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Abstract
Constraint propagation during backtrack search
significantly improves the performance of solving
a Constraint Satisfaction Problem. While Gener-
alized Arc Consistency (GAC) is the most popu-
lar level of propagation, higher-level consistencies
(HLC) are needed to solve difficult instances. De-
ciding to enforce an HLC instead of GAC remains
the topic of active research. We propose a sim-
ple and effective strategy that reactively triggers
an HLC by monitoring search performance: When
search starts thrashing, we trigger an HLC, then
conservatively revert to GAC. We detect thrash-
ing by counting the number of backtracks at each
level of the search tree and geometrically adjust
the frequency of triggering an HLC based on its
filtering effectiveness. We validate our approach
on benchmark problems using Partition-One Arc-
Consistency as an HLC. However, our strategy is
generic and can be used with other higher-level
consistency algorithms.

1 Introduction
Generalized Arc Consistency (GAC) is the go-to consistency
enforced in backtrack search for solving Constraint Satis-
faction Problems (CSPs). Recent work showed that diffi-
cult instances benefit from enforcing higher-level consistency
(HLC) [Karakashian et al., 2010; Woodward et al., 2011;
Lecoutre et al., 2013; Balafrej et al., 2014]. An open ques-
tion is to determine when GAC is sufficient and when a more
aggressive (but likely more costly) consistency is warranted.

We claim that techniques for enforcing HLCs during search
can be organized along orthogonal dimensions and identify
three such ‘axes:’ where, when, and how much of an HLC
to enforce, as shown in Figure 1. In summary, the ‘where’
axis identifies specific (or groups of) variables/constraints on
which an HLC is enforced; the ‘when’ axis identifies at what
point, during search, HLC is enforced; and the ‘how much’
axis indicates whether HLC is allowed to reach a fixpoint or
forced to terminate earlier. The point of origins of those three
axes indicates the ‘strongest’ application of HLC (i.e., en-
force HLC uniformly over the entire future subproblem, at
each variable instantiation, and until quiescence).

Where? 

When? 

How much? 

HLC	

Where? 
One variable Entire CSP 

 Always GAC Always HLC 
When? 

How much? 
Stop early Until fixpoint 

Figure 1: Dimensions for enforcing consistency

In this paper, we present PREPEAK+ as a reactive strat-
egy that operates on the two dimensions ‘when’ and ‘how
much.’ In particular, (a) we introduce a triggering strategy,
PREPEAK, that tracks search performance and triggers HLC
when search starts thrashing (i.e., when), and (b) choose to
enforce HLC on a fraction of the (ordered) propagation queue
and within a bounded time duration (i.e., how much).

We validate PREPEAK+ using as HLC the consistency
property Partition-One Arc-Consistency (POAC) [Bennaceur
and Affane, 2001; Balafrej et al., 2014]. This choice is justi-
fied by the fact that POAC is implemented with singleton tests
and only standard GAC propagators (e.g., propagators of ta-
ble constraints or global constraints), which probably makes
it the easiest and most immediate HLC to implement in con-
straint solvers. We empirically show that PREPEAK+ (with
POAC) outperforms GAC on all kinds of binary/non-binary
and structured/unstructured CSPs. We re-iterate that PRE-
PEAK+ is generic and can be used in combination with any
HLC. Indeed, preliminary results on other consistencies are
extremely encouraging.

The paper is structured as follows. Section 2 reviews back-
ground information. Section 3 reviews and organizes related
work along the three identified dimensions. Section 4 de-
scribes our triggering strategy PREPEAK and Section 5 dis-
cusses our strategy of how much HLC to enforce. Section 6
evaluates our approach and Section 7 compares our approach
to other techniques. Finally, Section 8 concludes this paper.

2 Background
A constraint network is defined by P = (X ,D, C). X is a
set of variables where a variable xi ∈ X has a finite domain
dom(xi) ∈ D. A constraint ci ∈ C is given by its scope
scope(ci) and its relation rel(ci): scope(ci) is the sequence
of variables to which ci applies; rel(ci) is the set of combi-
nations of |scope(ci)| values satisfying ci. A tuple belonging
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to rel(ci) ∩
∏

xi∈scope(ci) dom(xi) is called a support of ci.
A solution of P assigns, to each variable, a value from its do-
main such that all the constraints are satisfied. The problem
of deciding the existence of a solution is called a Constraint
Satisfaction Problem (CSP) and is known to be NP-complete.
To this day, backtrack search remains the only sound and
complete algorithm for solving CSPs [Bitner and Reingold,
1975]. Search operates by assigning a value to a variable and
backtracks when a dead-end is encountered.

After each variable assignment, constraint solvers enforce
some consistency on the unassigned variables to remove val-
ues from their domains that are inconsistent, given the con-
straints with the current assignment and, thus, cannot par-
ticipate in a solution [Haralick and Elliott, 1980; Sabin and
Freuder, 1994]. Such filtering prunes ‘barren’ subtrees from
the search space and can reduce thrashing and consequently
the search effort. The higher the consistency level enforced
during search, the stronger the pruning and the lesser the
search effort. However, higher levels of consistency may take
more time/space to enforce.

The most commonly enforced consistency property is Gen-
eralized Arc Consistency (GAC) [Mackworth, 1977]. A
constraint network is GAC iff, for every constraint ci, and
every variable x ∈ scope(ci), every value v ∈ dom(x)
is consistent with ci (i.e., appears in some support of ci).
Let (xi, vi) denote a variable-value pair, (xi, vi) ∈ P iff
vi ∈ dom(xi). GAC(P ∪ {xi ← vi}) is the constraint net-
work after assigning xi ← vi and running GAC. Singleton
Arc-Consistency (SAC) ensures that for each (xi, vi) ∈ P ,
GAC(P ∪{xi ← vi}) does not have any empty domain [De-
bruyne and Bessière, 1997]. Testing GAC(P ∪ {xi ← vi})
is called a singleton test. A higher-level consistency prop-
erty that has recently shown promise is Partition-One Arc-
Consistency (POAC) [Bennaceur and Affane, 2001]. A con-
straint network P = (X ,D, C) is POAC iff P is SAC and for
all (xi, vi) ∈ P , for all xj ∈ X , there exists vj ∈ dom(xj)
such that (xi, vi) ∈ GAC(P∪{xj ← vj}). POAC is guaran-
teed to enforce a higher-level consistency than SAC and SAC
than GAC [Bennaceur and Affane, 2001].

Balafrej et al. [2014] introduced two algorithms for en-
forcing POAC, namely, POAC-1 and its adaptive version
APOAC. In POAC-1, all the CSP variables are singleton
tested, and the process is repeated over all the variables until
a fixpoint is reached. In APOAC, the process is interrupted
as soon as a given number of variables are processed, which
depends on input parameters but is updated during search.
Our experiments compare GAC, APOAC, PREPEAK+ with
POAC as an HLC.

3 Related Work
We organize the related work along the three axes shown in
Figure 1 and combinations of these dimensions.

Where: The consistency level is chosen based on some
property of the variables and/or constraints. One can exploit
structural properties of the constraint network, such as the
neighborhood of a variable or a constraint [Freuder and Elfe,

1996; Wallace, 2015; Woodward et al., 2011], or some con-
figuration of constraints [Karakashian et al., 2010]. Freuder
and Wallace [1991] enforce arc consistency on a subprob-
lem within a given distance (i.e., where) from the instanti-
ated variable. Balafrej et al. [2013] and Woodward et al.
[2014] exploit the degree of support that constraints provide
to variable-value pairs, which is a structural property.

When: The consistency selected depends on search perfor-
mance. Borrett et al. [1996] switch between backtrack algo-
rithms, level of consistency enforced, and ordering heuristics
by a complex combination of domain sizes, number of vari-
ables, and backtrack levels. Epstein et al. [2005] consider
several strengths of AC-based consistencies depending on the
depth of the search tree. Balafrej et al. [2015] use a multi-
armed bandit at each depth of search tree to select between
MAC, maxRPC, or POAC.

How much: Propagation is terminated before reaching a
fixpoint. Such approaches focus on the propagation queue
of a consistency algorithm. They either order the propaga-
tion queue according to some heuristic [Wallace and Freuder,
1992] or interrupt the consistency algorithm when the prun-
ing effect of propagation has subsided [Balafrej et al., 2014]
or the allocated time has elapsed [Eén and Biere, 2005;
Geschwender et al., 2016].

Where and when: Some authors propose heuristics to dy-
namically switch from GAC to a stronger property on a se-
lection of constraints (i.e., where) based on the amount of
activity of the constraints during search (i.e., when). For ex-
ample, Stergiou [2008] switches between GAC and maxRPC
for binary CSPs and Paparrizou and Stergiou [2012] between
GAC and maxRPWC for nonbinary CSPs.

Where and how much: Paparrizou and Stergiou [2017]
propose a strategy for interrupting enforcing Neighborhood-
SAC based on the amount of filtering it yields. For each sin-
gleton test on the considered variable, the filtering is inter-
rupted (i.e., how much) unless the domain of any neighboring
variable (i.e., where) becomes singleton.

4 When HLC: A Trigger-Based Strategy
We introduce our HLC-triggering strategy PREPEAK.

4.1 PREPEAK

The idea behind our reactive strategy is to monitor the
‘progress’ of search while maintaining some consistency
property, such as GAC, in a d-way branching backtrack
search. When search starts thrashing, we trigger some high-
level consistency (HLC), such as POAC, and keep enforcing
it as long as it is beneficial. In order to determine that thrash-
ing has reached a dangerous level, we propose to track the
number of backtracks at each depth (or level) of the search
tree. We advocate using the number of backtracks as a better
indication of thrashing than the number of constraint checks
(e.g., [Epstein et al., 2005]) or the number of nodes visited
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because the former depends on the number of constraints
that apply to a variable and the latter depends on the vari-
able’s domain size. To this end, we store the number of times
each level of the search tree was backtracked to in a vector
btcounts [·] indexed by the corresponding level. The size of
the vector is n + 1 where n is the number of variables in the
problem. When an entry in this vector reaches some threshold
value θ, we set peakd, identified as the ‘peak’ depth of thrash-
ing, to the search depth corresponding to that entry. When
search backtracks to a shallower depth than peakd, we en-
force HLC as long as HLC is effective, then we revert to en-
forcing GAC after resetting to 0 all the counts in btcounts [·].
We call this approach PREPEAK because (a) it is based on
identifying the peak depth to which search backtracks and
(b) HLC is enforced up to this depth. Our goal is to ‘hit hard’
the future subproblem with HLC and reduce its size before
the search reaches the peak depth again.

We present PREPEAK as simple modifications of the func-
tions UNLABEL (Algorithm 1) and LABEL (Algorithm 2)
of Prosser’s ‘classical’ backtrack search algorithm [1993].
These modifications are obtained by adding the lines high-
lighted in the pseudocode. Below, we discuss only the lines
corresponding to our modifications. Further, we declare
btcounts [·] and peakd as global variables to the search pro-
cedure. We initialize all the entries of btcounts [·] to 0 and set
peakd to 0 indicating that there is no active peak.

In Line 5 of UNLABEL (Algorithm 1), we increment the
value of btcounts [h] where h is the depth to which we back-
track. If btcounts [h] reaches the threshold value θ, we set
peakd to h to reduce the chance of thrashing at i (Line 6). We
discuss the selection of the initial value of θ in Section 4.3.

It is in the function LABEL (Algorithm 2) that we must de-
cide whether or not to enforce HLC. At every assignment of
the current variable xi, we first enforce GAC (Line 6). At
Line 7, if we find that a peak was identified (peakd > 0)
and the current depth is shallower than the peak’s depth
(i ≤ peakd), we enforce HLC on the future subproblem
recording the outcome of this call, for the given assignment,
using the Boolean variables consistent and filtered (Line 8),
where consistent indicates the consistency of the current path
and filtered indicates whether or not HLC yielded any filter-
ing. The Boolean variables HLCenforced and HLCfiltered
indicate, for any tested assignment for the current variable,
whether or not HLC was enforced (Line 9) and yielded filter-
ing (Line 10), respectively. Note, once HLC is triggered, we

Algorithm 1: UNLABEL(i,consistent) unlabels variable xi
Input: i: depth of failed variable; consistent: state of

current path
Output: depth of current variable

1 Restore domains of current and future variables
2 h← i− 1
3 dom(xh)← dom(xh) \ {ASSIGNEDVALUE(xh)}
4 consistent← dom(xh) 6= ∅
5 btcounts [h]← btcounts [h] + 1
6 if btcounts [h] = θ then peakd ← h
7 return h

Algorithm 2: LABEL(i,consistent) instantiates variable xi
Input: i: depth of current variable; consistent: state

of current path
Output: depth of current variable

1 consistent ← false
2 HLCenforced ← false
3 HLCfiltered ← false
4 foreach vi ∈ dom(xi) while not consistent do
5 xi ← vi
6 consistent ← GAC(P)
7 if consistent and peakd > 0 and i ≤ peakd then
8 (consistent ,filtered)← HLC(P)
9 HLCenforced ← true

10 HLCfiltered ← HLCfiltered or filtered

11 if not consistent then
dom(xi)← dom(xi) \ {vi}

12 if HLCenforced then
13 if not consistent then θ ← rw · θ
14 else
15 ∀z btcounts [z]← 0
16 peakd ← 0
17 if HLCfiltered then θ ← rf · θ
18 else θ ← rn · θ

19 if consistent then return i+ 1 else return i

enforce it for all the tested values for the current variable xi.
We claim that, whenever we trigger HLC, it is timely to re-

vise and update the triggering threshold, θ, given the recorded
outcome of HLC. We distinguish three regimes:

1. Wipeout: HLC effectively depletes the domain of xi by
yielding a wipeout at every instantiation. It forces search
to backtrack.

2. Filtering: HLC yields some filtering, but finds a consis-
tent assignment for xi and allows search to proceed to
the next level.

3. Neither: HLC does not yield any filtering at all (beyond
what GAC may have filtered). Search proceeds to the
next level with a consistent instantiation for xi.

We update the threshold value θ by multiplying its cur-
rent value by a factor of rw (Line 13), rf (Line 17), or rn
(Line 18), for each of the above regimes, respectively, as we
argue below. We discuss these factors in Section 4.2.

The first regime (i.e., wipeout) ‘reinforces’ our belief in the
usefulness of HLC and entices us to continue to enforce HLC
as we backtrack by one or more levels. To this end, we do not
reset the values of peakd or btcounts [·]. In the remaining two
regimes, we are reserved about the usefulness of HLC and
prevent it from triggering again too soon. Thus, we reset the
values of both btcounts [·] and peakd (Lines 15 and 16). As a
result, subsequent calls to the function LABEL do not enforce
HLC until a new peak is detected.

4.2 Update Strategies for θ
The three identified regimes allow us to ‘plug in’ arbitrary
strategies for updating θ, thus providing an opportunity to ad-
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just PREPEAK’s reactivity to the relative cost of the consis-
tency properties enforced. We propose to use geometric laws
similar to the one used for cutoff-value update in restarting
randomized search [Walsh, 1999] θ ← r · θ with different
values of the common ratio r for each of the regimes.

1. Wipeout: We use rw = 1.2−1 (Line 13).1

2. Filtering: We use rf = 1.22 (Line 17).

3. Neither: We use rn = 1.23 (Line 18).
The above strategies allow PREPEAK to adapt to the instance
at hand by updating θ based on HLC’s pruning effective-
ness. Indeed, when it yields a domain wipeout (first regime),
HLC is effectively reducing thrashing and its frequency is
increased. Otherwise, the update strategies decrease HLC’s
triggering frequency more aggressively when HLC yields no
filtering (third regime) than when it does (second regime).

4.3 Initializing the Threshold θ
Our reactive strategy enforces GAC until search starts thrash-
ing, triggering HLC when backtracking ‘reaches’ the value of
the threshold θ. If we choose too small an initial value for θ,
HLC may trigger while GAC is still effective, which adds to
the CPU cost.2 If we choose too large a value, GAC may have
run for too long in a barren subtree.

In PREPEAK, the distribution of the backtracks in the vec-
tor btcounts [·] varies depending on the problem instance,
making the choice of the initial value of θ not straight-
forward. We investigated an alternative reactive strategy
that triggers HLC based on the value of

∑n
l=1 btcounts [l].

This study inspired the following initialization of θ for
PREPEAK: we set θ to be the maximum value of
btcounts [·] when

∑n
l=1 btcounts [l] = n2, thus, setting θ ←

maxnl=1(btcounts [l]). In other words, we identify the first
peak and its depth by taking a snapshot of the backtrack pro-
file after search executes n2 backtracks. We tested differ-
ent values, such as various powers of n, various factors of
n, the sum of domain sizes, and the ratio of the CPU times
for enforcing GAC and HLC computed in a pre-processing
step. We empirically found that values that are quadratic in
the number of variables (e.g., n2 and sum of domain sizes)
perform best, thus, we select n2.

5 How Much HLC: Monitoring Propagation
We propose two mechanisms to control the early termination
of HLC, namely, the size of the propagation queue and the
time bound for running HLC. First, while ordering the ele-
ments of the propagation queue of the HLC algorithm based
on the activity of a variable or constraint (e.g., dom/wdeg
[Boussemart et al., 2004]), we allow only a fraction of the
propagation queue to be processed. Second, we impose a
bound on the duration of any call to HLC.

1The value of 1.2 is a commonly used factor (e.g., [Walsh, 1999])
and provides a ‘gentle’ evolution. Other values tested (e.g., 1.1, 1.4,
and 1.6) yielded qualitatively similar results.

2We empirically noticed that the three update rules (Section 4.2)
allow us to recover from starting with smaller values by dynamically
adjusting the value of θ to the instance at hand, thus providing some
robustness to our approach.

Let q be the number of elements in the propagation queue
each time we trigger HLC. We terminate HLC as soon as ei-
ther of the following two criteria is met:

1. q
2 elements of the propagation queue are processed or

2. HLC has consumed a total CPU time q
2 · TIME(GAC)

where TIME(GAC) is the time spent on the last call to
GAC prior to HLC (Line 6 of Algorithm 2).

Our approach is inspired from Balafrej et al. [2014], who no-
ticed that POAC is too costly to be used on its own. They
advocated to (a) order the variables in the propagation queue
by the dom/wdeg ordering heuristic and (b) terminate POAC
when the amount of filtering by POAC significantly drops.
They proposed an adaptive strategy APOAC, based on a
“10% learning, 90% exploitation”-learning strategy, which
assumes that POAC is enforced at every step during search.
PREPEAK cannot accommodate such a learning process be-
cause HLC is enforced only reactively.

Other mechanisms to monitor propagation may exist. For
example, we can watch propagation during a given window of
the propagation queue while sliding this observation window
as long as filtering is ‘active.’ Alternatively, we can consider
a sliding window of time. We tested combinations of such
criteria. While the results were positive in general, they were
unstable across benchmarks. As a lesson, we conclude that
a fixed amount for each mechanism (i.e., queue and time) is
simpler to implement, more stable, and as effective.

6 Experiments
We denote PREPEAK+ the combination of our when strat-
egy (PREPEAK, Section 4) and our how-much strategy (Sec-
tion 5). To validate our approach, we consider the problem
of finding a single solution to a CSP using d-way branch-
ing backtrack search. We set up our experiments as follows.
We choose POAC for the higher-consistency property and en-
force it using the POAC-1 algorithm [Balafrej et al., 2014],
where we exclude variables with singleton domains from the
singleton tests.

We use the benchmark problems available from Lecoutre’s
website.3 We test all available binary and non-binary CSPs,
including Boolean, patterned, random, quasi-random, aca-
demic, and real-world benchmarks. We include all bench-
marks with at least one instance with a primal graph of den-
sity less than 50%. Indeed, on high density networks, the
impact of an instantiation on a future variable is immediately
propagated by GAC while HLC typically yields no further fil-
tering but costs predictable data-setup overhead. This selec-
tion results in a total of 138 benchmarks (57 non-binary and
81 binary) consisting of 4,077 instances (1,716 non-binary
and 2,361 binary). The selected benchmarks have a mixture
of instances with densities≥ 50% and< 50%, however, only
137 instances of the 4,077 instances included have densities
≥ 50%. We setup our reactive strategies to first compute the
density of an instance. If the density is ≥ 50%, we enforce
GAC. Otherwise, we execute the reactive strategy. Our re-
sults include this computation time. We use a time limit of 60
minutes per instance and 8GB of memory.

3www.cril.univ-artois.fr/∼lecoutre/benchmarks.html
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In our tables, we report the number of instances solved by
a given algorithm (#solved), the number of nodes visited av-
eraged over instances completed by all algorithms (avg. NV),
and the total CPU time in seconds computed over instances
completed by any of the compared algorithms (

∑
CPU).

When an algorithm does not terminate within the time allo-
cated, we add 3,600 seconds to the CPU time and indicate
with a > sign that the time reported is a lower bound. For
techniques that run POAC, we report the average number of
calls to POAC after enforcing GAC (#CallsPOAC). A value
is in boldface when it is the best value in a given row.

We first show that PREPEAK+ performs better than either
of its components. Then, we compare PREPEAK+ against
GAC and APOAC using two different dynamic variable-
ordering heuristics: dom/deg [Bessière and Régin, 1996] and
dom/wdeg [Boussemart et al., 2004]. Finally, we introduce
a visualization of the search process to provide a graphical
interpretation of the good performance of our approach.

6.1 Putting Together ‘When’ and ‘How Much’
In this experiment, we use the dom/wdeg variable-ordering
heuristic. Table 1 shows the contributions of the two as-
pects ‘when’ (PREPEAK, Section 4) and ‘how much’ (inter-
rupting propagation, Section 5) to the good performance of
PREPEAK+. PREPEAK+ solves more instances than either

Algorithm PREPEAK+ When How Much
#Instances: 4,077 total; 2,131 by all; 2,298 by at least one
#solved 2,286 2,239 2,171∑

CPU [sec] >356,778.1 >610,958.6 >915,738.6
avg. NV 568,072.7 123,224.9 10,925.7
#CallsPOAC 2,477.5 1,128.1 5,019.4

Table 1: PREPEAK+ versus ‘when,’ ‘how much’

component taken individually, which shows the importance
of combining the two orthogonal dimensions. The number
of calls to POAC in PREPEAK+ is mostly controlled by the
triggering strategy (i.e., ‘when’), which by itself is more ex-
pensive than PREPEAK+ because POAC runs until a fixpoint.
The right-most column enforces POAC with early termina-
tion (Section 5) at every node, yielding the smallest number
of nodes visited but the largest CPU time. ‘When’ and ‘how
much’ complete difference instances: only 2,131 instances
are completed by both. Combining ‘when’ and ‘how much’
in PREPEAK+ allows it to solve instances not solved by both.

6.2 PREPEAK+ Versus GAC and APOAC
Table 2 compares the performance of GAC, APOAC, and
PREPEAK+ under the dom/deg ordering heuristic.4 PRE-
PEAK+ solves the most instances and is the fastest algorithm.

4Although dom/wdeg is generally more effective than dom/deg,
the decisions made by dom/wdeg are considered too unstable to ob-
jectively allow comparing algorithms’ performance. Researchers
studying the performance of HLC during search typically use
dom/deg in their experiments [Balafrej et al., 2015; Paparrizou and
Stergiou, 2016; 2017].

Algorithm GAC APOAC PREPEAK+

#Instances: 4,077 total; 1,891 by all; 2,205 by at least one
#solved 2,036 2,058 2,173∑

CPU [sec] >1,044,380.1 >1,042,622.9 >455,189.2
avg. NV 1,138,447.6 90,047.4 324,020.2
#CallsPOAC - 30,911.5 686.1

Table 2: GAC, APOAC, and PREPEAK+ on dom/deg

Predictably, in terms of average nodes visited, APOAC ex-
plores the fewest and PREPEAK+ is closer to APOAC than
to GAC despite the relatively few calls to POAC (686.1). We
conclude that PREPEAK+ triggers HLC at the right place and
in the right amount, thus validating our approach.

Figure 2 shows the cumulative number of instances com-
pleted by GAC, APOAC, and PREPEAK+ (on dom/deg) as
time increases. Comparing GAC and APOAC, we see that
GAC dominates APOAC on instances solved within 1,600
seconds, while APOAC dominates GAC after this point. This
behavior motivates the need for HLC on difficult instances
and illustrates its overhead on easier instances. By selec-
tively triggering HLC, our strategy, PREPEAK+, dominates
both GAC and APOAC.

Table 3 repeats the same experiment under dom/wdeg. The
results are similar to those in Table 2: PREPEAK+ outper-
forms GAC and APOAC in terms of both number of instances
solved and CPU time. Note that it would be incorrect to con-
clude that the CPU time of APOAC deteriorates from Table 2
to Table 3 because this measurement accounts for the number
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Figure 2: Cumulative instances completed by CPU time on dom/deg

Algorithm GAC APOAC PREPEAK+

#Instances: 4,077 total; 2,122 by all; 2,298 by at least one
#solved 2,279 2,138 2,286∑

CPU [sec] >372,433.4 >1,095,125.8 >356,778.1
avg. NV 480,897.9 23,472.9 319,453.4
#CallsPOAC - 9,924.4 288.6

Table 3: GAC, APOAC, and PREPEAK+ on dom/wdeg
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Figure 3: Cumulative instances completed by CPU time on
dom/wdeg

of instances completed in each experiment, which is different
(i.e., 2,205 in Table 2 and 2,298 in Table 3).

Figure 3 shows the cumulative number of instances com-
pleted by GAC, APOAC, and PREPEAK+ (on dom/wdeg)
as CPU time increases. APOAC is clearly dominated by
both GAC and PREPEAK+. For instances easily solved by
GAC (i.e., solved in less than 300 seconds), PREPEAK+

has few calls to POAC because GAC is not thrashing. For
the remaining harder instances, PREPEAK+ dominates GAC.
PREPEAK+ remains competitive under dom/wdeg, which is
known to dwarf the benefits of HLC.

Table 4 provides a finer examination of the results with
dom/wdeg for a range of representative benchmarks, showing
the number of instances in each benchmark in parentheses.

Rows 1–3 show benchmarks where PREPEAK+ signifi-
cantly outperforms all others both in CPU time and the num-
ber of solved instances. For all remaining benchmarks, PRE-
PEAK+ solves as many instances as the best algorithm.

APOAC solves more instances than GAC in rows 4 and 5,
showing that HLC is required for these benchmarks. PRE-
PEAK+ solves the same number of instances as APOAC, in
faster CPU time, by selectively enforcing HLC. These bench-
marks confirm the ability of our approach to mimic APOAC’s
performance when APOAC is needed.

In row 6 (QCP-15), GAC and APOAC are roughly equiv-
alent, yet PREPEAK+ outperforms both in CPU time. For
rows 7 and 8, GAC solves more instances than APOAC, how-
ever, PREPEAK+’s few calls to POAC allow it to slightly im-
prove on the CPU performance of GAC. For rows 9–11, GAC
significantly outperforms APOAC both in instance comple-
tions and CPU time: HLC is too costly on these benchmarks.
However, PREPEAK+ is able to adapt to the situation with a
CPU time similar to GAC’s.

6.3 Visualizing Search Performance
For a deeper insight into the behavior of search, we visu-
alize the search execution, using dom/wdeg, on a CSP in-
stance as shown in Figure 4, which ‘profiles’ search with
GAC, APOAC, and PREPEAK+. In each of the three plots,

Benchmark GAC APOAC PREPEAK+

1
QCP-20 # solved 4 4 5
(15)

∑
CPU >5,328.7 >4,861.0 2,762.9

2
nengfa # solved 4 4 5
(10)

∑
CPU >3,820.6 >4,235.9 2,321.0

3
frb45-21 # solved 7 0 8
(10)

∑
CPU >17,642.0 >28,800.0 16,239.8

4
k-insertion # solved 16 17 17
(32)

∑
CPU >3,955.2 3,550.0 2,903.5

5
pseudo-ii # solved 9 14 14
(41)

∑
CPU >18,619.8 2,481.9 2,088.4

6
QCP-15 # solved 15 15 15
(15)

∑
CPU 1,310.0 1,248.4 1,213.5

7
sgb-queen # solved 14 12 14
(50)

∑
CPU 5,712.9 >9,969.6 5,692.0

8
super-os # solved 9 1 9
taillard5 (30)

∑
CPU 11,971.1 >28,924.3 11,969.8

9
super-os # solved 28 22 28
taillard-4 (30)

∑
CPU 7,647.2 >33,042.7 7,675.5

10
geom # solved 100 98 100
(100)

∑
CPU 7,254.3 >28,365.6 7,372.8

11
TSP-20 # solved 15 15 15
(15)

∑
CPU 276.5 1,426.9 298.6

Table 4: Representative benchmarks using dom/wdeg (time in [sec])

we report, on the horizontal axis, the depth of the search tree.
We plot the number of backtracks at each depth, accumulated
throughout search (purple line), with the scale reported on
the vertical axis to the left. We superimpose the cumulative
number of calls to POAC (#Calls POAC) at each depth, with
the scale reported on the vertical axis to the right. We split
the number of calls to POAC into three cases: POAC yields
wipeout (green line), POAC yields some filtering (blue line),
and POAC yields no filtering at all (red line).

The backtrack curve (purple) shows that APOAC (middle)
dramatically reduces the peak value reached by GAC (top)
thanks to the large number of calls to POAC. Unfortunately,
many of these calls are totally wasted (red curve) or likely of
little impact (blue curve): In the middle plot, they compete
with the wipeout calls (green curve). PREPEAK+ (bottom)
makes significantly fewer calls to POAC and those calls are
mostly effective (many more calls in green than in blue or
red), which establishes that HLC is wisely exploited.

7 Comparison to Other Techniques
We identify two general strategies similar to PREPEAK+ in
the sense that they are not designed for a particular HLC:

1. In SAT solving, Wotzlaw et al. [2013] advocate re-
serving 10% of the CPU time for ‘inprocessing’ versus
search. As a result, the more time is spent on search, the
more ‘inprocessing’ is allowed.

2. Balafrej et al. [2015] use Multi-Armed Bandits (MABs)
at each search level to choose among a set of consistency
algorithms.
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Figure 4: Search progress on pseudo-aim-200-1-6-4 using
dom/wdeg: GAC (top), APOAC (middle), and PREPEAK+ (bottom)

We compare both techniques to PREPEAK+.5 To level the
playing field, we enhanced them both with our propagation-
monitoring strategy (i.e., ‘how-much HLC,’ Section 5).

In our experiments on dom/wdeg (see Table 3), the
fixed-ratio inprocessing approach solves 2,264 instances in

5For the fixed-ratio inprocessing approach, we use POAC as
HLC for 10% of the CPU time. For the MAB approach, we choose
between GAC and POAC although the original paper also uses
maxRPC, but it operates on only binary CSPs.

>413,634.6 seconds. It outperforms APOAC but performs
worse than GAC. This strategy yields poor results because it
is agnostic to ‘where,’ in the search space, an HLC is needed.
Further, it is unable to react to the effectiveness of HLC (i.e.,
amount of pruning obtained by the HLC).

In our experiments on dom/wdeg (see Table 3), the MAB
approach solves 2,253 instances in >529,767.9 seconds. It
outperforms APOAC but performs worse than GAC. Because
each MAB operates at a fixed level in search, using dom/wdeg
adversarially affects the effectiveness and stability of a ban-
dit’s learning. Further, the MAB approach assesses the per-
formance of a consistency call by the CPU cost of searching
the subtree rooted at the call (regardless of which consisten-
cies are used in the subtree). PREPEAK+ largely outperforms
the MAB-based strategy for both dom/deg and dom/wdeg
because PREPEAK+ uses the number of backtracks to as-
sess search progress, which is a more precise measure of the
HLC’s effectiveness.

8 Conclusions
We introduce a simple, reactive, trigger-based strategy for
advantageously enforcing a higher-level consistency during
search and empirically validate our approach. Our experi-
ments use POAC because it is perhaps the HLC that is the
most readily portable to constraint solvers. However, prelim-
inary results on other consistencies are extremely encourag-
ing. The proposed visualization is an asset for in-vivo and
post-mortem analysis and provides insight into the perfor-
mance of search.
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