)))dB(t),

X(s) = ξ(s), s ∈ [−τ, 0], (7)

where θ(t) ∈ [0, τ ]. Here we consider θ(t) = τ and τ is its
upper bound. Following the techniques in [Bao et al., 2016;
2014], we can bound the first and second moments and give
the following theorem.
Theorem 4.1 Define V = sup{Re(β) : β ∈ C, det(βId×d +

Ãe−βτ ) = 0}. For any given training error ϵ, let η = ϵ
τ2 . If

V < 0, then for λ ∈ (0,−V ), the convergence rate for ASGD
for linear regression Eq.(7) by using moment estimation is

E∥X(t)− x∗∥2 ≤ C5e
−2λ(t−τ) + C6

ϵ

λτ2
,

where C5 and C6 are constants. 3

3The coefficients are related to the root of characteristic function
of the SDDE.

Proof sketch: Through some lengthy derivation [Bao et al.,
2016], we have ∥E(X(t)) − x∗∥ ≤ a1e

−λt and E∥X(t) −
EX(t)∥2 ≤ a2(1 − e−2λt) where the coefficient a1 is cλ∥ξ̃∥ +

cλ∥ξ̃∥∥Ã∥(eλτ − 1) 1
λ
, a2 is c2λE∥

√
ησ∥2

2λ and x∗ = Ã−1B̃.
Moreover, we can obtain

E∥X(t)− x∗∥2 = E∥X(t)− EX(t)∥2 + ∥EX(t)− x∗∥2.
Thus by putting a1 and a2 in it , we have

E∥X(t)− x∗∥2 ≤

c2λ
λ2

[
(∥ξ̃∥2(∥Ã∥+ λ)2 + ληE||σ||2)e2λτ

]
e−2λt +

c2λE∥
√
ησ∥2

2λ
.

Putting η = ϵ
τ2 in the above equation, we can get

E∥X(t)− x∗∥2

≤ c2λ · e−2λt

λ2

[
(∥ξ̃∥2(∥Ã∥+ λ)2 + λϵE||σ||2/τ2)e2λτ

]
+ ϵc2λE∥σ∥2/2τ2λ ≤ C5e

−2λ(t−τ) + C6
ϵ

λτ2
. �

Discussion: We compare the results with the existing con-
vergence rates of ASGD under consistent read setting. If
we don’t assume the data are sparse, the number of iter-
ations is no less than O( τϵ ) to achieve E∥xk − x∗∥2 ≤ ϵ
[Zheng et al., 2017]. Another well-known theoretical result
is O( log(1/ϵ)ϵ · τ2) if we let the sparse coefficients be 1 and
set η = ϵ

τ2 [Recht et al., 2011] 4. Theorem 4.1 shows that we
need e−2λ(t−τ) ≤ ϵ in order to make E∥X(t) − x∗∥2 ≤ O(ϵ).
Thus we need t ≥ O(τ + log (1/ϵ)

2λ
), which is in common faster

than the previous two results O( τϵ ) and O( log (1/ϵ)
ϵ · τ2).

4.2 Energy Function Minimization
In this section, we show the energy function minimization.
This technique has been explored in many works [Su et al.,
2014; Krichene et al., 2015; Wibisono et al., 2016]. Firstly,
we need to define proper energy function for corresponding
differential equation. Energy function is related to the mea-
sure which is used for the convergence rate of optimization,
such as ∥X(t) − x∗∥2, F (X(t)) − F (x∗) and the expect-
ed convergence rate for the optimization algorithms. Sup-
pose that we use ASGD to minimize a strongly convex loss
function. We can define the energy function for SDDE as
E(t) = t−1

2
∥X(t) − x∗∥2 − (δ+1)(H+2L2D2τ) ln t

2µ2 and calculate
dEE(t) by using Itô formula. If dEE(t) ≤ 0, we can get
EE(t) is a decreasing function about t. Then the convergence
rate for SDDE is obtained by using EE(t) ≤ E(t0). Thus,
the design for energy function aims to make dEE(t) ≤ 0.
Theorem 4.2 shows the convergence rate for SDDE.
Theorem 4.2 For any F ∈ F∞ with smooth coefficient L, let
X(t) be the unique global solution to (6) with initial condi-
tions X(s) = ξ(s), s ∈ [−τ, 0] and X(t) ∈ d(x0, D), ∀t. As-
sume that F (x) is strongly convex about x and ηk = 1

µk
. Let

H be a constant which satisfies H ≥ E(Tr(σσT )) + 2µLD2.
For any t > 1,

E∥X(t)− x∗∥2 ≤ (δ + 1)(H + 2L2D2τ) ln t

(t− 1)µ2
.

4Please notice that the theoretical analysis in [Recht et al., 2011]
is proved under consistent read setting.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2224



Proof sketch: For strongly convex case, ηk is set as ηk = 1
µk .

Then we have η = 1 and U(t) = δ
µt . The SDDE is

dX(t) = − 1

µt
∇F (X(t− θ(t)))dt+

√
δ

µt
σ(X(t− θ(t)))dB(t).

We define the energy function

E(t) = t− 1

2
∥X(t)− x∗∥2 − (δ + 1)(H + 2L2D2τ) ln t

2µ2
,

where H ≥ E(Tr(σσT )) + 2µLD2. Using Itô formula and
taking expectation, we can get

dEE

=
1

2
E∥X(t)− x∗∥2dt− 1

µ
E⟨∇F (X(t− θ(t))), X(t)− x∗⟩dt

+
1

tµ
E⟨∇F (X(t− θ(t))), X(t)− x∗⟩dt

+
(t− 1)δ

2µ2t2
ETr(σσT )dt− (δ + 1)(H + 2L2D2τ)

2tµ2
dt

≤
(
L2D2θ(t)

µ2t
+

LD2

tµ

)
dt+

δ

2µ2t
ETr(σσT )dt

− (δ + 1)(H + 2L2D2τ)

2tµ2
dt ≤ 0.

The first equality comes from Itô formula. The first inequal-
ity applied the positiveness of 1

2µ2t2ETr(σσ
T ) and strongly

convex assumption. Therefore, we have

E∥X(t)− x∗∥2 ≤ (δ + 1)(H + 2L2D2τ) ln t

(t− 1)µ2
,

where τ is the upper bound of θ(t). �
When we consider the special case of τ = 0, ASGD algo-

rithm reduces to SGD algorithm. We can similarly define an
energy function E(t) = t−1

2
∥X(t)− x∗∥2 − (δ+1)H ln t

2µ2 and we
give the following corollary.
Corollary 4.3 For any F ∈ F∞ with smooth coefficient L, let
X(t) be the unique global solution to

dX(t) = −η

δ
U(t)∇F (X(t))dt+

η

δ

√
δU(t)σ(X(t))dB(t). (8)

with initial conditions X(1) = x0 and X(t) ∈ d(x0, D), ∀t.
Assume that F (x) is strongly convex about x and ηk = 1

µk
.

Let H ≥ E(Tr(σσT )) + 2µLD2. For any t > 1,

E∥X(t)− x∗∥2 ≤ (δ + 1)H ln t

(t− 1)µ2
.

Discussions: Since the approximation error is relatively s-
mall, the convergence rate of SDDE can be approximated as
the result of ASGD. (1) We prove a tighter convergence rate
for ASGD than the other existing results. The result in Theo-
rem 4.2 is no slower than the convergence rateO(τ/ϵ) [Zheng
et al., 2017]. If 2L2D2τ ≤ H, the negative influence of τ can
be neglected, which means that it is comparable with the se-
rial SGD and it can achieve linear speedup. Compared with
the results in [Recht et al., 2011], the speedup condition does
not rely on the sparsity condition. If the stochastic variance
E(Tr(σσT )) is large, the condition 2L2D2τ ≤ H is easier to
be satisfied, which is consistent to the results for non-convex
case studied in [Lian et al., 2015].
(2) Corollary 4.3 shows that E∥xk − x∗∥2 ≤ (δ+1)H ln(δk)

(δk−1)µ2

since t = δk. It is comparable with the existing convergence
rate of 4H

kµ2 [Rakhlin et al., 2011] under the same setting.
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Figure 1: Path comparison

5 Experiments
In this section, we take F (x) = 1

2
(x + 1)2 + 1

2
(x − 1)2 as

a simple example. We compared the discrete optimization
algorithms with the Euler-Maruyama schemes of stochastic
differential equations.
For optimization iteration and Euler-Maruyama scheme,

the learning rate is set to be η = 0.005. We run the ex-
periments within 2000 iterations. The figures include ASGD
(resp. SGD) path and a sample path for SDDE (resp. SDE)
approximation. First, we analyzed SDDE for ASGD algorith-
m. The time interval of the SDDE is [0, T ] where T = ηK
and K is the total number of ASGD iterations. For SDDE,
we set the initial function as ξ(θ) = 4 for any θ ∈ [−τ, 0].
For ASGD, we assume a constant delay as l = 10 and let
X(0) = 4. Since the delay l = 10, we run the SGD during
the first ten steps and ASGD iterations are used from ten steps
on. It is observed that the two paths are close. Second, from
Fig.1(b) we can see that the SDE approximation and SGD
iteration are well matched.

6 Conclusions
In this paper, we studied the continuous approximation of
asynchronous stochastic gradient descent algorithm. We ana-
lyzed the approximation error and conducted theoretical anal-
yses on the convergence rates of asynchronous stochastic gra-
dient decent algorithms by continuous methods: moment es-
timation and energy function minimization. From the aspect
of continuous view, we cannot only obtain existing results by
the discrete view, but also get new results. For applications
of this view, it can also be referred at [Mandt et al., 2016;
Li et al., 2016]. To the best of our knowledge, we firstly give
a continuous description to asynchronous stochastic gradient
descent, and proved a tighter bound. In the future, we will ap-
ply this unified continuous view to analyze more optimization
algorithms in more tasks.
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