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Abstract
3D model retrieval has been widely utilized in nu-
merous domains, such as computer-aided design,
digital entertainment and virtual reality. Recent-
ly, many graph-based methods have been proposed
to address this task by using multiple views of 3D
models. However, these methods are always con-
strained by the many-to-many graph matching for
similarity measure between pair-wise models. In
this paper, we propose an hierarchical graph struc-
ture learning method (HGS) for 3D model retrieval.
The proposed method can decompose the compli-
cated multi-view graph-based similarity measure
into multiple single-view graph-based similarity
measures. In the bottom hierarchy, we present the
method for single-view graph generation and fur-
ther propose the novel method for similarity mea-
sure in single-view graph by leveraging both node-
wise context and model-wise context. In the top
hierarchy, we fuse the similarities in single-view
graphs with respect to different viewpoints to get
the multi-view similarity between pair-wise model-
s. In this way, the proposed method can avoid the
difficulty in definition and computation in the tradi-
tional high-order graph. Moreover, this method is
unsupervised and is independent of large-scale 3D
dataset for model learning. We conduct extensive e-
valuation on three popular and challenging dataset-
s. The comparison demonstrates the superiority and
effectiveness of the proposed method comparing
with the state of the arts. Especially, this unsuper-
vised method can achieve competing performance
against the most recent supervised & deep learning
method.

1 Introduction
The rapid development of graphics hardware and computing
techniques has led to the wide application of 3D models, such
as digital entertainment, CAD and virtual reality. Confronting
with the huge and ever-increasing 3D data, effective 3D mod-
el retrieval algorithms have become mandatory.

∗Corresponding Author.

3D model retrieval techniques aim to find the relevant mod-
els from the 3D model dataset for the query model. The exist-
ing approaches can be grouped into two paradigms, namely,
model-based and view-based methods. In early stage, a lot
of works [Ankerst et al., 1999; Hilaga et al., 2001] utilized
the spatial structure information to represent 3D models. The
limitation of these methods is that the performance is serious-
ly restricted by the low-quality models and expensive compu-
tation. The view-based methods usually learn to describe 3D
objects based upon their 2D appearances from different view-
points. The literatures report that view-based methods can
usually get better performances than model-based method-
s [Daras and Axenopoulos, 2010]. Consequently, view-based
methods have attracted much more attention in recent years.

View-based methods usually select the characteristic
views [Ansary et al., 2007; Gao et al., 2012a; Nie et al., 2013;
Liu et al., 2015], by using one of the multiple views [Gao and
Dai, 2014] or pooling the multiple views into one view [Su
et al., 2015; Li and An, 2017] to represent the discriminative
characteristics of individual models. Therefore, the retrieval
performance mainly depends on the ability of representative
view selection, which is usually accomplished by view clus-
tering and center selection with visual features. However
these methods can loss the spatial structure information of
multiple views and are sensitive to redundant information.
To leverage the structural information to measure the simi-
larity between pairwise models, the graph-based framework
is used to explore the many-to-many similarity measure be-
tween pairwise sets of views belonging to two different 3D
models [Gao et al., 2011; Nie et al., 2016; Liu et al., 2016;
Yang et al., 2018]. However, these methods usually face sev-
eral critical problems: 1) it might loss important information
of individual models by only selecting parts of views to re-
duce expensive computational complexity. 2) it is not easy
and intuitive to define the similarity between pairwise nodes
in many-to-many graphs matching. 3) it is difficult to explore
the relation between nodes in high-order graph, which might
lead to the variation of the similarity between pairwise nodes
and directly has the negative influence on the robustness of
similarity measure between models.

To address the aforementioned problems, we propose an
hierarchical graph structure learning method (HGS) (Fig-
ure 1). This method contains two hierarchies. In the bottom
hierarchy, we present the method for single-view graph gen-
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Figure 1: The framework of the proposed method. There are four 3D models (triangles in different colors) , each of which can be represented
by three views (circles in the same color). The views can be treated as the nodes of one graph. The proposed framework consists of two
hierarchies. The bottom hierarchy contains two steps, Single-View Graph Construction and Similarity Measure in Single-View Graph.
It aims to explore the relation between pair-wise models with respect to individual viewpoints. The top hierarchy performs Multi-View
Similarity Measure to fuse the similarities of all single-view graphs as the final similarity measure for 3D model retrieval.

eration and further propose the novel method for similarity
measure in single-view graph by discovering and leveraging
both node-wise and model-wise context. In the top hierarchy,
we fuse the similarities by single-view graphs with respect to
different viewpoints to get the multi-view similarity between
pair-wise models. In this way, the proposed method can ef-
fectively avoid the difficulty in definition and computation in
the traditional high-order graph. In particular, this paper tar-
gets on developing the unsupervised method for 3D model
retrieval since currently there is seriously lack of large-scale
3D model datasets, which seriously constrain the implemen-
tation of supervised methods for real applications.

The contributions of this paper are summarized as follow:

• We propose a novel hierarchical graph structure learning
solution for multi-view 3D model retrieval. It can de-
compose the complicated multi-view graph-based sim-
ilarity measure into multiple single-view graph-based
similarity measure and fusion. Consequently, it can
significant simplify the computation of many-to-many
graph matching for similarity measure.

• For similarity measure in the single-view graph, we pro-
pose two novel strategies, the node context-based strate-
gy and the model context-based strategy, to enhance the
robustness for similarity measure in diverse subspaces.

• We conduct extensive experiments on three popular 3D
model datasets. The experimental results demonstrate
the superiority of this method compared with the state
of the arts. Especially, this unsupervised method can
achieve competing performance against the most recent
supervised & deep learning method [Gao et al., 2018].

The remainder of this paper is organized as follows. In
Section 2, we introduce the related work of view-based 3D
model retrieval. Section 3 presents the proposed approach

in detail. Experimental results are introduced in Section 4.
Finally, we conclude the paper in Section 5.

2 Related Work
According to the type of model learning for view-based meth-
ods, they can be grouped into two classes, unsupervised and
supervised methods.

Unsupervised Methods. Adaptive Views Cluster-
ing [Ansary et al., 2007] provided the optimal selection of
2D views from a 3D model. Then it utilized a probabilistic
Bayesian method for 3D model retrieval. Weighted Bipar-
tite Graph Matching [Gao et al., 2011] was built with rep-
resentative views and the matching result was used to mea-
sure the similarity between two different 3D models. [Gao et
al., 2012b] addressed the model retrieval task by construct-
ing multiple hypergraphs for a set of 3D models based on 2D
views. This method can explore the higher order relationship
among 3D models. [Gao and Dai, 2014] implemented the hi-
erarchical agglomerative clustering to cluster views and the
view with the shortest distance to the views in each cluster is
selected as the characteristic view. A graph-based character-
istic view set extraction and matching for 3D model retrieval
is proposed in [Liu et al., 2015]. They used the graph cluster-
ing method for view grouping and the random-walk algorith-
m was applied for constructing a view-graph model. Multi-
Modal Clique Graph Matching [Liu et al., 2016] replaced in-
dividual node of the classic graph by one clique, which con-
sists of k nearest neighbors in the feature subspace to convey
local structural attributes and the similarity of both clique-
graph was computed by considering their structural charac-
teristics.

Supervised Methods. Unlike the unsupervised methods,
without label information, the supervised methods can uti-
lize the class information during the training stage to bene-
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fit model learning. [Gao et al., 2012a] proposed the Camer-
a Constraint-Free View-based method which combined the
positive matching model and the negative matching mod-
el trained based on the classic Gaussian model. A Class-
Statistics and Pair-Constraint method is originally proposed
for 3D model retrieval in [Gao et al., 2016]. It was composed
of the supervised class-based statistics model and the pair-
constraint object retrieval model. Group-Pair Convolution-
al Neural Networks [Gao et al., 2018] utilized the pair-wise
learning scheme to train the deep model to solve the problem
caused by the insufficient training samples.

3 Methodology
In this section, we first overview the hierarchical graph struc-
ture learning (HGS) method. Then we will illustrate each step
in detail.

3.1 Overview
The proposed hierarchical graph structure method consists of
two hierarchies as shown in Figure 1:

Bottom Hierarchy: This module aims to discover the cor-
relation among multiple 3D models with respect to individual
viewpoints. It consists of two key steps and both steps will be
detailed in Section 3.2 & 3.3, respectively.

1) Single-View Graph Construction: This step uses the
corresponding views of individual models, captured from the
same viewpoint, as the nodes to initialize multiple single-
view graphs. In each single-view graph, we compute the sim-
ilarity between all pairwise nodes and get the ranked neighbor
set of each model.

2) Similarity Measure in Single-View Graph: This step
aims to enhance the robustness of similarity measure between
pair-wise nodes in the single-view graph. Specifically, we de-
velop two strategies to strengthen the robustness of similarity
measure in the single-view graph, including the node context-
based strategy and the model context-based strategy.

Top Hierarchy: This module aims to fuse the similarities
in single-view graphs with respect to different viewpoints to
get the multi-view similarity between pair-wise models. The
similarity among 3D models can be utilized to generate the
ranking list for retrieval. The method for multi-view similar-
ity measure will be detailed in Section 3.4.

3.2 Single-View Graph Construction
Different from the traditional graph matching, which utilizes
2D images of one individual 3D model together to build a
multi-view graph G = (V,E) for 3D model representation,
we decompose it into multiple single-view graph construction
and fusion. We first build the single-view graph to measure
the similarity of different models from single viewpoint. We
use Fi =

{
f1
i , f

2
i , f

3
i , ..., f

s
i

}
to represent the multi-view vi-

sual features of the ith 3D model, where i ∈ [1, N ] means the
index of the 3D model and t ∈ [1, s] means the index of the
viewpoint with respect to the tth viewpoint. For the construc-
tion of the single-view graph, we consider f t

i (i ∈ [1, N ]) of
individual 3D models as nodes 1. The weight of the edge be-

1The other view selection methods and related evaluation will be
presented in Section 4.2

tween the ith and jth models in the single-view graph with
respect to the tth viewpoint can be computed by:

D(i, j, t) = D(f t
i , f

t
j ) =

√
(f t

i − f t
j )T (f t

i − f t
j ) (1)

We can use D(i, j, t)(j ∈ [1, N ]) to measure the similari-
ty between pair-wise models and generate the ranked neigh-
bors of the ith model, Ri = (M1,M2, ...,MN ). M1 in
Ri indicates the nearest neighbor of the ith model. For al-
l models, we can compute the ranked neighbor set R =
{R1, R2, ..., RN}. Consequently, we can utilize the views
of different models as nodes and the ranked neighbor set R
as the weights to construct single-view graphs, which corre-
spond to individual viewpoints for view selection.

3.3 Similarity Measure in Single-View Graph
Intuitively it is very sensitive to directly use the edge weight
of the constructed single-view graph as the similarity be-
tween two 3D models with respect to one viewpoint since
each 3D model has complicated spatial structure and multi-
view appearances. In this section, we propose two strategies
to enhance the robustness of similarity measure in single-
view graph, including the node context-based strategy and the
model context-based strategy.

a. Node Context-Based Strategy
Considering there exist multiple feature subspaces with re-
spect to different viewpoints, it is not reasonable to directly
fuse multiple single-view graphs with the edge weights com-
puted in isolated feature subspace as introduced in Section
3.2. To tackle this problem, we first utilize the indexes of
neighbors in R for similarity measure. Rq(i) is used to de-
note the index of the ith model in the ranked neighbor set Rq .
Obviously, if the index of the ith model is ahead of the jth

model in Rq (Rq(i) < Rq(j)), the ith model is more similar
to the qth model than the jth model .

Intuitively, the similar 3D models can have similar neigh-
bor sets. Therefore, the context in the neighbor sets can bene-
fit enhancing similarity measure. We define the k order neigh-
bor set as N(i, k) to denote the top k neighbors in Ri:

N(i, k) =
{
R̄i ∈ Ri,

∣∣R̄i

∣∣ = k, d(i, x) ≤ d(i, y)
}

(2)

where ∀x ∈ R̄i, y ∈ Ri − R̄. Motivated by the distance
between two top k neighbor sets N(i, k) and N(j, k) defined
in [Webber et al., 2010], we define the similarity between
N(i, k) and N(j, k) as:

Q(i, j, k) = Q(j, i, k) =
|N(i, k)

⋂
N(j, k)|

k
(3)

Eq.3 compares the overlap of two ranked neighbor sets with
k neighbors. We can use Q(i, j, k) to replace the edge weight
between the ith&jth node in the single-view graph. Then we
rank the weights in each neighbor set. We update the edge
weight between the ith and jth models, w(i, j), with the in-
dex of the jth model in the neighbor set of the ith model.

b. Model Context-Based Strategy
With the aforementioned strategy, we can fully leverage the
correlation between pair-wise models for similarity measure.
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However, it losses the context among the 3D models in the
datasets. Therefore, we further leverage the correlation a-
mong multiple models as the model-level context to enhance
similarity measure.

Given models p, x, y, the distance between the xth mod-
el and the yth model with respect to the pth model can be
computed as follow:

wp(x, y) = w(p, x) + w(p, y) (4)

w(p, x) & w(p, y) denote the index value of model x & y in
the neighbor set of model p, respectively. The pth model is an
anchor to compare the similarity between the xth&yth model.
Intuitively, the edge weight w(x, y) between two models can
be affected by both the model p and all the models in the
dataset. Consequently, Eq. 4 can be rewritten as:

w(x, y) =
∑

i∈[1,k]

w(i, x) + w(i, y) (5)

Where k denotes the top k neighbor models selected as the
anchors. We can use the computed weights in Eq.5 as the
similarity to re-rank the neighbors of each 3D model and get
the updated similarity between model x and model y.

3.4 Multi-View Similarity Measure
Each 3D model is usually represented by a set of 2D view
images, which are captured from different viewpoints. With
the aforementioned methods in Section 3.2 and 3.3, we can
construct single view-based graph to measure the similarity
between pair-wise 3D model with respect to specific view-
point. Therefore, we need to fuse the similarities by multiple
single-view graphs with respect to different viewpoints to get
the multi-view similarity between pair-wise models, d̂(i, j).
d̂(i, j) can be utilized to re-rank the neighbor set and get the
final retrieval results. We define d̂(i, j) between the ith&jth

models as:

d̂(i, j) =
s∏

t=1

(1 + wt(i, j)) (6)

where s is the number of viewpoints. We add 1 to the weight
between two nodes to avoiding that they have no overlap
neighbor set and consequently w equals to 0.

4 Experiment
4.1 Dataset and Evaluation Criteria
Three popular 3D model datasets are utilized for evaluation,
including ETH [Leibe and Schiele, 2003], MV-RED [Liu et
al., 2017] and NTU [Chen et al., 2003].

To evaluate the performance of 3D model retrieval, we
employ seven popular criteria, including NN, FT, ST, F-
Measure, DCG, ANMRR and AUC as [Liu et al., 2017]. The
higher value means the better performance while the lower
value of ANMRR indicates the better performance.

4.2 Experiment Setting
For visual feature extraction, we adopt the AlexNet mod-
el [Krizhevsky et al., 2012], which was pre-trained on the

ImageNet dataset, and use the output of the second last fully-
connected layers as visual representation. In our experiment,
the initialized view number is set with 41, 73, 60 on ETH,
MVRED and NTU datasets, respectively. We further analyze
the sensitivity caused by s (the view number ), k (the neigh-
bor number) and T (iteration num) in Section 4.3.

According to the order of view selection, we evaluated the
proposed method under three scenarios: 1) Original view
ranking (HGS-O): The view selection is fixed based on the
camera locations. Under this scenario, the selected views can
capture spatial structure information of individual 3D mod-
el. Since it requires strict viewpoint selection, this scenario
can be regarded as the easiest one. 2) Random view rank-
ing (HGS-R): We randomly select the view indexes from the
set of view images of individual 3D model. This scenario
imitates the real application when a person randomly takes
several pictures of one model and retrieves it in the dataset
with these pictures. Since this scenario does not impose any
constraint on viewpoint selection, it can be regarded as the
most difficult one for real application. 3) Sorted view rank-
ing (HGS-S): We re-rank all views by computing the distance
between each view and the center of all views in specific fea-
ture space. Compared with the former two scenarios, this one
only request loose constraint on view selection.

To show the superiority of the proposed method, several
representative methods are used for comparison. They can be
grouped into two groups:

• Unsupervised methods: AVC [Ansary et al., 2007],
HAUS [Gao and Dai, 2014], NN [Gao and Dai, 2014],
WBGM [Gao et al., 2011], MCG [Liu et al., 2016]. The
experiment results are shown in Section 4.3.

• Supervised methods: CCFV [Gao et al., 2012a], C-
SPC [Gao et al., 2016], GPCNN [Gao et al., 2018]. The
experiment results are shown in Section 4.4.

4.3 Comparison with Unsupervised Methods
The comparison of the proposed method against the unsu-
pervised methods are shown in Figure 2. It is obvious that
the proposed method can generally outperform the competing
methods. Especially, HGS-O can get the best performances
on all datasets under three scenarios.

From Figure 2 (a), on ETH, HGS-O can achieve the gain of
3.3% – 25%, 0.4% – 14.4%, 0.2% – 8.9%, 3.4% – 23.8% in
terms of FT, ST, F-measure, DCG, and the decline of 2.4% –
22.7% in terms of ANMRR. Comparing to MCG, one of the
best state-of-the-art methods on this task, HGS-O is worse
than MCG in terms of NN while it can outperform MCG in
terms of all the other criteria by 0.7% – 6.8%.

Figure 2 (b), on MVRED, HGS-O can achieve the gain of
2.6% – 26.4%, 4% – 22.7%, 6% – 25.9%, 4.5% – 20.4%,
2.9% – 25.7% in terms of NN, FT, ST, F-measure, DCG, and
the decline of 3.6% – 22.9% in terms of ANMRR.

Figure 2 (c), on NTU, HGS-O can achieve the gain of 0.2%
– 39.3%, 2% – 22.1%, 3% – 24.4%, 1.3% – 17.1%, 1.2%
– 28.5% in terms of NN, FT, ST, F-measure, DCG, and the
decline of 1.9% – 22.8% in terms of ANMRR.

Comparing HGS-R, HGS-O and HGS-S, we have three key
observations: 1) HGS-O can generally get the best perfor-
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Figure 2: Comparison of performance with unsupervised methods on (a) ETH, (b) MVRED and (c) NTU.
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Figure 3: Comparison by varying the neighbor numbers on (a) ETH, (b) MVRED and (c) NTU.

mances with the prior knowledge of the view order. 2) HGS-S
can not only achieve approximated performances to HGS-O
but also relax the requirement of viewpoint selection by HGS-
O. 3) It is not quite surprised to see that HGS-R works worst
by eliminating any requirement of viewpoint selection. How-
ever, it can still produce the competing results on all datasets
comparing to the state of the arts.

GIFT [Bai et al., 2016] is a very popular method for 3D
model retrieval and ranked 1st on the perturbed dataset in
SHREC2016 large-scale 3D shape retrieval contest [Savva et
al., 2016]. We further compare HGS and GIFT in the set-
ting of original view ranking (12 views). For fair comparison,
we extracted the CNN features by AlexNet for both method-
s. We implemented the source code of GIFT by [Bai et al.,
2016]. HGS can achieve 83.7%, 31.6%, 40.1%, 4.1%, 37.7%,
22.6%, 65.9% against 77.7%, 31.4%, 39.8%, 3.7%, 36.8%,
22.3%, 66.2% by GIFT in terms of NN, FT, ST, F-measure,
DCG, AUC and ANMRR. Obviously, HGS can achieve com-
peting performances against GIFT.

Sensitivity Analysis on Neighbor Number
In our experiment, we vary k from 5 to 30 with a step size of
5 to evaluate its effect on the performance. The performances
on three datasets are shown in Figure 3. From Figure 3, we
can observe that the performances increase with the change
of k. The upper bound performance can be obtained when
k is optimal. When k is smaller or bigger than the optimal
one, the performance will be degraded. It is obvious that too
few neighbors might not provide enough context information

and too many neighbors might add noise information. Be-
sides, when k increases beyond the optimal one, our method
can still be stable with only little decline. It demonstrates the
proposed method is stable with respect to this parameter. Ac-
cording to this evaluation, we can choose the optimal k for
three datasets (10, 10, and 20 for ETH, MVRED, and NTU,
respectively).

Sensitivity Analysis on View Number
For 3D model retrieval in real applications, it is always ex-
pected that we only capture the view images of query 3D
model as few as possible. For the sensitivity analysis on the
view number, we vary it to explore the robustness of the pro-
posed method. Specifically, we tune the view number from
10 to 70 with a step size of 10 on MVRED, the most chal-
lenging 3D dataset for real objects in our daily life. By the
comparison in Figure 4, we have the 3 key observations:

1) All methods can improve the performances by increas-
ing view numbers. This trend is reasonable since more views
can provider more structural and visual information for both
visual representation and similarity measure.

2) HGS-O can outperform all the competing methods in
terms of AUC, FT, ST, F-measure, DCG and ANMRR when
increasing the view number. Comparing with the second best
method, HGS-O can still achieve the gain of 4.7%, 4.0%,
6.9%, 5.2%, 2.8%, 3.7% in terms of AUC, FT, ST, F-measure,
DCG and ANMRR, respectively. Moreover, the performance
of HGS-O increases stably when varying the view numbers
from 10 to 70.
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3) HGS-O can achieve the best performance only with
the fewest views. As shown in Figure 4, HGS-O with 40
views can outperform all the competing methods even with
70 views. In particular, HGS-O with 40 views can outperform
the second best method with 70 views by 1.7%, 1.7%, 4.4%,
2.8%, 0.3% and 1.4% in terms of AUC, FT, ST, F-measure,
DCG and ANMRR.
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Figure 4: Comparison by varying view numbers. (a) AUC; (b) FT;
(c) ST; (d) F-Measure; (e) DCG; (f) ANMRR.

Table 1: Performances during each iteration(T) on NTU.

T NN FT ST F-measure DCG ANMRR
1 0.787 0.458 0.586 0.414 0.561 0.435
2 0.790 0.461 0.591 0.422 0.570 0.423
3 0.796 0.463 0.594 0.436 0.576 0.422
4 0.796 0.463 0.594 0.436 0.576 0.422

Sensitivity Analysis on Iteratively Weight Updating
To refine the distance among models, the new weights w can
be updated based on Eq. 5 in an iterative manner. We evaluate
the performance according to variations of iteration (T) on N-
TU dataset. From Table 1, the performance can get saturated
when T=3, which demonstrates the robustness of our method
in achieving high effectiveness.

4.4 Comparison with Supervised Methods
In this section, we compare the proposed method with three
popular supervised methods, including CCFV [Gao et al.,
2012a], CSPC [Gao et al., 2016] and GPCNN [Gao et al.,
2018]. From Figure 5, it is obvious that HGS-O outperform-
s all three supervised methods on MVRED and NTU and
achieve competing results on ETH. For example, HGS-O can
achieve the gain of 16.1%, 5.6%, 1.2%, 8.3% in terms of NN,
FT, F-measure, DCG and decline the ANMRR by 9.7% com-
paring with GPCNN on NTU. To our knowledge, GPCNN
achieved the best performance on ETH by designing a new
deep convolutional architecture for feature learning. Com-
paring with HGS-O, GPCNN can only get insignificant im-
provement on ETH, which only contains 80 objects. How-
ever, it costs expensive computational complexity for deep
network training. From our viewpoint, GPCNN can be con-
sidered as overfitting since training the complicated deep net-
work of GPCNN is highly dependent on large-scale 3D data.
It is extremely challenging to collect the large-scale 3D model
dataset at present. Comparatively, the proposed method can
achieve competing performance in the unsupervised manner.
Therefore, it is more practical for real applications.

5 Conclusion
This paper proposes an hierarchical graph structure learning
method for 3D model retrieval. First, the single-view graph is
constructed and the similarity in the single-view graph can be
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Figure 5: Comparison with supervised methods on (a) ETH, (b) MVRED and (c) NTU.
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computed by leveraging both node-wise context and model-
wise context. Then, the similarities by single-view graphs
with respect to different viewpoints can be fused to get the
multi-view similarity between pair-wise models. The pro-
posed method can effectively avoid the difficulty in solving
the many-to-many graph matching problem in the tradition-
al high-order graph. Moreover, this method is unsupervised
and is independent to large-scale 3D dataset for model learn-
ing. Extensive comparison demonstrates its superiority and
effectiveness.
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