
Abstract 

Undirected, high dimensional and sparse networks 
are frequently encountered in industrial applications. 
They contain rich knowledge regarding various 
useful patterns. Non-negative latent factor (NLF) 
models have proven to be effective and efficient in 
acquiring useful knowledge from asymmetric 
networks. However, they cannot correctly describe 
the symmetry of an undirected network. For 
addressing this issue, this work analyzes the NLF 
extraction processes on asymmetric and symmetric 
matrices respectively, thereby innovatively 
achieving the symmetric and non-negative latent 
factor (SNLF) models for undirected, high 
dimensional and sparse networks. The proposed 
SNLF models are equipped with a) high efficiency, 
b) non-negativity, and c) symmetry. Experimental 
results on real networks show that they are able to a) 
represent the symmetry of the target network 
rigorously; b) maintain the non-negativity of 
resulting latent factors; and c) achieve high 
computational efficiency when performing data 
analysis tasks as missing data estimation. 

1 Introduction 
Undirected, high dimensional and sparse networks are 
frequently encountered in industrial applications. They 
contain rich knowledge regarding various useful patterns. 
Non-negative latent factor (NLF) models have proven to be 
effective and efficient in acquiring useful knowledge from 
asymmetric networks. However, they cannot correctly 
describe the symmetry of an undirected network. 
 For addressing this issue, this work analyzes the NLF 
extraction processes on asymmetric and symmetric matrices 
respectively, thereby innovatively achieving the symmetric 
and non-negative latent factor (SNLF) models for undirected, 
high dimensional and sparse networks. The proposed SNLF 
models are equipped with a) high efficiency, b) 
non-negativity, and c) symmetry. Experimental results on 
real networks show that they are able to a) represent the 
symmetry of the target network rigorously; b) maintain the 
non-negativity of resulting latent factors; and c) achieve high 

computational efficiency when performing data analysis 
tasks as missing data estimation. 
 With the information explosion, more and more entities 
are involved in various industrial applications like social 
network services [Ghahramani, 2015; Yang et al., 2015], 
e-commerce systems [Adomavicius and Tuzhilin, 2005; Luo 
et al., 2015], bioinformatics applications [You et al., 2010; 
Hofree et al., 2013], internet analysis [Liao et al., 2013] and 
wireless sensor networks [Piao et al., 2014; Nguyen and Shin, 
2016]. Due to the difficulty in observing the full relationship 
among numerous entities, high dimensional and sparse 
(HiDS) matrices describing partial relationship among them 
are frequently encountered. 
 In spite of their sparsity, HiDS matrices contain rich 
information regarding various desired patterns, e.g., user 
preferences in recommender systems [Adomavicius and 
Tuzhilin, 2005; Luo et al., 2015], protein connections in 
protein interactomes [You et al., 2010; Hofree et al., 2013], 
relative distances among unconnected nodes in wireless 
sensor networks [Piao et al., 2014; Nguyen and Shin, 2016], 
and potential communities in social networks [Yang et al., 
2015]. Great efforts have been made for acquiring such 
knowledge from HiDS matrices, resulting in various 
sophisticated models. Among them, one important kind of 
models are the latent factor (LF)–based ones [Koren et al., 
2009]. Originated from matrix factorization (MF)-based 
techniques [Lee and Seung, 1999], an LF model seeks for the 
low-rank approximation to a HiDS matrix. It works by a) 
mapping a HiDS matrix’s column and row entities into the 
same LF space with low dimension, b) designing the 
objective function based on known entries of this HiDS 
matrix with respect to the desired LFs, c) extracting the 
desired LFs through minimizing the objective function, and d) 
applying the obtained LFs to various data analysis tasks.  
 On HiDS matrices where most entries are unknown, an LF 
model focusing on its known entries can achieve high 
computational and storage efficiency as well as competitive 
performance in various data analysis tasks [Koren et al., 2009; 
He et al., 2011]. However, most LF models do not fulfill the 
non-negativity constraints, i.e., their resulting LFs might be 
negative. Nonetheless, industrial data like the social network 
trusts [Yang et al., 2015] are commonly defined to be 
positive. When addressing such data, a non-negative model 
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can precisely describe hidden patterns [Lee and Seung, 1999; 
Kim and Park, 2007].  
 For extracting non-negative LFs from HiDS matrices, the 
NLF model is proposed [Luo et al., 2014; Luo et al., 2016]. In 
accordance with the principle of LF analysis [Koren et al., 
2009], the NLF model transforms the matrix 
manipulation-based non-negatively multiplicative update 
[Lee and Seung, 1999] into single LF dependent 
multiplicative update [Luo et al., 2014], thereby extracting 
non-negative LFs from a HiDS matrix with its known entries 
only. Thus, non-negative LFs can be obtained from a HiDS 
matrix efficiently. 
 However, the NLF model does not consider the possible 
symmetry of a HiDS matrix. Symmetric, high dimensional 
and sparse (SHiDS) matrices correspond to undirected, high 
dimensional and sparse networks, which are frequently 
encountered in real applications focusing on the relationship 
among entities belonging to one mono set, e.g., social 
network services among a mono set of users [Ghahramani, 
2015]. For addressing non-negative, symmetric and full 
matrices, the symmetric and non-negative matrix 
factorization (SNMF) model is proposed [Wang et al., 2008]. 
Its idea is also involved in other tasks related with the 
non-negative factorization of symmetric and full matrices 
[He et al., 2011; Huang et al., 2014]. Nonetheless, to the 
authors’ best knowledge, there are no prior works regarding 
extracting non-negative LFs from SHiDS matrices.  
 This work aims at designing symmetric and non-negative 
LF (SNLF) models for SHiDS matrices corresponding to 
undirected, high dimensional and sparse networks. With such 
models, one can extract non-negative LFs from SHiDS 
matrices with high efficiency in computation and storage, as 
well as reflecting their symmetry. The main contributions of 
this work include: 
a) Two symmetric non-negative latent factor models for 
non-negative LF analysis on SHiDS matrices;  
b) Detailed theoretical analysis regarding the connections 
between the SNLF and asymmetric NLF models; 
c) Empirical studies on four SHiDS matrices from real 
applications. 
 The rest of this paper is organized as follows: Section 2 
states the problem of building SNLF models; Section 3 
presents the SNLF models; Section 4 gives the experimental 
results; Section 5 discusses; and finally, Section 6 concludes 
this paper. 

2 Problem Statement 
An undirected network describes the relationships among 
entities belonging to one mono set. Let N denote this entity 
set, then such a network can be denoted by a symmetric 
matrix R defined as follows,  
Definition 1. Given N, R|N|×|N| describes certain kind of 
relationships among entities in N, whose entries ri,j=rj,i for 
each pair of entities i, j∈N. 
 Once the undirected network is high dimensional and 
sparse, which is frequently encountered in industrial 
applications where only incomplete relationships can be 
observed [Wang et al., 2008; Szklarczyk et al., 2015], then R 

becomes a SHiDS matrix. In other words, let Λ and Γ denote 
the known and unknown entries of R, then we have |Λ|<<|Γ|. 
 For extracting useful knowledge from R, an SNLF model 
seeks for its rank-d approximation R̂  as defined next: 
Definition 2. Given R and Λ, an SNLF model is R’s rank-d 

approximation TR̂ A A= ⋅ with A|N|×d≥0 being the 
non-negative LF matrix and d<<|N|. 
 Note that d can also be interpreted as the dimension of the 
LF space, and A is the non-negative LF matrices hidden in Λ. 
A describes the latent characteristics of entities in N. It can be 
constructed by minimizing the objective function measuring 
the difference between Λ and corresponding entries in R̂ . 
For instance, with the most commonly seen Euclidean 
distance [Wang et al., 2008; Huang et al., 2014], such an 
objective function is formulated by: 
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where ε(A) denotes the objective function regarding A, ri,j, ai,k 
and aj,k denote corresponding entries in R and A, respectively. 
Note that this work adopts the Euclidean distance (1) to 
present the methods. However, the presented methods are 
also compatible with other loss functions like the 
Kullback-Leibler divergence. 
 As unveiled by prior works [Koren et al., 2009], (1) is 
ill-posed. It should be regularized to avoid overfitting. With 
the Tikhonov regularization, (1) is extended to: 
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where λ denotes the regularizing coefficient for A. 

3 Methods 

3.1 Symmetric Non-negative Latent Factor Model 
First of all, we consider building a symmetric non-negative 
latent factor (SNLF) model on (2). To do so, we firstly apply 
the additive gradient descent (AGD) to (2) to obtain: 
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following the principle of single LF dependent multiplicative 
update [Luo et al., 2014] to obtain: 
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 In (4), the update rules for ai,k and aj,k are equivalent. 
Hence, we fold (4) into the following concise form: 
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(5) leads to an SNLF model with the following 

characteristics: a) given that ˆ TR A A= ⋅ , 
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∈ N; and b) the multiplicative update keeps the 
non-negativity of involved LFs in A.  

3.2 Connections between SNLF and NLF 
 As discussed in Section 3.1, SNLF extracts a unique LF 
matrix, i.e., A, which ensures the symmetry of the resulting 
low-rank approximation to the target SHiDS matrix with 
ˆ TR A A= ⋅ . On the other hand, the NLF model can also 

extract two different LF matrices, i.e., P and Q as given in 
[Luo et al., 2014] from a SHiDS matrix, but the resulting 
low-rank matrix is asymmetric.  
As a matter of fact, NLF and SNLF models are strongly 
connected with each other: with proper initializations, NLF 
can achieve similar outputs with those by SNLF. By making 
P=Q before a specified training iteration in NLF, we have: 
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 Note that (6) and (7) are equivalent. Hence, we assert that 
if we have P=Q before a specified training iteration in NLF, 
then we keep P=Q after this iteration. Given that NLF is an 
iterative model, we conclude that if we have: 
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then P and Q remain equal and non-negative with the single 
LF dependent multiplicative update [Luo et al., 2014]. With 
(6)~(8), we further have: 
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(9) indicates that NLF can also achieve a symmetric low-rank 
approximation to a SHiDS matrix by adopting the same 
initial hypothesis for P and Q, at the cost of lower 
computational efficiency than SNLF. 

3.3 Biased SNLF Model 
As discussed in prior works [Koren et al., 2009; Luo et al., 
2016], to integrate linear biases into an LF/NLF model can 
further improve its performance. SNLF is compatible with 
linear biases. With them, the objective function (2) is 
extended into: 
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where the length-|N| vector B is the bias vector for N.  
 By applying AGD to (10) with respect to A and B, we 
obtain: 
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ri,j. Through manipulating ηi and ηi,k, we cancel the negative 
terms in (11) to obtain the following update rule: 
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 With (12), we obtain the biases SNLF (BSNLF) model for 
SHiDS matrices.  

4 Experimental Results and Analysis 
Compared Models. The experiments are conducted with 
respect to six models, whose details are given in Table I. 
 Evaluation Protocol. For industrial applications [Koren 
et al., 2009; Luo et al., 2014; Szklarczyk et al., 2015], to 
estimate the missing data of a SHiDS matrix is highly 
important, due to the great desire to recover the full 
relationship among involved entities. Hence, we adopt the 
task of missing data estimation as the first evaluation 
protocol to validate involved models’ performance. 
 Evaluation Metrics. For a tested model, its accuracy in 
missing data estimation is usually measured by root mean 
squared error (RMSE) [Koren et al., 2009; Luo et al., 2014]: 
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where Γ denotes the validation set and is naturally disjoint 
with the training set Λ, and ,û vr denotes the prediction for the 

testing instance ru,v∈Γ. Naturally, low RMSE stands for high 
prediction accuracy for missing data in Γ. 
 Meanwhile, we are concerned with the computational 
efficiency of tested models. So we have recorded the 
consumed time to make a model converge. All experiments 
are conducted on a tablet with a 3.4 GHz i7 CPU and 16 GB 
RAM. The programming language is JAVA SE 7U60.  
 Datasets. The experiments are conducted on four datasets, 
whose details are given in Table II. All datasets are SHiDS 
matrices from real applications. D1 and D2 are from the 
STRING database [Szklarczyk et al., 2015], which contains 
protein interactome weights in various organs. D3 records 
the temperature data of a steel cylinder, where the surface 
nodes form an undirected network. D4 records the vibration 
stiffness data of a piece of a special kind of material, where 
the material kernels form an undirected network. Both D3 
 

Table 1. Compared Models in the Experiments 
No. Name Description 
M1 NLF Asymmetric NLF [Luo et al., 2014]. 
M2 BNLF Asymmetric and biased NLF [Luo et al., 2016]. 

M3 
NLF with 
symmetry 

The NLF model whose LF matrices are assigned with 
the same initial hypothesis as in Section 3.2. 

M4 SNLF Symmetric NLF presented in Section 3.1. 
M5 BSNLF Biased SNLF presented in Section 3.3. 
M6 SNMF Symmetric NMF described in [Wang et al., 2008]. 

Table 2. Adopted Networks in the Experiments 

No. Description |Λ| |N| Density

D1 
Protein interactome in 
Pseudomonas Aeruginosa 
PAO1. 

1,248,802 4,260 6.88% 

D2 
Protein interactome in 
Arabidopsis Thaliana. 

10,637,352 24,283 1.80% 

D3 
Temperature data of a 
steel cylinder. 

1,751,178 24,696 0.28% 

D4 
Vibration stiffness data of 
a piece of special material. 

711,558 102,158 0.007%

and D4 are from the University of Florida sparse matrix 
collection [Davis and Hu, 2011]. In general, D1 and D2 are 
related to bioinformatics, while D3 and D4 are related to 
more conventionally industrial applications. 
On all datasets we adopt the 80%-20% train-test settings and 
five-fold cross-validations: a) each time we select four 
subsets to train a model, predicting the remaining one subset, 
and b) we sequentially repeat this process for five times. 
 Model Settings. Note that M6, i.e., the SNMF model, 
cannot address a SHiDS matrix directly [Wang et al., 2008; 
Huang et al., 2014]. Hence, for M6, the missing data of each 
dataset is prefilled with the average of Λ. As discussed in 
[Luo et al., 2014, Luo et al., 2016], the regularization 
coefficients affect the performance of NLF models. For a fair 
comparison, on each dataset we tune the regularization 
coefficients of each tested model on one fold, and adopt the 
same value on the remaining four folds. Meanwhile, since an 
NLF model’s performance further relies on the LF dimension 
d, we have tested d in the [5, 80] interval. The training 
process of each tested model terminates if a) the number of 
consumed iterations reaches a preset threshold, i.e., 1,000, 
and b) the model converges, i.e., the difference in the training 
error of two consecutive iterations is smaller than 10-5. 

4.1 Validation of Model Symmetry 

 
(a) M1                                          (b) M2 

 
(c) M3                                          (d) M4 

 
(e) M5                                          (f) M6 

Figure 1. Data distributions in the low-rank approximation to D1 by 
all models with d=20, where x and y axes respectively denote ,î jr  

and ,ĵ ir . If the resulting approximation is symmetric, then the data 

concentrate along x=y. 
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First of all, it is important to check that whether a tested 
model can correctly describe the symmetry of a SHiDS 
matrix. Figure 1 depicts the data distribution in the low-rank 
approximation to D1 by each tested model. Note that similar 
situations can be found on D2-D4. From Figures 1(a) and 
1(b), we clearly see that without the symmetric design, M1 
and M2 cannot correctly describe the symmetry of the target 
matrix. 
 On the other hand, as depicted in Figures 1(d) and (e), both 
M4 and M5, i.e., SNLF and BSNLF, correctly grasp the 
symmetry of the target network. Data in the low-rank 
approximations achieved by both models distribute along the 
line x=y strictly. Meanwhile, as shown in Figure 1(c), we see 
that M3 can also achieve symmetric low-rank 
approximations to the target SHiDS matrix. This 
phenomenon verifies the inferences in Section 3.2. 
Meanwhile, M6, i.e., the SNMF model, can also describe the 
symmetry of the target SHiDS matrix. 

4.2 Prediction Accuracy for Missing Data 

 
(a) D1                                          (b) D2 

 
(c) D3                                          (d) D4 

Figure 2. RMSE of tested models as d increases from 5 to 80. 

 
(a) D1                                          (b) D2 

 
(c) D3                                          (d) D4 

Figure 3. Training process of involved models with d=20. 

Figure 2 depicts the RMSE of M1-M6 as d increases from 5 
to 80. Figure 3 depicts the training process of M1-M6 with 
d=20. From these results, we have the following findings: 
a) M3 and M4 generate the same predictions for missing data 
from a SHiDS matrix. As shown in Figure 2, as d increases, 
the accuracy curves of M3 and M4 overlap on all datasets. 
Moreover, as depicted in Figure 3, the training curves of M3 
and M4 also overlap. These phenomena again verify Section 
3.2: with P and Q initially identical, an NLF model achieves 
the same outputs as an SNLF model does. 
b) Effects in prediction accuracy by the symmetric designs in 
SNLF models are data dependent. On D1, both M4 and M5 
are outperformed by the corresponding asymmetric models, 
i.e., M1 and M2. As depicted in Figure 2(a), M4’s RMSE is 
always higher than that of M1. Moreover, the accuracy gap 
increases as d increases. For instance, with d=5, the RMSE of 
M1 and M4 is 0.1564 and 0.1565, indicating the accuracy 
gap at 0.06%. With d=80, the RMSE of M1 and M4 is 0.1175 
and 0.1225, where the accuracy gap increases to 4.08%. 
Similar situations can be found between M2 and M5 on D1. 
 However, the situations on D2-D4 are different. As 
depicted in Figures 2(b)-2(d), M4 and M5 outperform M1 
and M2. For instance, with d=5 on D2, the RMSE of M1, M2, 
M4 and M5 is 0.1305, 0.1294, 0.1280 and 0.1267, 
respectively. The asymmetric NLF model, i.e., M1, is 
outperformed by the SNLF model, i.e., M4, in prediction 
accuracy at 1.92%. The asymmetric and biased NLF model, 
i.e., M2, is outperformed by the BSNLF model, i.e., M5, in 
prediction accuracy at 2.09%. As d increases to 80, the 
RMSE of M1, M2, M4 and M5 is 0.0984, 0.0978, 0.0967 and 
0.0962. The accuracy gap between M1 and M4 is 1.73%, 
between M2 and M5 is 1.64%, respectively. Similar 
situations also be found in the comparison on D3 and D4.  
 c) Effects in prediction accuracy by linear biases in SNLF 
models are also data dependent. On D1, M5 is outperformed 
by M4, as shown in Figures 2(a) and 3(a). This phenomenon 
indicates that the integration of linear biases into the SNLF 
model results in loss of prediction accuracy for missing data. 
Nonetheless, on D2-D4 the situations are different: M5 
achieves lower RMSE than M4 does, as shown in Figures 
2(b)-2(d) and 3(b)-3(d). 
 d) SNMF cannot generate accurate predictions for missing 
data in a SHiDS matrix as its peers do. From Figures 2 and 3, 
we see that the RMSE of SNMF is obviously higher than that 
of the other models. For instance, with d=5 on D4, the RMSE 
of D6, i.e., SNMF, is 0.2057. Compared with 0.1806 by M1, 
0.1919 by M2, 0.1719 by M4 and 0.1710 by M5, the 
accuracy gap is 12.20%, 6.71%, 16.43% and 16.87%, 
respectively. As d increases to 80, the RMSE of D6 is 0.1610. 
Compared with 0.1381 by M1, 0.1463 by M2, 0.1346 by M4 
and 0.1339 by M5, the accuracy gap is 14.22%, 9.13%, 
16.38% and 16.83%, respectively. Similar situations can be 
found on D1-D3.  

4.3 Computational Efficiency 
Figure 4 depicts the time costs of tested models as d increases 
from 5 to 80. It is observed that the computational efficiency 
of M4 and M5 is much higher than that of M1-M3 and M6: a)  
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(a) D1                                          (b) D2 

 
(c) D3                                          (d) D4 

Figure 4. Training time of tested models as d increases from 5 to 80. 

the time costs of M1 and M3 are approximately the same; b) 
M4’s time cost is about 1/2 that of M1 and M3’s time cost; c) 
M5’s time cost is about 1/2 that of M2’s time cost; d) M5’s 
time cost is slightly higher than that M4’s time cost; and e) 
the time cost of M6 is much higher than those of its peers. 
 From Section 3, we clearly see the reasons for the above 
phenomena:  
a) M1 and M3 train two LF matrices, while M4 only trains 
one. Hence, time cost by M4 is about half of that by M1 and 
M3. Considering M2 and M5, the situation is similar; 
b) Compared with M4, M5 trains linear biases in addition. 
This results in additional constant cost, making it consume a 
bit more time than M4 does; 
c) M6, i.e., the SNMF model, manipulates the product 
between R and A where R is prefilled with average of Λ. To 
manipulate such a full approximation to a SHiDS matrix can 
be enormously time-consuming. For instance, D4 is a 
102,158×102,158 SHiDS matrix with 711,558 known entries. 
In other words, M6 has to manipulate a full matrix with more 
than 10 billion entries, while M1-M5 only focuses on the 
known entries which are less than one million. This 
phenomenon again indicates that it is computationally 
expensive to perform non-negative LF analysis on SHiDS 
matrices with SNMF models, which are actually designed for 
symmetric and full matrices. 

4.4 Summery 
From the experimental results, we see that M4 and M5, i.e., 
the proposed SNLF and BSNLF, outperform their peers. 
They correctly grasp the symmetry of SHiDS networks with 
high computational efficiency, and their prediction accuracy 
for missing data is highly competent [Luo et al., 2014, Luo et 
al., 2016]. 

5 Discussions 
As shown in Section 4, the efficiency of the proposed SNLF 
models is supported by the experimental results. In this 

section, we further discuss some interesting issues regarding 
the characteristics and applications of the SNLF models. 
 a) Symmetry and prediction accuracy for missing data. 
From Section 3.2, we see that SNLF models can correctly 
represent the symmetry of a SHiDS matrix, while 
asymmetric NLF models [Luo et al., 2014, Luo et al., 2016] 
cannot. From this point of view, SNLF models can better 
represent the natural characteristic of a SHiDS matrix than 
asymmetric NLF models do. However, from Section 4.2, we 
see that SNLF models might be outperformed by asymmetric 
NLF models in terms of prediction accuracy for missing data. 
This phenomenon is interesting, since it suggests that model 
symmetry is not necessarily connected with prediction 
accuracy.  
 One possible reason for this phenomenon is that without 
the symmetric design, i.e., with P and Q initially unequal in 
NLF, both P and Q actually represent different hypotheses 
for LFs corresponding to N hidden in Λ, and they achieve 
similar effect to that by an ensemble [Hui and Suganthan, 
2016]. Thus, the resulting asymmetric NLF model may better 
grasp the numerical characteristics of the target SHiDS 
matrix than an SNLF model does, which only makes one 
unique hypothesis for the desired LF matrix. 
 Nevertheless, from Section 4.2 we also see that SNLF 
models can generate more accurate prediction for missing 
data on different SHiDS matrices than asymmetric NLF 
models do. This phenomenon indicates that the ensemble 
effects in an NLF model cannot guarantee the accuracy gain 
by the asymmetric NLF models over the SNLF models. An 
asymmetric NLF model cannot describe the symmetric of a 
SHiDS matrix, which also weakens its representativeness for 
the matrix structure. On different SHiDS matrices, this defect 
can cause accuracy loss of asymmetric NLF models in 
missing data estimation, thereby making them be 
outperformed by SNLF models. 
 Moreover, in this work we adopt the strict constraints to 
make TR̂ A A= ⋅ . As a matter of fact, such assumptions 
might be over strict since we can also decompose a 
symmetric matrix into multiple LF matrices without 
violating the symmetry of the resultant low-rank 
approximation to the target matrix. To do so, it is necessary 
to apply the symmetric constraints into the training process 
of the desired and non-negative LFs. On the other hand, it is 
also highly interesting to investigate the structure of SNLF 
models according to recent progress in symmetric and 
non-negative matrix factorization [Borhani et al., 2016, Paul 
and Chen, 2016]. These works are included in our future 
plan. 
 b) Industrial applications of SNLF models. SHiDS 
matrices are often encountered in various industrial 
applications. For information systems, such data exist in 
social network services [Ghahramani, 2015; Yang et al., 
2015], e-commerce systems [Adomavicius and Tuzhilin, 
2005; Luo et al., 2015], bioinformatics applications [You et 
al., 2010; Hofree et al., 2013], internet analysis applications 
[Liao et al., 2013], etc. For conventionally industrial 
applications, such data exist in wireless sensor networks 
[Piao et al., 2014; Nguyen and Shin, 2016], material analysis 
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[Davis and Hu, 2011], mechanical fault detection [Gao et al., 
2016], etc. SNLF models are able to analyze such data 
efficiently and accurately, seeking for various desired 
patterns like feature extraction [Davis and Hu, 2011; Gao et 
al., 2016], missing data estimation [Koren et al., 2009; Luo et 
al., 2014; Szklarczyk et al., 2015], cluster detection [He et al., 
2011; Yang et al., 2015 ], etc. 

6 Conclusions 
This work aims at designing the symmetric and non-negative 
latent factor (SNLF) models for non-negative latent factor 
(LF) analysis on undirected, high dimensional and sparse 
networks. Since such a network corresponds to a symmetric, 
high dimensional and sparse (SHiDS) matrix, this task is 
equivalent to conduct non-negative LF analysis on SHiDS 
matrices. The key issue is how to describe the symmetry of 
the target matrix as well as maintain the model 
non-negativity. Based on careful investigation into the single 
LF dependent multiplicative update [Luo et al., 2014, Luo et 
al., 2016], this paper proposes to conduct this process on a 
unique LF matrix, thereby achieving the SNLF model. 
Moreover, through integrating linear biases into the SNLF 
model, the biased and symmetric non-negative latent factor 
(BSNLF) model is further developed. Experimental results 
on four SHiDS networks from real and industrial applications 
demonstrate that the proposed SNLF models are able to 
conduct the non-negative LF analysis on such networks 
symmetrically, accurately and efficiently. 
 Future works include a) investigating the industrial 
applications of the SNLF models; b) improving the model 
structure and constrained training process to further boost the 
performance of the SNLF models.  
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